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Introduction

• Statistical NLP aims to do statistical inference for the 
field of natural language.

• In general, statistical inference consists of taking some 
data and then making some inferences about this 
distribution.
– Use to predict prepositional phrase attachment 

• A running example of statistical estimation : language 
modeling
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Reliability vs. Discrimination 

• In order to do inference about one feature, we wish to 
find other features of the model that predict it.
– Stationary model

• Based on various classificatory, we try to predict the 
target feature.

• We use the equivalence classing to help predict the 
value of the target feature.
– Independence assumptions: Features are independent 
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• The more classificatory features that we identify, the 
more finely conditions that we can predict the target 
feature.

• Diving the data into many bins gives us greater 
discrimination.

• Using a lot of bins, a particular bin may contain no or a 
very small number of training instances, and we can not 
do statistical estimation.

• Is there a good compress between two criteria??    

Reliability vs. Discrimination 
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N-gram models

• The task of predicting the next word can be stated as 
attempting to estimate the probability function P :

• History: classification of the previous words 

• Markov assumption: only the last few words affect the 
next word

• The same n-1 words are placed in the same equivalence 
class:
– (n-1) order Markov model or n-gram model

( )11 ,, −nn wwwP L
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• Naming:
– gram is a Greek root and so should be put together with number 

Greek prefix
– Shannon actually did use the term digram, but this usage has not 

survived now.
– Now we always use bigram instead of digram.

N-gram models
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• For example:
She swallowed the large green ___ .
– “swallowed” influence the next word more stronger than “the 

large green ___ “.

• However, there is the problem that if we divide the data 
into too many bins, then there are a lot of parameters to 
estimate. 

N-gram models
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N-gram models
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• Five-gram model that we thought would be useful, may 
well not be practical, even if we have a very large corpus.

• One way of reducing the number of parameters is to 
reduce the value of n . 

• Removing the inflectional ending from words
– Stemming

• And grouping words into semantic classes

• Or …(ref. Ch12,Ch14)

N-gram models
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• Corpus: Jane Austen’s novel
– Freely available and not too large

• As our corpus for building models, reserving Persuasion
for testing
– Emma, Mansfield Park, Northanger Abbey, 

Pride and Prejudice (傲慢與偏見), and Sense and Sensibility

• Preprocessing 
– Remove punctuation leaving white-space
– Add SGML tags <s> and </s>

• N=617,091 words , V=14,585 word types

Building n-gram models
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Statistical Estimators

• Find out how to derive a good probability estimate for the 
target feature, using the following function:

• Can be reduced to having good solutions to simply 
estimating the unknown probability distribution of 
n-grams . (all in one bin, with no classificatory features)
– bigram: h1a, h2a, h3a, h4b,h5b…reduce to a and b
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• We assume that the training text consists of N words.

• We append n-1 dummy start symbols to the beginning 
of the text.
– N n-gram with a uniform amount of conditioning available for the 

next word in all cases

Statistical Estimators
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Maximum Likelihood Estimation

• MLE estimates from relative frequencies.
– Predict: comes across __?__
– Using trigram model: 10 instances (trigrams)
– Using relative frequency:
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Smoothing 

• Sparseness
– Standard N-gram models is that they must be trained from some 

corpus.
– Large number of cases of putative ‘zero probability’ n-gram that 

should really have some non-zero probability.

• Smoothing 
– Reevaluating some zero or low probability in n-gram . 
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Laplace’s law

• To solute the failure of the MLE, the oldest solution is to 
employ Laplace’s law (also called add-one) : 

• For sparse sets of data over large vocabularies, such as 
n-grams , Laplace’s law actually gives far too much of 
the probability space to unseen events.
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Add-One Smoothing

• Take counts before normalize

• Unigram MLE : (ordinary)

• The probability estimate for an n-gram seen r times is
. (using add-one)

• So, the frequency estimate becomes  
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• The alternative view : discounting
– Lowing some non-zero counts that will be assigned to zero 

counts.

Add-One Smoothing
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• Unigram example :

Add-One Smoothing

{ } 5,,,, == VEDCBAV
{ } 10,,,,,,,,,, === SNCCBBBAAAAAS

'',''0,''2,''3,''5 EDforCforBforAfor
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• Bigram MLE : 

• Smoothed :

Add-One Smoothing
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Add-One Smoothing : Example

N (want)=1215
N (want,want)=0
N (want,to)=768

For example : Bigram
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Add-One Smoothing :Example

P (want|want)=0/1215=0
P (to|want)=786/1215=0.65
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Add-One Smoothing :Example

P’(want|want)=(0+1)/(1215+1616)=0.00035
P’(to|want)=(786+1)/(1215+1616)=0.28
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• P(want|want) changes from 0 to 0.00035    
• P(to|want) changes from 0.65 to 0.28

• The sharp change occurs because too much probability 
mass is moved to all the zero.

