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Taxonomy of Classic IR Models

Non-Overlapping Lists
Proximal Nodes

Structured Models

Retrieval: 
Adhoc
Filtering
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Set Theoretic
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Algebraic

Generalized Vector
Latent Semantic 
Analysis (LSA)
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Flat
Structure Guided
Hypertext

Probabilistic

Inference Network 
Belief Network

Language Model
-Probabilistic LSA
-Topical Mixture Models
-Latent Dirichlet Allocation
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Classification of IR Models Along Two Axes

• Matching Strategy
– Literal term matching

• E.g., Vector Space Model (VSM), Hidden Markov Model (HMM), 
Language Model (LM)

– Concept matching
• E.g., Latent Semantic Analysis (LSA), Probabilistic Latent 

Semantic Analysis (PLSA), Topical Mixture Model (TMM)

• Learning Capability
– Heuristic approaches for term weighting, query expansion, 

document expansion, etc.
• E.g., Vector Space Model, Latent Semantic Analysis 
• Most approaches are based on linear algebra operations

– Solid statistical foundations (optimization algorithms)
• E.g., Hidden Markov Model (HMM), Probabilistic Latent 

Semantic Analysis, Latent Dirichlet Allocation (LDA)
• Most models belong to the language modeling approach
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Two Perspectives for IR Models (cont.)

中國解放軍
蘇愷戰機

中共新一代
空軍戰力

• Literal Term Matching vs. Concept Matching

– There are usually many ways to express a given concept (an 
information need), so literal terms in a user’s query may not 
match those of a relevant document 

香港星島日報篇報導引述軍事觀察家的話表示，到二
零零五年台灣將完全喪失空中優勢，原因是中國大陸
戰機不論是數量或是性能上都將超越台灣，報導指出
中國在大量引進俄羅斯先進武器的同時也得加快研發
自製武器系統，目前西安飛機製造廠任職的改進型飛
豹戰機即將部署尚未與蘇愷三十通道地對地攻擊住宅
飛機，以督促遇到挫折的監控其戰機目前也已經取得
了重大階段性的認知成果。根據日本媒體報導在台海
戰爭隨時可能爆發情況之下北京方面的基本方針，使
用高科技答應局部戰爭。因此，解放軍打算在二零零
四年前又有包括蘇愷三十二期在內的兩百架蘇霍伊戰
鬥機。
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Latent Semantic Analysis (LSA)

• Also called Latent Semantic Indexing (LSI), Latent 
Semantic Mapping (LSM), or Two-Mode Factor Analysis
– Original formulated in the context of information retrieval

• Users tend to retrieve documents on the basis of conceptual 
content

• Individual terms (units) provide unreliable evidence about the 
conceptual topic or meaning of a document (composition)

• There are many ways to express a given concept
– LSA attempts to explore some underlying latent semantic 

structure in the data (documents) which is partially obscured by
the randomness of word choices

– LSA results in a parsimonious description of terms and 
documents

• Contextual or positional information for words in documents 
is discarded (the so-called bag-of-words assumption)
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Applications of LSA

• Information Retrieval
• Word/document/Topic Clustering
• Language Modeling 
• Automatic Call Routing 
• Language Identification
• Pronunciation Modeling
• Speaker Verification (Prosody Analysis)
• Utterance Verification
• Text/Speech Summarization
• Automatic Image Annotation
• ....



7

LSA : Schematic Depiction

• Dimension Reduction and Feature Extraction
– PCA

– SVD (in LSA)
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LSA: An Example

– Singular Value Decomposition (SVD) used for the word-
document matrix

• A least-squares method for dimension reduction
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LSA: Latent Structure Space

• Two alternative frameworks to circumvent vocabulary mismatch

Doc

Query

terms

terms

doc expansion

query expansion

literal term matching

structure model

structure model

latent semantic
structure retrieval
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LSA: Another Example (1/2)

1.
2.
3.
4.
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LSA: Another Example (2/2)

Query: “human computer interaction”

An OOV word
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LSA: Theoretical Foundation

• Singular Value Decomposition (SVD)
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LSA: Theoretical Foundation

• “term-document” matrix A has to do with the co-occurrences 
between terms (units) and documents (compositions)
– Contextual or positional information for words in documents is discarded

• “bag-of-words” modeling

• Feature extraction for the entities          of matrix A
1. Conventional tf-idf statistics

2. Or,       :occurrence frequency weighted by negative entropy 
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LSA: Theoretical Foundation

• Singular Value Decomposition (SVD)
– ATA is symmetric nxn matrix

• All eigenvalues λj are nonnegative real numbers

• All eigenvectors vj are orthonormal (    Rn)

