# Linear Prediction Analysis of Speech Sounds

Berlin Chen 2004

**References:** 

- 1. X. Huang et. al., Spoken Language Processing, Chapters 5, 6
- 2. J. R. Deller et. al., Discrete-Time Processing of Speech Signals, Chapters 4-6
- 3. J. W. Picone, "Signal modeling techniques in speech recognition," *proceedings of the IEEE*, September 1993, pp. 1215-1247

## Linear Predictive Coefficients (LPC)

 An all-pole filter with a sufficient number of poles is a good approximation to model the vocal tract (filter) for speech signals

$$H(z) = \frac{X(z)}{E(z)} = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}} = \frac{1}{A(z)}$$

$$\therefore x[n] = \sum_{k=1}^{p} a_k x[n-k] + e[n]$$

$$\widetilde{x}[n] = \sum_{k=1}^{p} a_k x[n-k]$$
Vocal Tract Parameters
$$\underbrace{H(z)}_{a_1, a_2, \dots, a_p}$$

$$\underbrace{H(z)}_{a_1, a_2, \dots, a_p}$$

$$\underbrace{H(z)}_{a_1, a_2, \dots, a_p}$$
Source-filter model for voiced and unvoiced speech.

- It predicts the current sample as a linear combination of its several past samples
  - Linear predictive coding, LPC analysis, auto-regressive modeling

## Short-Term Analysis: Algebra Approach

 Estimate the corresponding LPC coefficients as those that minimize the total short-term prediction error (minimum mean squared error)

$$E_{n} = \sum_{n} e_{m}^{2} [n] = \sum_{n} (x_{m} [n] - \widetilde{x}_{m} [n])^{2}, \quad 0 \le n \le N - 1$$
Framing/Windowing,  
The total short-term  
prediction error  
for a specific frame m
$$= \sum_{n} \left( x_{m} [n] - \sum_{j=1}^{p} a_{j} x_{m} [n-j] \right)^{2}$$

$$= 0, \quad \forall 1 \le i \le p$$
Take the derivative
$$\frac{\partial E_{m}}{\partial a_{i}} = \frac{\partial \left[ \sum_{n} \left( x_{m} [n] - \sum_{j=1}^{p} a_{j} x_{m} [n-j] \right)^{2} \right]}{\partial a_{i}} = 0, \quad \forall 1 \le i \le p$$

$$\sum_{n} \left[ \left( x_{m} [n] - \sum_{j=1}^{p} a_{j} x_{m} [n-j] \right) x_{m} [n-i] \right] = 0, \quad \forall 1 \le i \le p$$
The error vector is orthogonal to the past vectors.  
This property will be used later on!

## Short-Term Analysis: Algebra Approach

$$\frac{\partial E_{m}}{\partial a_{i}}$$

$$\sum_{n} \left[ \left( x_{m}[n] - \sum_{j=1}^{p} a_{j} x_{m}[n-j] \right) x_{m}[n-i] \right] = 0, \forall 1 \le i \le p$$

$$\Rightarrow \sum_{n} \left[ \sum_{j=1}^{p} a_{j} x_{m}[n-i] x_{m}[n-j] \right] = \sum_{n} \left[ x_{m}[n-i] x_{m}[n] \right], \forall 1 \le i \le p$$

$$\Rightarrow \sum_{j=1}^{p} a_{j} \sum_{n} \left[ x_{m}[n-i] x_{m}[n-j] \right] = \sum_{n} \left[ x_{m}[n-i] x_{m}[n] \right], \forall 1 \le i \le p$$
Define correlation coefficients:
$$\phi_{m}[i,j] = \sum_{n} \left[ x_{m}[n-i] x_{m}[n-j] \right]$$

$$\Rightarrow \sum_{j=1}^{p} a_{j} \phi_{m}[i,j] = \phi_{m}[i,0], \forall 1 \le i \le p$$

$$\Rightarrow \Phi a = \Psi$$

$$\Phi$$

$$\sum_{j=1}^{p} a_{j} \Phi_{m}[i,p] = \sum_{j=1}^{p} \left[ \Phi_{m}[i] \Phi_{m}[i] + \Phi_{m}[i] \Phi_$$

#### Short-Term Analysis: Algebra Approach

• The minimum error for the optimal,  $a_j$ ,  $1 \le j \le p$ 

$$E_{m} = \sum_{n} e_{m}^{2} [n] = \sum_{n} (x_{m}[n] - \widetilde{x}_{m}[n])^{2} = \sum_{n} (x_{m}[n] - \sum_{j=1}^{p} a_{j} x_{m}[n-j])^{2}$$

$$= \sum_{n} x_{m}^{2} [n] - 2\sum_{n} (x_{m}[n] \sum_{j=1}^{p} a_{j} x_{m}[n-j]) + \sum_{n} (\sum_{j=1}^{p} a_{j} x_{m}[n-j] \sum_{k=1}^{p} a_{k} x_{m}[n-k])$$

$$= \sum_{n} \sum_{j=1}^{p} a_{j} \sum_{k=1}^{p} a_{k} \sum_{n} (x_{m}[n-j] x_{m}[n-k])$$

