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Introduction

• Informed Search
– Also called heuristic search
– Use problem-specific knowledge
– Search strategy: a node (in the fringe) is selected for exploration 

based on an evaluation function, 
• Estimate of desirability

• Evaluation function generally consists of two parts 
– The path cost from the initial state to a node n,          (optional)
– The estimated cost of the cheapest path from a node n to a goal 

node, the heuristic function,  
• If the node n is a goal state →
• Can’t be computed from the problem definition (need experience)
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Heuristics

• Used to describe rules of thumb or advise that are 
generally effective, but not guaranteed to work in every 
case

• In the context of search, a heuristic is a function that 
takes a state as an argument and returns a number that 
is an estimate of the merit of the state with respect to the 
goal

• Not all heuristic functions are beneficial
– Should consider the time spent on evaluating the heuristic 

function
– Useful heuristics should be computationally inexpensive
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Best-First Search

• Choose the most desirable (seemly-best) node for 
expansion based on evaluation function
– Lowest cost/highest probability evaluation

• Implementation
– Fringe is a priority queue in decreasing order of desirability

• Several kinds of best-first search introduced
– Greedy best-first search
– A* search
– Iterative-Deepening A* search
– Recursive best-first search
– Simplified memory-bounded A* search 

memory-bounded 
heuristic search
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Map of Romania 

( )nh
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Greedy Best-First Search

• Expand the node that appears to be closest to the goal, 
based on the heuristic function only

– E.g., the straight-line distance heuristics            to Bucharest for 
the route-finding problem

•

• “greedy” – at each search step the algorithm always 
tries to get close to the goal as it can

( ) ( ) goalclosest   the to node fromcost  of estimate nnhnf ==
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Greedy Best-First Search (cont.)

• Example 1: the route-finding problem 
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Greedy Best-First Search (cont.)

• Example 1: the route-finding problem
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Greedy Best-First Search (cont.)

• Example 1: the route-finding problem

– The solution is not optimal (?) 
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Greedy Best-First Search (cont.)

• Example 2: the 8-puzzle problem

2+0+0+0+1+1+2+0=6 (Manhattan distance )
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Greedy Best-First Search (cont.)

• Example 2: the 8-puzzle problem (cont.)
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Properties of Greedy Best-First Search

• Prefer to follow a single path all the way to the goal, and 
will back up when dead end is hit (like DFS)
– Also have the possibility to go down infinitely 

• Is neither optimal nor complete
– Not complete: could get suck in loops

• E.g., finding path from Iasi to Fagars

• Time and space complexity
– Worse case: O(bm) 
– But a good heuristic function could give dramatic improvement



AI - Berlin Chen   13

A* Search

• Pronounced as “A-star search”

• Expand a node by evaluating the path cost to reach 
itself,         , and the estimated path cost from it to 
the goal,
– Evaluation function

– Uniform-cost search + greedy best-first search ?
– Avoid expanding nodes that are already expansive

( ) ( ) ( )nhngnf +=
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A* Search (cont.)

• A* is optimal if the heuristic function         never 
overestimates
– Or say “if the heuristic function is admissible”
– E.g. the straight-line-distance heuristics are admissible

( )nh
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Finding the shortest-path goal
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A* Search (cont.)

• Example 1: the route-finding problem
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A* Search (cont.)

• Example 1: the route-finding problem
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A* Search (cont.)

• Example 1: the route-finding problem
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A* Search (cont.)

• Example 1: the route-finding problem
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A* Search (cont.)

• Example 1: the route-finding problem
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A* Search (cont.)

• Example 2: the state-space just represented as a tree

A 

B C D

E F G L4

L1 L2 L3

4 3 2

3

2

4

1

8

1

3

Fringe (sorted)

Fringe Top Fringe Elements 
A(15) A(15) 
C(15) C(15), B(13), D(7) 
G(14) G(14), B(13), F(9), D(7) 
B(13) B(13), L3(12), F(9), D(7) 

L3(12) L3(12), E(11), F(9), D(7) 

Node     g(n) h(n) f(n)
A             0         15       15
B             4          9        13
C             3         12       15
D             2          5          7
E             7          4        11
F             7          2          9
G            11         3        14  
L1           9           0          9
L2           8           0          8
L3          12          0        12
L4           5           0          5