• Define singular values:
– As the square roots of the eigenvalues of ATA
– As the lengths of the vectors Av1, Av2 , …., Avn
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LSA: Theoretical Foundation

• {Av1, Av2 , …. , Avr } is an orthogonal basis of Col A 

– Suppose that A (or ATA) has rank r ≤ n

– Define an orthonormal basis {u1, u2 ,…., ur} for Col A

• Extend to an orthonormal basis {u1, u2 ,…, um} of Rm
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LSA: Theoretical Foundation
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LSA: Theoretical Foundation

• Additional Explanations
– Each row of        is related to the projection of a corresponding 

row of        onto the basis formed by columns of 

• the i-th entry of  a row of        is related to the projection of a 
corresponding row of        onto the i-th column of 

– Each row of        is related to the projection of a corresponding 
row of        onto the basis formed by

• the i-th entry of  a row of        is related to the projection of a 
corresponding row of        onto the i-th column of 
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LSA: Theoretical Foundation

• Fundamental comparisons based on SVD
– The original word-document matrix (A)

– The new word-document matrix (A’)
• compare two terms

→ dot product of two rows of U’Σ’
• compare two docs

→ dot product of two rows of V’Σ’
• compare a query word and a doc → each individual entry of A’
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LSA: Fold-in

• Find representations for pesudo-docs
– For objects (new queries or docs) that did not appear in the 

original analysis
• Fold-in a new mx1 query (or doc) vector 

– Represented as the weighted sum of its component word 
(or term) vectors

– Cosine measure between the query and doc vectors in 
the latent semantic space
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LSA: Theoretical Foundation

• Fold-in a new 1 X n term vector 
1

11ˆ
−
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See Figure B below

<Figure A>

<Figure B>
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LSA: A Simple IR Evaluation

• Experimental results
– HMM is consistently better than VSM at all recall levels
– LSA is better than VSM at higher recall levels

Recall-Precision curve at 11 standard recall levels evaluated on
TDT-3 SD collection. (Using word-level indexing terms)  
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LSA: Pro and Con (1/2)

• Pro (Advantages)
– A clean formal framework and a clearly defined optimization 

criterion (least-squares)
• Conceptual simplicity and clarity

– Handle synonymy problems (“heterogeneous vocabulary”)

• Replace individual terms as the descriptors of documents by 
independent “artificial concepts” that can specified by any 
one of several terms (or documents) or combinations 

– Good results for high-recall search
• Take term co-occurrence into account
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LSA: Pro and Con (2/2)

• Disadvantages
– High computational complexity (e.g., SVD decomposition)

– Exhaustive comparison of a query against all stored documents 
is needed (cannot make use of inverted files ?)

– LSA offers only a partial solution to polysemy (e.g. bank, bass,…)
• Every term is represented as just one point in the latent 

space (represented as weighted average of different 
meanings of a term)
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LSA: Junk E-mail Filtering

• One vector represents the centriod of all e-mails that are 
of interest to the user, while the other the centriod of all 
e-mails that are not of interest 
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LSA: Dynamic Language Model Adaptation (1/4)

• Let wq denote the word about to be predicted, and 
Hq-1 the admissible LSA history (context) for this 
particular word
– The vector representation of Hq-1 is expressed by

• Which can be then projected into the latent semantic 
space

• Iteratively update          and          as the decoding 
evolves
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LSA: Dynamic Language Model Adaptation (2/4)

• Integration of LSA with N-grams
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LSA: Dynamic Language Model Adaptation (3/4)

• Integration of LSA with N-grams (cont.)
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LSA: Dynamic Language Model Adaptation (4/4)

)."" like works function"" (e.g., fabric about thisn informatio
particularany convey not  dowhich  wordsfor lowest and 

words), content""relevant  (i.e., ~ of favric semantic with theclosely 

most  aligns meaning whose wordsfor highest  be willit  such, As

 

:~hrough observed t as history, admissible  theto

word  of relevance""  thereflects )~|Pr( y,Intuitivel

1

1

1

the

d

d

wdw

q

q

qqq

−

−

−

( )

2/1
1

2/1
12/1

1
2/1

1

1

~ 

~
)~,cos(

)~,(

~Pr

SvSu

vSu
SvSu

dwK

dw

qq

T
qq

qq

qq

qq

−

−
−

−

−

==

≈



29

LSA: Cross-lingual Language Model Adaptation (1/2)

• Assume that a document-aligned (instead of sentence-
aligned) Chinese-English bilingual corpus is provided 

