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Statistical inference: n-gram 
model over sparse data
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1. Foundations of Statistical Natural Language Processing, chapter 6
2. Speech and Language Processing, chapter 6
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Outline

• N-gram

• MLE

• Smoothing

• Evaluation
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Introduction
• Statistical NLP aims to do statistical inference for the 

field of natural language.

• Statistical inference in general consists of taking some 
data and then making some inferences about the 
distribution.
– Predict prepositional phrase attachment

• A running example of statistical estimation: language 
modeling.
– Shannon game http://math.ucsd.edu/~crypto/java/ENTROPY/
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Reliability vs. discrimination
• In order to do inference about one feature, we wish to 

find other features of the model that predict it. (stationary 
model)

• Try to predict the target feature on the basis of various 
classificatory features.

• Using equivalence class: independence assumptions
– Features are independent
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Reliability vs. discrimination
• Dividing the data into many bins gives us greater 

discrimination.

• With small number of training instances, we can not do 
statistically reliable estimation.

• good compromise between two criteria?
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Corpora
• Singular corpus

• Statistical processing of natural language is based on 
corpora, on-line collections of text and speech.

• We compute word probability by counting words.

• Text (sentence): punctuation-marks, ‘.’, ‘?’

• Speech (utterance): filled pauses, uh, um
– See ‘Uh’ as words
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n-gram models
• The task of predicting the next word can be stated as 

attempting to estimate probability function P:

• History: classification of the previous words

• Markov assumption: only the last few words affects the 
next word
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n-gram models

• The same n-1 words are placed in the same 
equivalence class:
– (n-1) order Markov model or n-gram model

• Naming:
– Gram is Greek root and so should be put together 

with prefixes
– digram, tetragram
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n-gram models
• Sue swallowed the large green ___.

– green /frog/
– large green /tree/car/mountain/
– swallowed … /pill/

• However, there is the problem that if we divide the data 
into too many bins, then there are a lot of parameters to 
estimate.
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n-gram models

• The last target value is automatically given by 
stochastic constraint that probability should sum 
to one.
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n-gram models
• Five-gram model that we thought would be useful, may 

well not be practical, even if we a very large corpus.

• One way of reducing  the number of parameters is to 
reduce the value of n.

• Or removing the inflectional ending from words
– Stemming

• Or grouping words into semantic classes

• Or …(ref. ch12, ch14)
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n-gram models

• Predicts the next word only simply by examining 
the previous two words seems almost 
preposterous?

• Indeed, it is difficult to beat a trigram model on 
the pure linear task of predicting the next word.
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Building n-gram models

• Corpus: Jane Austen’s novel
– Free available and not too large

• Use Emma, Mansfield Park, Northanger Abbey, 
Pride and Prejudice(傲慢與偏見), and Sense 
and Sensibility as corpus for building models, 
reserving Persuasion for testing.



14

Building n-gram models

• Preprocessing
– Remove punctuation leaving white-space.
– Add SGML tag <s> and </s>

• N=617,091 words , V=14,585 word types
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Statistical Estimators
• Find out how to derive a good probability estimate for 

the target feature. 

• Can be reduced to having good solutions to simply 
estimating the unknown probability distribution of n-
grams. (all in one bin, with no classificatory features)
– bigram: h1a, h2a, h3a, h4b,h5b…reduce to a,b
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Statistical Estimators
• Assume that the training text consists of N words. 

We append n-1 dummy start symbols to the 
beginning of the text.
– N n-grams with a uniform amount of conditioning available for 

the next word in all cases.
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Maximum Likelihood Estimation
MLE estimates from relative frequencies.

predict: comes across __?__
using trigram model: 10 instances (trigrams)
using relative frequency:
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Maximum Likelihood Estimation
• Derivation of MLE:
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Smoothing

• Sparseness
– Standard N-gram models is that they must be trained 

from some corpus.
– Large number of cases of putative ‘zero probability’ n-

gram that should really have some non-zero 
probability.