( ) ( ) ( )
:  node offunction  Evaluation

nhngnf
n

+=
Finding the longest-path goal

( ) ( )nhnh *≥
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Consistency of A* Heuristics

• A heuristic h is consistent if

– A stricter requirement on h

• If  h is consistent (monotonic)

– I.e.,                 is nondecreasing along any path during search
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Finding the shortest-path goal

, where h(‧) is the straight-line 
distance to the nearest goal

successor of n
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Contours of the Evaluation Functions

• Fringe (leaf) nodes expanded in concentric contours

• Uniformed search (                   )
– Bands circulate around the initial state

• A* search 
– Bands stretch toward the goal and is narrowly focused around 

the optimal path if more accurate heuristics were used       

( ) 0 , =∀ nhn
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Contours of the Evaluation Functions (cont.)

• If G is the optimal goal

– A*  search expands all nodes with f(n) <f(G)

– A*  search expands some nodes with f(n)=f(G)

– A* expands no nodes with f(n) > f(G)
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Optimality of A* Search
• A* search is optimal
• Proof

– Suppose some suboptimal goal G2 has been generated and is in 
the fringe (queue)

– Let n be an unexpanded node on a shortest path to an optimal 
goal G (suppose n is also in the fringe)

– A* will never select G2 for expansion since 

( ) ( ) ( )
( ) ( ) ( )
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Optimality of A* Search (cont.)

• Another proof
– Suppose when algorithm terminates, G2 is a complete path (a 

solution) on the top of the fringe and a node n that stands for a 
partial path presents somewhere on the fringe. There exists a 
complete path G passing through n, which is not equal to G2
and is optimal (with the lowest path cost)

1. G is a complete which passes through node n, f(G)>=f(n)             
2. Because G2 is on the top of the fringe ,              

f(G2)<=f(n)<=f(G)
3. Therefore, it makes contrariety !!

• A* search is optimally efficient
– For any given heuristic function, no other optimal algorithms is

guaranteed to expand fewer nodes than A*
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Completeness of A* Search

• A* search is complete
– If every node has a finite branching factor
– If there are finitely many nodes with

• To Summarize again 

( ) ( )   Gfnf ≤

Proof:
Because A* adds bands (expands nodes) in order
of increasing    , it must eventually reach a band
where     is equal to the path to a goal state.f

f

( ) ( )
( ) ( )

( ) ( )   with nodes no expands A
 with nodes smoe expands A

  with nodes all expands A
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If G is the optimal goal
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Complexity of A* Search

• Time complexity: O(bd)

• Space complexity: O(bd)
– Keep all nodes in memory
– Not practical for many large-scale problems

• Theorem
– The search space of A* grows exponentially unless the error in 

the heuristic function grows no faster than the logarithm of the
actual path cost

( ) ( ) ( )( )  log- ** nhOnhnh ≤
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Memory-bounded Heuristic Search

• Iterative-Deepening A* search

• Recursive best-first search

• Simplified memory-bounded A* search 
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Iterative Deepening A* Search (IDA*)

• The idea of iterative deepening was adapted to the 
heuristic search context to reduce memory requirements

• At each iteration, DFS is performed by using the
-cost (       ) as the cutoff rather than the depth

– E.g., the smallest    -cost of any node that exceeded the cutoff on 
the previous iteration

cutoff3

cutoff1

cutoff4 cutoffk

f hg +
f

cutoff2

cutoff5
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Iterative Deepening A* Search (cont.)

Iterations
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Properties of IDA*

• IDA* is complete and optimal

• Space complexity: O(bf(G)/δ) ≈ O(bd) 
– δ : the smallest step cost
– f(G): the optimal solution cost

• Time complexity: O(αbd) 
– α: the number of distinct        values smaller than the optimal 

goal 

• Between iterations, IDA* retains only a single number –
the     -cost 

• IDA* has difficulties in implementation when dealing with 
real-valued cost

f

f
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Recursive Best-First Search (RBFS)

• Attempt to mimic best-first search but use only linear 
space
– Can be implemented as a recursive algorithm
– Keep track of the      -value of the best alternative path from any 

ancestor of the current node
– If the current node exceeds the limit, then the recursion unwinds 

back to the alternative path
– As the recursion unwinds, the     -value of each node along the 

path is replaced with the best    -value of its children

f

f
f
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Recursive Best-First Search (cont.)

