Latent Topic Modeling of Word Co-Occurrence Information for Spoken Document Retrieval

Berlin Chen

Department of Computer Science & Information Engineering National Taiwan Normal University, Taiwan

2009/04/23

Outline

- Introduction
- Document Topic Models (DTM)
- Word Topic Model (WTM)
- Comparisons and Experiments on SDR
- Applications of WTM to Other Related Tasks
- Conclusions

- Large volumes of multimedia associated with speech are now made available on the Internet
 - Voice search provides a natural way for multimedia access
- Task Definition for Voice Search
 - Robustly Index spoken documents with speech recognition techniques
 - Retrieve relevant spoken documents in response to a user query
 - Spoken Term Detection (STD)
 - Find "literally matched" spoken documents where all/most query terms should be present (much like Web search)
 - Spoken Document Retrieval (SDR)
 - Find spoken documents that are "topically related" to a given query

Scenarios for Spoken Document Retrieval (SDR)

- SQ/SD is the most difficult
- TQ/SD is studied most of the time
 - This paper investigates using (Xinhua) text news to retrieve relevant (Voice of America) broadcast news
 - "query-by-example"
 - Useful for news monitoring and tracking

Language Modeling (LM) Approaches

 LM approaches have been introduced to IR (and SDR), and demonstrated with good success

$$P_{\rm LM}\left(D|Q\right) = \frac{P(Q|M_{\rm D})P(D)}{P(Q)} \propto P(Q|M_{\rm D})$$

- A probabilistic framework for ranking documents given a query
- Each document is viewed as a language model for generating the query
- Those documents with higher query-likelihoods are more relevant to the query

LM for SDR: Two Matching Strategies

• Literal Term Matching: Each document offers a *n*-gram (usually unigram) distribution for observing a query word

$$P_{\text{Unigram}}\left(\mathcal{Q}|\mathbf{M}_{D}\right) = \prod_{i=1}^{L} \left[\lambda \cdot P\left(w_{i}|\mathbf{M}_{D}\right) + (1-\lambda) \cdot P\left(w_{i}|\mathbf{M}_{C}\right)\right]$$

- Concept Matching: Each document as a whole consists of a set of shared latent topics with different weights -- A document topic model (DTM)
 - Each topic offers a unigram (multinomial) distribution for observing a query word $P_{\text{PLSA/LDA}} \left(Q \mid M_D \right) = \prod_{i=1}^{L} \left[\sum_{k=1}^{K} P(w_i \mid T_k) P(T_k \mid M_D) \right]$
 - PLSA (Probabilistic Latent Semantic Analysis) and LDA (Latent Dirichlet Allocation) are the two good examples
 - Mainly differ in inference of model parameters (fixed & unknown vs. Dirichlet distributed)

 Each word of language is treated as a word topic model (WTM) for predicting the occurrences of other words

$$P_{\text{WTM}}\left(w_{i} \mid \mathbf{M}_{w_{j}}\right) = \sum_{k=1}^{K} P\left(w_{i} \mid T_{k}\right) P\left(T_{k} \mid \mathbf{M}_{w_{j}}\right)$$

• The relevance measure between a query and a document can be expressed by

$$P_{\text{WTM}}\left(Q|D\right) = \prod_{i=1}^{L} \left[\sum_{w_j \in D} P_{\text{WTM}}\left(w_i | \mathbf{M}_{w_j}\right) P\left(w_j | D\right)\right]$$

- A spoken document can be viewed as a composite WTM
- WTM is a kind of LM for translating words in the document to words in the query
- $-P(w_j|D)$ is estimated according to the frequency of w_j in D

Unsupervised Training of WTM

- The WTM $P_{WTM}(w_i | M_{w_j})$ of each word can be trained with maximum likelihood estimation (MLE)
 - By concatenating those words occurring within a context window around each occurrence of the word, which are assumed to be relevant to the word, to form the training observation

$$Q_{w_j,1} \qquad Q_{w_j,2} \qquad Q_{w_j,N} \qquad Q_{w_j} = Q_{w_j,1}, Q_{w_j,2}, \dots, Q_{w_j,N}$$

$$w_j \qquad w_j$$

$$\log L_{\mathbf{w}} = \sum_{w_j \in \mathbf{W}} \log P_{\mathrm{WTM}} \left(Q_{w_j} \left| \mathbf{M}_{w_j} \right) = \sum_{w_j \in \mathbf{W}} \sum_{w_i \in Q_{w_j}} c \left(w_i, Q_{w_j} \right) \log P_{\mathrm{WTM}} \left(w_i \left| \mathbf{M}_{w_j} \right) \right)$$

- ${\bf W}$: the set of words in the language

- WTM was trained to optimize its prediction power over the observation

Comparison Between WTM and DTM -- Probabilistic Matrix Decompositions

Unsupervised training for PLSA/LDA and WTM!