• Gale and Church summarize add-one smoothing is 
worse at predicting the actual probability than 
unsmoothed MLE.

Add-One Smoothing
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Lidstone’s Law and Jeffreys-Perks Law

• Lidstone’s Law :
– Add some normally smaller positive value λ

• Jeffreys-Perks Law:
– Viewed as linear interpolation between MLE and a uniform prior
– Also called ‘ Expected Likelihood Estimation ’
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Held out Estimation

• A cardinal sin in Statistical NLP is to test on training data.
Why??
– Overtraining
– Models memorize the training text 

• Test data is independent of the training data.
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• When starting to work with some data, one should always 
separate it into a training portion and a testing portion.
– Separate data immediately into training and test data(5~10%,reliable).
– Divide training and test data into two again
– Held out (validation) data(10%)

• Independent of primary training and test data
• Involve many fewer parameters
• Sufficient data for estimating parameters

• Research:
– Write an algorithm, train it and test it (X)

• Subtly probing
– Separate to Development test set, final test set (O)

Held out Estimation
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Held out Estimation

• How to select test/held out data?
– Randomly or aside large contiguous chunks

• Comparing average scores is not enough
– Divide the test data into several parts
– t-test
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Held out Estimation : t-test 

System 1 System 2
Score 71,61,55,60,68,49,

42,72,76,55,64
42,55,75,45,54,51,
55,36,58,55,67

Total 673 593
n 11 11
mean 61.2 53.9

1081.6 1186.9
df 10 10

ix
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t=1.60<1.725, the data fail the significance test.
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• The held out estimator : (for n-grams)

• The probability of one of these n-grams : 
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Cross-validation
• Dividing training data into two parts.

– First, estimates are built by doing counts on one part.
– Second, we use the other pool of held out data to refine those 

estimates.

• Two-way cross-validation
– delete estimation
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• Leaving-one-out
– Training corpus : N-1
– Held out data : 1
– Repeated N times

Cross-validation
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Witten-Bell Discounting

• A much better smoothing method that is only slightly 
more complex than add-one.      

• Zero-frequency word or N-gram as one that just hasn’t 
happened.
– can be modeled by probability of seeing an n-gram for the first 

time    

• Key : things seen once !

• The count of ‘first time’ n-grams is just for the number of 
n-gram types w saw in data.                                       
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• Probability of total unseen (zero) N-grams : 

– T is the type we have already seen 
– T differs from V (V is total types we might see)

• Divide up to among all the zero N-grams
– Divided equally

Witten-Bell Discounting
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• Discounted probability of the seen n-grams

• Another formulation (in term of frequency count)

Witten-Bell Discounting
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• For example (of  unigam modeling)

Witten-Bell Discounting

{ } 5,,,, == VEDCBAV
{ } 10,,,,,,,,,, === SNCCBBBAAAAAS
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• Bigram
– Consider bigrams with the history word       .

• for zero-count bigram (with        as the history)

– : frequency count of word      in the corpus
– : types of nonzero-count bigrams (with     as the history)
– : types of zero-count bigrams (with      as the history) 
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• Bigram
– For nonzero-count bigram

Witten-Bell Discounting
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Good-Turing estimation

• A method is slightly more complex than Witten-Bell. 
– To re-estimate zero or low counts by higher counts

• Good-Turing estimation :
– For any n-gram, that occurs     times, we pretend it occurs

times:

– The probability estimate for a n-gram
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• The size (word counts) of the training data remains the 
same
– Let 

• Unseen: N1/N, why?
0*=(0+1)*N1/N0 and number of zero frequency words: N0

So, the probability = ((N1/N0)*N0)/N= N1/N (MLE)
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• Imagine you are fishing. You have caught 10 Carp (鯉魚),
3 Cod (鱈魚), 2 tuna (鮪魚), 1 trout (鱒魚), 1 salmon (鮭魚),
1 eel (鰻魚)

• How likely is it that next species is now?
– P0=n1/N=3/18=1/6

• How likely is eel ? 1*
– n1=3, n2=1
– 1*=(1+1) × 1=2/3
– P(eel)=1*/N=(2/3)/18=1/27