$$= \sum_{n} \sum_{j=1}^{p} a_{j} \sum_{n} \sum_{n} x_{m}[n-j] x_{m}[n]$$

$$V$$

$$E_{m} = \sum_{n} x_{m}^{2} [n] - \sum_{j=1}^{p} a_{j} \sum_{n} (x_{m}[n] x_{m}[n-j])$$

$$= \phi_{m} [0,0] - \sum_{j=1}^{p} a_{j} \phi_{m}[0,j]$$

$$Total Prediction Error$$

$$The error can be monitored to help establish p$$

## Short-Term Analysis: Geometric Approach

• Vector Representations of Error and Speech Signals

- $x_m[n]$  is identically zero outside  $0 \le n \le N-1$
- The mean-squared error is calculated within n=0~N-1+p



• The mean-squared error will be:



- Alternatively,
  - Where  $\phi_m[i, j] = R[i j]$  is the **autocorrelation function** of  $x_m[n]$
  - And  $R_{m}[k] = \sum_{n=0}^{N-1-k} x_{m}[n]x_{m}[n+k]$
- Therefore:

$$R_{m}[k] = R_{m}[-k] \quad \text{Why?}$$

$$\sum_{j=1}^{p} a_{j} \phi_{m}[i, j] = \phi_{m}[i, 0], \forall 1 \le i \le p$$

$$\Rightarrow \sum_{j=1}^{p} a_{j} R_{m}[|i - j|] = R_{m}[i], \forall 1 \le i \le p$$

A Toeplitz Matrix: symmetric and all elements of the diagonal are equal

2004 SP- Berlin Chen 9

Levinson-Durbin Recursion

1.Initialization

$$E(0) = R_m[0]$$

$$E_{m} = \sum_{n} x_{m}^{2} [n] - \sum_{j=1}^{p} a_{j} \sum_{n} (x_{m}[n] x_{m}[n-j])$$
$$= \phi_{m} [0,0] - \sum_{j=1}^{p} a_{j} \phi_{m} [0,j]$$

2. Iteration: For *i*=1...,*p* do the following recursion

$$k(i) = \frac{R_m[i] - \sum_{j=1}^{i-1} a_j(i-1)R_m[i-j]}{E(i-1)}$$

$$a_i(i) = k(i) \qquad \text{A new, higher order coefficient} \\ is produced at each iteration i$$

$$a_j(i) = a_j(i-1) - k(i)a_{i-j}(i-1), \quad \text{for} \quad 1 \le j \le i-1$$

$$E(i) = (1 - [k(i)]^2)E(i-1), \quad \text{where} \quad -1 \le k(i) \le 1$$

3. Final Solution:

$$a_j = a_j(p)$$
 for  $1 \le j \le p$ 

## Short-Term Analysis: Covariance Method

- $x_m[n]$  is not identically zero outside  $0 \le n \le N-1$ 
  - Window function is not applied
- The mean-squared error is calculated within n=0~N-1



• The mean-squared error will be:

$$E_{m} = \sum_{n=0}^{N-1} e_{m}^{2} [n] = \sum_{n=0}^{N-1} (x_{m} [n] - \widetilde{x}_{m} [n])^{2}$$

#### Short-Term Analysis: Covariance Method

Take the derivative: 
$$\frac{\partial E_m}{\partial a_i}$$
$$\Rightarrow \sum_{j=1}^{p} a_j \phi_m[i, j] = \phi_m[i, 0], \forall 1 \le i \le p$$
$$\phi_m[i, j] = \sum_{n=0}^{N-1} x_m[n-i] x_m[n-j]$$
$$= \sum_{n=0}^{N-1} x_m[n-i] x_m[n-j]$$
$$= \sum_{n=-i}^{N-1-i} x_m[n] x_m[n+(i-j)]$$
$$\sum_{n=-i}^{p} a_j \phi_m[i, j] = \phi_m[i, 0], \forall 1 \le i \le P$$

$$x_{m}[n-j]$$

$$v_{m}[n-i]$$

$$N-1$$

$$N-1+j$$

$$N-1+i$$

$$N-1$$

$$\sum_{j=1}^{P} a_{j} \phi_{m} [i, j] = \phi_{m} [i, 0], \forall 1 \leq i \leq P$$

$$\begin{bmatrix} \phi_{m} [1,1] & \phi_{m} [1,2] & \dots & \phi_{m} [1,p] \\ \phi_{m} [2,1] & \phi_{m} [2,2] & \dots & \phi_{m} [2,p] \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \phi_{m} [p,1] & \phi_{m} [p,2] & \dots & \phi_{m} [p,p] \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ \vdots \\ a_{p} \end{bmatrix} = \begin{bmatrix} \phi_{m} [1,0] \\ \phi_{m} [1,0] \\ \phi_{m} [2,0] \\ \vdots \\ \vdots \\ \phi_{m} [p,0] \end{bmatrix}$$

Not A Toeplitz Matrix: symmetric and but not all elements of the diagonal are equal

$$\phi_m[1,1] \neq \phi_m[2,2] \dots \neq \phi_m[p,p]$$

## LPC Spectra

 LPC spectrum matches more closely the peaks than the valleys Parseval's theorem

$$E_{m} = \sum_{n=0}^{N-1+p} e_{m}^{2} \left[n\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left|E_{m}\left(e^{j\omega}\right)\right|^{2} d\omega = G^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\left|X_{m}\left(e^{j\omega}\right)\right|^{2}}{\left|H\left(e^{j\omega}\right)\right|^{2}} d\omega$$
$$H'\left(e^{jw}\right) = G \cdot H\left(e^{jw}\right)$$





**Figure 6.20** LPC spectrum of the *ah*/ phoneme in the word *lives* of Figure 6.3. Used here are a 30-ms Hamming window and the autocorrelation method with p = 14. The short-time spectrum is also shown.