Lexical triggers and latent semantic analysis for cross-lingual language model adaptation, TALIP 2004, 3(2)  
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LSA: Cross-lingual Language Model Adaptation (2/2)

• CL-LSA adapted Language Model
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Probabilistic Latent Semantic Analysis (PLSA)
• PLSA models the co-occurrence of word and documents 

and evaluates the relevance in a low dimensional 
semantic/topic space
– Each document      is treated as a document model

• PLSA can be viewed as a nonnegative factorization of a 
“word-document” matrix consisting probability entries 
– A procedure similar to the SVD performed by its algebraic 

counterpart- LSA 
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PLSA: Information Retrieval (1/3)

• The relevance measure between a query and a document 
can be expressed by

– Relevance measure is not obtained based on the frequency of a 
respective query term occurring in a document, but instead based 
on the frequency of the term and document in the latent topics

– A query and a document thus may have a high relevance score 
even if they do not share any terms in common
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• Unsupervised training: The model parameters are 
trained beforehand using a set of text documents
– Maximize the log-likelihood of entire collection

• Supervised training: The model parameters are trained 
using a training set of query exemplars and the 
associated query-document relevance information
– Maximize the log-likelihood of the training set of query 

exemplars generated by their relevant documents 

PLSA: Information Retrieval (2/3)
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PLSA: Information Retrieval (3/3)

• Example: most probable words form 4 latent topics 
aviation space missions family love Hollywood love
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PLSA: Dynamic Language Model Adaptation

• The search history can be treated as a pseudo-document 
which is varying during the speech recognition process 

– The topic unigrams                    are kept unchanged
– The history’s probability distribution over the latent topics is 

gradually updated
– The topic mixture weights                 are estimated on the fly

• It would be time-consuming
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PLSA: Document Organization (1/3)

• Each document is viewed as a document model to 
generate itself 
– Additional transitions between topical mixtures have to do with 

the topological relationships between topical classes on a 2-D 
map

Two-dimensional 
Tree Structure

for Organized Topics
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PLSA: Document Organization (2/3)

• Document models can be trained in an unsupervised 
way by maximizing the total log-likelihood of the 
document collection

• Each topical class can be labeled by words selected 
using the following criterion
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PLSA: Document Organization (3/3)

• Spoken Document Retrieval and Browsing System 
developed by NTU (Prof. Lin-shan Lee) 
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Word Topical Mixture Models (WTMM)

• Each word of language are treated as a word topical 
mixture model for predicting the occurrences of other 
words

• WTMM also can be viewed as a nonnegative factorization 
of a “word-word” matrix consisting probability entries 
– Each column  encodes the vicinity information of all occurrences

of a certain type of word 
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WTMM: Information Retrieval (1/2)

• The relevance measure between a query and a 
document can be expressed by

• Unsupervised training
– The WTMM of each word can be trained by concatenating those 

words occurring within a context window of size around each 
occurrence of the word, which are postulated to be relevant to 
the word
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WTMM: Information Retrieval (2/2)

• Supervised training: The model parameters are trained 
using a training set of query exemplars and the 
associated query-document relevance information
– Maximize the log-likelihood of the training set of query 

exemplars generated by their relevant documents

– The detailed training formulas of WTMM are a little bit 
complicated !

( )∑ ∑=
∈ ∈TrainSet QR

TrainSet Q D
DQPlogLlog

Q D
Q

  to
WTMM
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WTMM: Dynamic Language Model Adaptation (1/3)

• For a decoded word        , we can again interpret it as a 
(single-word) query; while for each of its search histories, 
expressed by                         , we can linearly combine 
the associated TMM models of the words occurring in   
to form a composite WTMM model

– are nonnegative weighting coefficients  which empirically 
set to be exponentially decayed as the word  is being apart from

– is set to a fixed value (between 0 and 1) for            , and 
set to 1 for    

iw

121 ,,, −= iiw wwwH K

iwH

( ) ( ) ( )∑ ∑=∑=⎟
⎠
⎞⎜

⎝
⎛ −

= =

−

=

1

1 1

1

1

i

j
wk

K

k
kij

i

j
wijHi jjiw

TPTwPβwPβwP M M M WTMMWTMM

( )∏ −=
−−

=
+

1

1
1

ji

s
sjjj φφβ

iw
jj φβ =

jφ 1,,2 −= ij L

1=j

iw1−iw2w1w

1−iφ

11 −− iφ

2φ11 =φ

21 φ−

1



43

WTMM: Dynamic Language Model Adaptation (2/3)

• For our speech recognition test data, it was experimentally 
observed that the language model access time of WTMM 
was approximately 1/30 of that of PLSA for language model 
adaptation, as the iteration number of the online EM 
estimation of                for PLSA was set to 5( )

iwk HTP |
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WTMM: Dynamic Language Model Adaptation (3/3)

• An Alternative Formulation of WTMM

– It will be a bit more time-consuming !

( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( ) ( )
( )iw

iw
iii

j
ji

ii

i

i
i

H,wc

Hw k
wkkww

w
jUnigramww

iUnigramww

w

iUnigramiw
wi

TPTwPHP

wPHP

wPHP

HP
wPwHP

HwP

∏ ⎥⎦
⎤

⎢⎣
⎡
∑=

∑
=

=

∈
MM  where

M

M
                           

 

WTMM

WTMM

WTMM

WTMM
WTMM



45

Comparison: PLSA vs. WTMM in Language Modeling

– Topic Modeling: Model topics with explicit or implicit probability 
distribution

– Prediction Ability: The prediction of the decoded word given the
search history

NoYesPrediction Ability
VxK+KxDVxKx2Parameters 

ExplicitExplicitTopic Modeling 
On-the-flyOfflineModel Estimation

Word and HistoryWords Modeling 
Relationship

PLSAWTMM

ingfor  train  used  documents  ofNumber   : number;  Topic  size;  Vocabulary DK:V:
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Experimental Results: Information Retrieval (1/3)

• Supervised Training of PLSA and WTMM
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Experimental Results: Information Retrieval (2/3)

• Unsupervised Training of PLSA and WTMM
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Experimental Results: Information Retrieval (3/3)

• Other Retrieval Models
– HMMs are trained with supervision
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Experimental Results: Language Model Adaptation (1/2)

• Experiments were conducted on the MATBN Broadcast 
News Corpus
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Experimental Results: Language Model Adaptation (2/2)

• Hybrid of PLSA and WTMM

– No apparent CER improvement is observed !
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LSA: SVDLIBC

• Doug Rohde's SVD C Library version 1.3 is based
on the SVDPACKC library

• Download it at http://tedlab.mit.edu/~dr/
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LSA: Exercise (1/4)

• Given a sparse term-document matrix
– E.g., 4 terms and 3 docs

– Each entry can be weighted by TFxIDF score

• Perform SVD to obtain term and document vectors 
represented in the latent semantic space

• Evaluate the information retrieval capability of the LSA 
approach by using varying sizes (e.g., 100, 200,...,600 
etc.) of LSA dimensionality

2.3   0.0   4.2 
0.0   1.3   2.2 
3.8   0.0   0.5 
0.0   0.0 0.0

Term

Doc
4    3    6 
2
0  2.3
2  3.8
1
1  1.3
3
0   4.2
1   2.2
2   0.5

Row
#Tem

Col.
# Doc

Nonzero 
entries

2 nonzero entries 
at Col 0

Col 0, Row 0 
Col 0, Row 2 

1 nonzero entry
at Col 1

Col 1, Row 1 
3 nonzero entry

at Col 2
Col 2, Row 0 
Col 2, Row 1 
Col 2, Row 2 
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LSA: Exercise (2/4)

• Example: term-document matrix

• SVD command (IR_svd.bat)
svd -r st -o LSA100  -d 100  Term-Doc-Matrix

51253 2265 218852
77
508 7.725771
596 16.213399
612 13.080868
709 7.725771
713 7.725771
744 7.725771
1190 7.725771
1200 16.213399
1259 7.725771
……

Indexing 
Term no. Doc no. Nonzero 

entries

sparse matrix input prefix of output files
No. of reserved 

eigenvectors 
name of sparse 

matrix input

LSA100-Ut

LSA100-S

LSA100-Vt

output
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LSA: Exercise (3/4)

• LSA100-Ut

• LSA100-S

100  51253
0.003 0.001 ……..
0.002 0.002 …….

word vector (uT): 1x100

51253 words

100
2686.18
829.941
559.59
….

100 eigenvalues

• LSA100-Vt
100  2265
0.021 0.035 ……..
0.012 0.022 …….

doc vector (vT): 1x100

2265 docs
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LSA: Exercise (4/4)

• Fold-in a new mx1 query vector 

• Cosine measure between the query and doc vectors in 
the latent semantic space

( ) 1
11ˆ −

×××× Σ= kkkmm
T

k Uqq
Query represented by the weighted
sum of it constituent term vectors

The separate dimensions 
are differentially weighted

Just like a row of V
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