• Example: the route-finding problem
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Recursive Best-First Search (cont.)

• Example: the route-finding problem
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Recursive Best-First Search (cont.)

• Example: the route-finding problem

Re-expand the forgotten nodes
(subtree of Rimnicu Vilcea)



AI - Berlin Chen   36

Recursive Best-First Search (cont.)

• Algorithm

Evaluation function made 
monotonously increasing ? 

A child 
node
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Properties of RBFS

• RBFS is complete and optimal

• Space complexity: O(bd) 

• Time complexity : worse case O(bd) 

– Depend on the heuristics and frequency of “mind change”
– The same states may be explored many times
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Simplified Memory-Bounded A* Search (SMA*)

• Make use of all available memory M to carry out A*

• Expanding the best leaf like A* until memory is full

• When full, drop the worst leaf node (with highest    -value)
– Like RBFS, backup the value of the forgotten node to its parent if 

it is the best among the subtree of its parent
– When all children nodes were deleted/dropped, put the parent 

node to the fringe again for further expansion

f
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Simplified Memory-Bounded A* Search (cont.)
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Properties of SMA*

• Is complete if M ≥ d

• Is optimal if M ≥ d

• Space complexity: O(M) 

• Time complexity : worse case O(bd) 
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Admissible Heuristics

• Take the 8-puzzle problem for example
– Two heuristic functions considered here

• h1(n): number of misplaced tiles
• h2(n): the sum of the distances of the tiles from

their goal positions (tiles can move vertically,  
horizontally), also called Manhattan distance or
city block distance

• h1(n): 8
• h2(n): 3+1+2+2+2+3+3+2=18
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Admissible Heuristics (cont.)

• Take the 8-puzzle problem for example
– Comparison of IDS and A*

100 random problems
for each number

N+1=1+ b*+(b*)2+(b*)3+… +(b*)d

Nodes generated by A* b*: effective branching factor

branching factor for
8-puzzle: 2~4

solution
length
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Dominance

• For two heuristic functions h1 and h2 (both are admissible),  
if h2(n) ≥ h1(n) for all nodes n
– Then h2 dominates h1 and is better for search
– A* using h2 will not expand more node than A* using h1

f(G)f(s)

f  becomes larger
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Inventing Admissible Heuristics

• Relaxed Problems
– The search heuristics can be achieved from the 

relaxed versions the original problem
• Key point: the optimal solution cost to a relaxed problem 

is an admissible heuristic for the original problem
(not greater than the optimal solution cost of the original   

problem)

– Example 1: the 8-puzzle problem
• If the rules are relaxed so that a tile can move anywhere, 

then h1(n) gives the shortest solution
• If the rules are relaxed so that a tile can move any adjacent 

square, then h2(n) gives the shortest solution
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Inventing Admissible Heuristics (cont.)

– Example 2: the speech recognition problem

Original Problem
(keyword spotting) 

Relaxed Problem 
(used for heuristic calculation)

Note: if the relaxed problem is hard to solve, then the values
of the corresponding heuristic will be expansive to obtain
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Inventing Admissible Heuristics (cont.)

• Composite Heuristics
– Given a collection of admissible heuristics h1,h2,…,hm, none of 

them dominates any of others

• Subproblem Heuristics
– The cost of the optimal solution of the subproblem is a lower 

bound on the cost of the complete problem

( ) ( ) ( ) ( ){ } ,...,,max 21 nhnhnhnh m=
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Inventing Admissible Heuristics (cont.)

• Inductive Learning
– E.g., the 8-puzzle problem

xa(n) xa(n) h’(n)
5                       4                      14
3                       6                      11
6                       3                      16
.                        .                         .
.                        .                         . 
2                       7                       9

h’(n) =Ca‧xa(n)＋ Cb‧xb(n)

Ca =? Cb =? 

xa(n): number of misplaced tiles
xb(n): number of pairs of adjacent tiles 

that are adjacent in the goal state

Linear combination
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Tradeoffs

Search Effort

Heuristic ComputationSearch Effort

Heuristic Computation

Heuristic ComputationSearch Effort

Search Effort

Heuristic Computation

Time

Relaxation of problem
for heuristic computation
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Iterative Improvement Algorithms

• In many optimization, path to solution is irrelevant 
– E.g., 8-queen, VLSI layout, TSP etc., for finding optimal 

configuration
– The goal state itself is the solution
– The state space is a complete configuration

• In such case, iterative improvement algorithms can
be used 
– Start with a complete configuration (represented by

a single “current” state)
– Make modifications to improve the quality
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Iterative Improvement Algorithms (cont.)