- Figure 6.21 LPC spectra of Figure 6.20 for various values of the predictor order p.
- Because the regions where  $|X_m(e^{j\omega})| > |H(e^{j\omega})|$  contribute more to the error than those where  $|H(e^{j\omega})| > |X_m(e^{j\omega})|$

### LPC Spectra

 LPC provides estimate of a gross shape of the short-term spectrum



**Figure 5.13** Linear prediction analysis of steady vowel sound with different model orders using the autocorrelation method: (a) order 6; (b) order 14; (c) order 24; (d) order 128. In each case, the all-pole spectral envelope (thick) is superimposed on the harmonic spectrum (thin), and the gain is computed according to Equation (5.30).

## LPC Prediction Errors



Figure 6.22 LPC prediction error signals for several vowels.



**Figure 6.23** Variation of the normalized prediction error with the number of prediction coefficients p for the voiced segment of Figure 6.3 and the unvoiced speech of Figure 6.5. The auto-correlation method was used with a 30 ms Hamming window, and a sampling rate of 8 kHz.

## MFCC vs. LPC Cepstrum Coefficients

- MFCC outperforms LPC Cepstrum coefficients
  - Perceptually motivated mel-scale representation indeed helps recognition

Table 9.2 Relative error reduction with different features. The reduction is relative to that of the preceding row.

| Feature Set                          | <b>Relative Error Reduction</b> |
|--------------------------------------|---------------------------------|
| 13th-order LPC cepstrum coefficients | Baseline                        |
| 13th-order MFCC                      | +10%                            |
| 16th-order MFCC                      | +0%                             |
| +1st- and 2nd-order dynamic features | +20%                            |
| +3rd-order dynamic features          | +0%                             |

- Higher-order MFCC does not further reduce the error rate in comparison with the 13-order MFCC
- Another perceptually motivated features such as first- and second-order delta features can significantly reduce the recognition errors

- Try to implement the short-term linear prediction coding (LPC) for speech signals
- You should follow the following instructions:
  - 1. Using the autocorrelation method with Levinson-Durbin Recursion and Rectangular/Hamming windowing
  - 2. Analyzing the vowel (or FINAL) portions of speech signal with different model orders (different *P*, e.g. *P*=6, 14, 24 and 128)
  - 3. Plotting the LPC spectra as well as the original speech spectrum
  - 4. Using the speech wave file, bk6\_1.wav (no header, PCM 16KHz raw data), as the exemplar

- Hints:
  - 1. When the LPC coefficients  $a_j$  are derived, you can construct impulse response signal h[n],  $0 \le n \le N-1$  (*N*: frame size) by:

$$h[n] = \sum_{j=1}^{P} a_j \cdot h[n-j] + \delta[n]$$

or

$$h[n] = \begin{cases} 1, & \text{if } n = 0\\ \sum_{j=1}^{P} a_j \cdot h[n-j], & \text{if } n \neq 0 \end{cases}$$

**2.** The prediction Error E can be expressed by the autocorrelation function:

$$E = R_m \left[ 0 \right] - \sum_{j=1}^{P} a_j \cdot R_m \left[ j \right]$$

#### 3. The MATLab example code:

```
x=[184.6400 184.1251 ..... 197.7890 -26.8000 ]; % original signal, dimension: frame size
y=[1.0000 2.0105 ..... 0.0738 0.0565 ]; % filter's impulse response h[n], dimension: frame size
gain=valG; % valG: the prediction Error E
X=fft(x,512); % fast Fourier Transform, so the frame size < 512
Y=fft(v,512): % fast Fourier Transform
X(1)=[]; \% remove the X(1), the DC
Y(1)=[]; % remove the Y(1), the DC
M=512;
powerX=abs(X(1:M/2)).^2; % the power spectrum of X
logPX=10*log(powerX); % the power spectrum of X in dB
powerY=abs(Y(1:M/2)).^2; % the power spectrum of Y
logPY=10*log(powerY)+10*log(gain); % the power spectrum of Y in dB
                                     % plus the gain (Error) in dB
nyquist=8000; % maximal frequency index
freq=(1:M/2)/(M/2)*nyquist; % an array store the frequency indices
figure(1);
plot(freq,logPX,'b',freq,logPY,'r'); % plot the result,
                                 % b: blue line for the power spectrum of the original signal
                                 % r: red line for the power spectrum of the filter
```

#### Fall 2004

Example Figures of LPC Spectra