• How likely is tuna? 2*
– n2=1, n3=1
– 2*=(2+1) × 1/1=3
– P(tuna)=2*/N=3/18=1/6

• But how likely is Cod? 3*
– Need a smoothing for n4 in advance    

Good-Turing estimation : Example
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• The problem of Good-Turing estimate is 
that when nr+1=0 and P(r*)>P((r+1)*)
– The choice of k may be overcome the second problem.
– Experimentally 4≦k≦8 (Katz), Parameter k,Nk+1≠0 

Good-Turing estimation
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Combining Estimators

• Because of the same estimate for all n-grams that never 
appeared, we hope to produce better estimates by 
looking at (n-1)-grams .

• Combine multiple probability estimates from various 
different models.
– Simple linear interpolation
– Katz Back-Off
– General linear interpolation 
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Simple linear interpolation

• Also called mixture model

• How to get the weights :
– Expectation Maximization (EM) algorithm
– Powell’s algorithm

• The method works quite well. Chen and Goodman use it 
as baseline model. 
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• The difference between GLI and SLI is that the weights 
(    ) of the GLI is a function of the history.

• Can make bad use of component models
– Ex: unigram estimate is always combined in with the same 

weight regardless of whether the trigram is good or bad.

i

General linear interpolation
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Katz Back-off 

• Extend the intuition of the GT estimate by adding the 
combination of higher-order language models with 
lower-order ones

• Larger counts are not discounted because they are taken 
to be reliable. (r>k)

• Lower counts are total discounted. (r<=k) 
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• We take the bigram (n-gram, n=2) counts for example :

Katz Back-off 
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Katz Back-off 
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• Derivation of     : 
– Before of the derivation, the     have to satisfy two equation:

1.                                                      2.
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• Take the conditional probabilities of bigrams (n-gram, n=2)
For example :

Katz Back-off 
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• A small vocabulary consists of only five words, i.e.,           .
The frequency counts for word pairs started with     are: 

, and the word frequency counts are : 

Katz back-off smoothing with Good-Turing estimate is used here for word 
pairs with frequency counts equal to or less than two. Show the 
conditional probabilities of word bigrams started with      ,i.e.,

Katz Back-off : Example
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Katz Back-off : Example
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Kneser-Ney Back-off smoothing

• Absolute discounting

• The lower n-gram (back-off n-gram) is not proportional to 
the number of occurrences of a word but instead of the 
number of different words that it follows. 
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• Take the conditional probabilities of bigrams for example :

Kneser-Ney Back-off smoothing
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• Given a text sequence as the following : 
SABCAABBCS (S is the sequence’s start/end marks)

Show the corresponding unigram conditional probabilities:

Kneser-Ney Back-off smoothing : Example

[ ] 3=• AC [ ] 2=• BC

[ ] 1=•CC [ ] 1=• SC
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Evaluation

• Cross entropy : 

• Perplexity =

• A LM that assigned probability to 100 words would have 
perplexity 100
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Evaluation

• In general, the perplexity of a LM is equal to the 
geometric average of the inverse probability of the words 
measured on test data:
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Evaluation

N

N

i ii

N

i N
ii

N

i

N
ii

N

i

wwwP
N

wwwP
NEntropy

wwwP

wwwP

wwwP

perplexity

ii

N

i
ii

∏

∏

∏

∏

= −

=
−

=
−

=

⋅

∑ ⋅−

=

=

=

=

==

−

=
−

1 11

1
1

11

1

1

11

1

)...|(log1

)...|(log1

)...|(
1

)...|(

1

)...|(

1

2

1
22

112

1
112

P(w1n)=p(w1)p(w2)…p(wn)

logP(w1n)=Σp(wi)
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Evaluation

• “true” model for any data source will have the lowest 
possible perplexity

• The lower the perplexity of our model, the closer it is, in 
some sense, to the true model

• Entropy, which is simply log2 of perplexity
• Entropy is the average number of bits per word that 

would be necessary to encode the test data using an 
optimal coder
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Evaluation

entropy .01 .1 .16 .2 .3 .4 .5 .75 1

perplexity 0.69% 6.7% 10% 13% 19% 24% 29% 41% 50%

• entropy : 5 4
perplexity : 32 16           50%

• entropy : 5 4.5
perplexity : 32 29.3%216
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Conclusions

• A number of smoothing method are available which often 
offer similar and good performance.

• More powerful combining methods ? 
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