• Example: the n-queens problem
– Put n queens on an nxn board with no queens on the same row, 

column, or diagonal
– Move a queen to reduce number of conflicts

(4,  3,  4, 3) (4,  3,  4, 2) (4,  1,  4, 2)

5 conflicts 3  conflicts 1  conflict
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Iterative Improvement Algorithms (cont.)

• Example: the traveling salesperson problem (TSP)
– Find  the shortest tour visiting all cities exactly one
– Start with any complete tour, perform pairwise exchanges

1 2

34

5

1→2→4→3→5→1 1→2→5→3→4→1

34

1 2

5
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Iterative Improvement Algorithms (cont.)

• Local search algorithms belongs to iterative 
improvement algorithms
– Use a current state and generally move only to the neighbors of 

that state
– Properties

• Use very little memory
• Applicable to problems with large or infinite state space

• Local search algorithms to be considered
– Hill-climbing search
– Simulated annealing
– Local beam search
– Genetic algorithms
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Iterative Improvement Algorithms (cont.)

• Completeness or optimality of the local search 
algorithms should be considered
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Hill-Climbing Search

• “Like climbing Everest in the thick fog with amnesia”

• Choose any successor with a higher value (of objective 
or heuristic functions) than current state
– Choose  Value[next] ≥ Value[current] 

• Also called greedy local search
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Hill-Climbing Search (cont.)

• Example: the 8-queens problem
– The heuristic cost function is the number of pairs of queens that 

are attacking each other

– h=3+4+2+3+2+2+1=17 (calculated from left to right)

– Best successors have h=12 
(when one of queens in Column 2,5,6, and 7 is moved)
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Hill-Climbing Search (cont.)

• Problems:
– Local maxima: search halts prematurely 
– Plateaus: search conducts a random walk
– Ridges: search oscillates with slow progress

(resulting in a set of maxima) 

• Solution ? sideways move?

Neither complete
nor optimal 

8-queens stuck in a local minimum Ridges cause oscillation
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Hill-Climbing Search (cont.)

• Several variants
– Stochastic hill climbing 

• Choose at random from among the uphill moves

– First-choice hill climbing
• Generate successors randomly until one that is better than current 

state is generated
• A kind of stochastic hill climbing 

– Random-restart hill climbing 
• Conduct a series of hill-climbing searches from randomly generated 

initial states
• Stop when goal is found
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Simulated Annealing Search
• Combine hill climbing with a random walk to yield both 

efficiency and completeness
– Random walk: moving to a successor chosen uniformly at 

random from the set of successors

• Steps for Simulated Annealing Search
– Pick a random move at each iteration instead of picking the best

move
– If the move improve the situation → accept!

– Otherwise(            ) , have a probability (            ) to move to a 
worse state

• The probability decreases exponentially as              decreases
• The probability decreases exponentially as         (temperature)

goes down (as time goes by)

TEe /Δ

EΔ

][VALUE][VALUE currentnextE −=Δ

T

0<ΔE
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Simulated Annealing Search (cont.)

Be negative here!
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Local Beam Search

• Keep track of k states rather than just one
– Begin with k randomly generated states

– All successors of the k states are generated at each iteration

• If any one is a goal → halt!

• Otherwise, select k best successors from them and continue 
the iteration

– Information is passed/exchanged among these k
search threads

• Compared to the random-restart search
– Each process run independently
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Local Beam Search (cont.)

• Problem
– The k states may quickly become concentrated in a small region 

of the state space
– Like an expensive version of hill climbing

• Solution
– A variant version called stochastic beam search

• Choose a given successor at random with a probability in increasing 
function of its value

• Resemble the process of natural selection
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Genetic Algorithms (GAs)

• Developed and patterned after biological evolution

• Also regarded as a variant of stochastic beam search
– Successors are generated from multiple current states

• A population of potential solutions are maintained

– States are often described by bit strings ( like chromosomes) 
whose interpretation depends on the applications

• Binary-coded or alphabet
(11, 6, 9)  → (101101101001)

• Encoding: translate problem-specific knowledge to GA framework

– Search begins with a population of randomly generated 
initial states
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Genetic Algorithms (cont.)