• Smoothing
– Reevaluating some zero or low probability in n-gram.
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Cross-validation
• Dividing training data into two parts.
• Two-way cross-validation

– Delete estimation

• Leaving-one-out
– Training corpus :N-1
– Held out data :1
– Repeated N times
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Add-One Smoothing
• Take counts before normalize

• Unigram MLE:

• Add one to count and multiply by a normalization factor
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Add-One Smoothing
• The alternative view: discounting

– Lowing some non-zero counts that will be assigned to zero 
counts.

• Smoothed probability:

• Also called Laplace’s law
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Add-One Smoothing

• Unigram Example:
• V={A,B,C,D,E}, |V|=5
• S={A,A,A,A,A,B,B,B,C,C,}, N=|S|=10
• 5 for ‘A’, 3 for ‘B’, 2 for ‘C’, 0 for ‘D’,’E’
• P(A)=(5+1)/(10+5)=0.4
• P(B)=(3+1)/(10+5)=0.27
• P(C)=(2+1)/(10+5)=0.2
• P(D)=P(E)=(0+1)/(10+5)=0.067
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Add-One Smoothing
Bigram
• MLE: 

• Smoothed:
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Unigram/Bigram Counts 

• N(want)=1215
• N(want want)=0
• N(want to)=786
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Bigram probabilities

• P(want|want)=0/1215=0
• P(to|want)=786/1215=0.65
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Add-one smoothing: bigram

• P’(want|want): (0+1)/(1215+1616)=0.00035
• P’(to|want): (786+1)/(1215+1616)=0.28
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Add-one smoothing

• P() changes from 0 to 0.0035         ok
• P() changes from 0.65 to 0.28       bad

• The sharp change occurs because too much 
probability mass is moved to all the zeros.

• Gale and Church (1994) summarize add-one 
smoothing is worse at predicting the actual 
probability than unsmoothed MLE.
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Lidstone’s law and Jeffreys-Perks law

• Lidstone’s law
– Add some normally smaller positive value λ

• Jeffreys-Perks law
– Viewed as linear interpolation between MLE and a uniform prior
– Also called Expected Likelihood Estimation
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Witten-Bell Discounting

• A much better smoothing method that is only 
slightly more complex than add-one.

• Zero-frequency word or N-gram as one that just 
hasn’t happened.
– Can be modeled by probability of seeing an n-gram 

for the first time.

• Key: things seen once !
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Witten-Bell Discounting
• The count of ‘first time’ n-grams is just for the number 

of n-gram types we saw in data.
• Probability of total unseen (zero) N-grams: 

– T is the type we have already seen 
– T differs from V (V is total types we might see)
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Witten-Bell Discounting
• Divide up to among all the zero N-grams

– Divided Equally:
– Z: total number of zero count n-grams

• Probability of all the seen n-grams:
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Witten-Bell Discounting
• Represent as:
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Witten-Bell Discounting
• Unigram Example:
• V={A,B,C,D,E}, |V|=5
• S={A,A,A,A,A,B,B,B,C,C,}, N=|S|=10
• 5 for ‘A’, 3 for ‘B’, 2 for ‘C’, 0 for ‘D’,’E’, 

T=|{A,B,C}|=3, Z=2
• P(A)=5/(10+3)=0.385
• P(B)=3/(10+3)=0.23
• P(C)=2/(10+3)=0.154
• P(D)=P(E)=3/(10+3)*(1/2)=0.116
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Witten-Bell Discounting
• Bigram

– Using the probability of seeing a bigram wn-1wn-2 starting with 
wn-1
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Witten-Bell Discounting

• T(w), V=1616
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Witten-Bell Discounting

• C(want want)=(76/1540)*(1215/(1215+76)=0.046
• C(want to)=786*1215/(1215+76)=740
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Good-Turing Discounting
• A slightly more complex form than Witten-Bell.

• To re-estimate zero or low counts by higher counts.

• Nc: the number of N-grams that occurs c times.
– Frequency of frequency
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Good-Turing Discounting

• 0*=N1/N0 (N1:singleton or hapax legomenon)

Assume N0=V2
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Good-Turing Discounting
• Probability estimate:

– Unseen: n1/N, why?