Comparison Between WTM and DTM -- Spoken Document Retrieval

- Experiments were conducted on the TDT-2 spoken document collection (~50h broadcast news stories, 16 test queries)
 - Results were measured by Mean Average Precision (mAP)

PLSA		LDA		WTM		WTM-L	
TD	SD	TD	SD	TD	SD	TD	SD
0.627	0.568	0.641	0.570	0.636	0.573	0.644	0.574

- PLSA, LDA and WTM (8 topics) are all trained without supervision (without using additional query-document relevance information)
 - PLSA or LDA maximizes the collection likelihood
 - WTM maximizes the likelihood of words in each word's vicinity
- WTM-L: Further assume the parameters of WTM follow Dirichlet distributions

$$- \hat{P}_{\text{DTM/WTM}}(w_i \mid M_D) = \rho_1 \cdot P_{\text{DTM/WTM}}(w_i \mid M_D) + \rho_2 \cdot P(w_i \mid M_D) + (1 - \rho_1 - \rho_2) \cdot P(w_i \mid M_C)$$

Supervised Training of WTM

- Maximum Likelihood Estimation (MLE)
 - Maximize the log-likelihood of an outside training set of (~800) query exemplars generated by their relevant documents

$$\log L_{\mathbf{Q}_{TrainSet}} = \sum_{Q \in \mathbf{Q}_{TrainSet}} \sum_{D_r \in \mathbf{D}_R \text{ to } Q} \log P_{\text{WTM}} \left(Q | \mathbf{M}_{D_r} \right)$$

- Minimum Classification Error Training (MCE)
 - Given a training query exemplar, we can instead minimize the following error function

$$E(Q, D_r, D_{irr}) = \frac{1}{|Q|} \left[-\log P_{\text{WTM}} \left(Q | M_{D_r} \right) + \left(\max_{D_{irr}} \log P_{\text{WTM}} \left(Q | M_{D_{irr}} \right) \right] \right]$$

Other irrelevant documents for the training query can be into consideration

- Further converted to a loss function with a Sigmoid operator
- Corresponding parameters of WTM then are updated with a generalized probabilistic descent (GPD) procedure

Results of Supervised Training

	WTM				PLSA				Unigram	
	MIX-8		MIX-32		MIX-8		MIX-32			
	TD	SD	TD	SD	TD	SD	TD	SD	TD	SD
MLE	0.689	0.617	0.735	0.686	0.675	0.592	0.683	0.626	0.633	0.566
MCE	0.700	0.631	0.760	0.710	0.679	0.608	0.685	0.628	0.646	0.581

- For WTM, if training query-relevant document pairs were available, significantly better results could be achieved by either MLE or MCE
- PLSA and Unigram LM (i.e., the simple literal term matching model) can also be trained with supervision
- Notice also that, MCE seems to provide additional performance gains over MLE

Results of Various Vector Space Approaches

Here we also list the results of retrieval using three popular vector space approaches

VS	SM	LS	4	SVM		
TD	SD	TD	SD	TD	SD	
0.555	0.512	0.551	0.531	0.580	0.532	

- SVM (Support Vector Machine) treats IR as a classification problem
 - A set of 11 heterogeneous features is used to represent each spoken document given an input query
 - SVM was trained by leveraging the relevance information of the outside training query exemplars
- All LM-based retrieval approaches are significantly better than these vector space approaches

Language Modeling in Speech Recognition

$$P\left(w_{i}\left|H_{w_{i}}\right)=\sum_{j=1}^{i-1}P_{\text{WTM}}\left(w_{i}\left|M_{w_{j}}\right)P\left(w_{j}\left|H_{w_{i}}\right)\right)$$
$$=\sum_{j=1}^{i-1}P\left(w_{j}\left|H_{w_{i}}\right)\sum_{k=1}^{K}P\left(w_{i}\left|T_{k}\right.\right)P\left(T_{k}\left|M_{w_{j}}\right.\right)$$

Extractive Spoken Document Summarization

$$P(D|S) = \prod_{i=1}^{L} \left[\sum_{w_j \in S} P_{WTM} \left(w_i | M_{w_j} \right) P(w_j | S) \right]$$
$$= \prod_{i=1}^{L} \left[\sum_{w_j \in S} P(w_j | S) \sum_{k=1}^{K} P(w_i | T_k) P(T_k | M_{w_j}) \right]$$

• For both tasks, WTM has preliminarily demonstrated good results as compared to existing approaches

- This paper presented a word topic modeling (WTM) approach for spoken document retrieval
 - Simple and easy to implement
- Various model inference techniques were studied for WTM and other document topic models (DTMs)
 - Given an outside training set of query exemplars with relevance labels, the LM-based retrieval models can be steadily improved
- Future work on WTM: integration with more elaborate indexing mechanisms for large-scale SDR
 - Compared to more other retrieval models