• Unigram Example:
– A:10, B:3, C:2, D:1, E:1, F:1,N1:3,N2:1,N3:1,N10:1, N=18
– 1*=(1+1)*(1/3)=2/3, 2*=(2+1)*(1/1)=3(?), 3*= ?
– C*(D)=C*(E)=C*(F)=2/3
– C*(C)=2
– C*(B)=3
– C*(A)=10
– C*(X)=1
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Good-Turing Discounting

• Let N represent the total size of the training set, this 
left-over probability will be equal to N1/N
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• Some problems:
– Nc+1=0
– P(c*)>P((c+1)*)

• Solution: parameter k,Nk+1≠0, experimentally 
4≦k≦8
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Combining Estimators
• Because of the same estimate for all n-grams 

that never appeared, we hope to produce better 
by looking at (n-1)-grams.

• Combine multiple probability estimates from 
various different models.
– Simple linear interpolation
– Katz Back-off
– General linear interpolation
– Maximum Entropy. ref. ch.16
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Simple linear interpolation
• Also called mixture model

• How to find weight:
– Expectation Maximization algorithm (ref.9.2.1)
– Powell’s algorithm.

• It works quite well. Chen and Goodman use it as baseline 
model.
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General linear interpolation
• Also called deleted interpolation

– Weight are a function of the history

• Can make bad use of component models.
– Ex. Unigram estimate is always combined in with the same 

weight regardless of whether the trigram is good or bad.
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Katz Back-off Smoothing

• A special case of general linear interpolation 
model.
– Extend the intuition of the GT estimate.
– Large counts are not discounted. (c>k)
– Lower counts are total discounted. (c<=k)
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Katz Back-off Smoothing
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Katz Back-off Smoothing
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Katz Back-off Smoothing
• Derivation of dr:

• Known constraint:
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Katz Back-off Smoothing
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Katz Back-off Smoothing
• Katz smoothing is based on the Good-Turing formula
• Let nr represent the number of n-grams that occur r times
• discount : *1)1()( r
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Kneser-Ney smoothing

• Absolute discounting
• Weight Zero probability by Branch

• Absolute discounting

• Branch:
– SABCAABBCS
– C[‧A]=3, C[‧B]=2, C[‧C]=1, C[‧S]=1
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Kneser-Ney smoothing

• Bigram
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Kneser-Ney smoothing
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Kneser-Ney smoothing
• How to set discount D: empirically
• Interpolated Kneser-Ney smoothing

• Modified Kneser-Ney smoothing
– Different discount with different n-gram
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Held out estimation
• How do we know that giving of the probability to unseen 

is too much? Test empirically!

• The held out estimator:

• Tr: the total number of times that all n-grams that 
appeared in the training data appeared in held out data.
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Held out estimation
• The probability of one of these n-grams

• A cardinal sin in Statistical NLP is to test on training 
data. Why? 
– Overtraining
– Models memorize the training text (MLE may be good enough)
– Cheating!

• Test data is independent of the training data.

• Separate data immediately into training and test 
data(5~10%,reliable).
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Held out estimation
• Held out (validation) data(10%)

– Independent of primary training and test data
– Involve many fewer parameters

• Training
– Write an algorithm, train it and test it (X)
– Separate to Development test set, final test set (O)

• Testing
– How to select test/held out data? Randomly or aside large contiguous chunk

– Comparing average scores is not enough
– Divide the test data into several parts 
– T-test
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t-test
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Evaluation

• A LM that assigned equal probability to 100 
words would have perplexity 100
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Evaluation

• In general, the perplexity of a LM is equal to the 
geometric average of the inverse probability of 
the words measured on test data:

N
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Evaluation

• “true” model for any data source will have the 
lowest possible perplexity

• The lower the perplexity of our model, the 
closer it is, in some sense, to the true model

• Entropy, which is simply log2 of perplexity
• Entropy is the average number of bits per 

word that would be necessary to encode the 
test data using an optimal coder
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Introduction
Evaluation

• entropy : 5 4
perplexity : 32 16           50%

• entropy : 5 4.5
perplexity : 32 29.3%216

50%41%29%24%19%13%10%6.7%0.69%perplexity

1.75.5.4.3.2.16.1.01entropy
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Conclusions

• A number of smoothing method are available 
which often offer similar and good performance.

• More powerful combining methods ?
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