• The successor states are generated by combining two 
parent states, rather then by modifying a single state

– Current population/states are evaluated with a fitness function
and selected probabilistically as seeds for producing the next 
generation

• Fitness function: the criteria for ranking
• Recombine parts of the best (most fit) currently known states 
• Generate-and-test beam search

• Three phases of GAs
– Selection → Crossover → Mutation
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Genetic Algorithms (cont.)

• Selection
– Determine which parent strings (chromosomes) participate in 

producing offspring for the next generation

– The selection probability is proportional to the fitness values

– Some strings (chromosomes) would be selected more than once

( ) ( )
( )∑ =

= P

j j

i
i

hFitness
hFitnessh

1

Pr



AI - Berlin Chen   65

Genetic Algorithms (cont.)

• Two most common (genetic) operators which try to 
mimic biological evolution are performed at each 
iteration

– Crossover
• Produce new offspring by crossing over the two mated parent 

strings at randomly (a) chosen crossover point(s) (bit position(s))
• Selected bits copied from each parent 

– Mutation
• Often performed after crossover
• Each (bit) location of the randomly selected offspring is subject to 

random mutation with a small independent probability

• Applicable problems
– Function approximation & optimization, circuit layout etc.



AI - Berlin Chen   66

Genetic Algorithms (cont.)

Encoding Schemes

Fitness Evaluation

Testing the End of the Algorithm

Parent Selection

Crossover Operators

Mutation Operators

Halt
YES

NO
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Genetic Algorithms (cont.)

• Example 1: the 8-queens problem

2   4   7  4  8   5  5   23   2   7  5  2   4  1   1 3   2   7  4  8   5  5   2

number of non attacking 
pairs of queens 

parents offspring

( ) ( )
( )∑ =

= P

j j

i
i

hFitness
hFitnessh

1

Pr
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Genetic Algorithms (cont.)

• Example 2: common crossover operators



AI - Berlin Chen   69

Genetic Algorithms (cont.)

• Example 3: HMM adaptation in Speech Recognition

( )Dkkkk ,....,,, 3211 =h

( )Dmmmm ,....,,, 3212 =h

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )fDfffffff

fDfffffff

imikimikikimikim

ikimikimimikimik

−+⋅−+⋅−+⋅−⋅+⋅=

−+⋅−+⋅−+⋅−⋅+⋅=

1...., ,1 ,1 ,1

1,....,1 ,1 ,1

33322112

33322111

s

s

dg ddd gg σε ⋅+=ˆ

sequences of HMM mean vectors

crossover
(reproduction)

mutation

( )

( )

( )
∑ = ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
P

j

j

i

i

T
P

T
P

1
exp

exp
Pr

hO

hO

h



AI - Berlin Chen   70

Genetic Algorithms (cont.)
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Genetic Algorithms (cont.)

• Main issues
– Encoding schemes

• Representation of problem states
– Size of population

• Too small → converging too quickly, and vice versa 
– Fitness function

• The objective function for optimization/maximization
• Ranking members in a population
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Properties of GAs

• GAs conduct a randomized, parallel, hill-climbing search 
for states that optimize a predefined fitness function

• GAs are based an analogy to biological evolution

• It is not clear whether the appeal of GAs arises from their 
performance or from their aesthetically pleasing origins 
in the theory of evolution
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Local Search in Continuous Spaces

• Most real-world environments are continuous
– The successors of a given state could be infinite

• Example: 
Place three new airports anywhere in Romania, such  
that the sum of squared distances from each cities to 
its nearest airport is minimized 

x1,y1

x2,y2

x3,y3

objective function: f =?
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Local Search in Continuous Spaces (cont.)

• Two main approach to find the maximum or minimum of 
the objective function by taking the gradient 

1. Set the gradient to be equal to zero (=0) and try to find the 
closed form solution

• If it exists → lucky!

2. If no closed form solution exists
• Perform gradient search ! 
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Local Search in Continuous Spaces (cont.)

• Gradient Search
– A hill climbing method
– Search in the space defined by the real numbers
– Guaranteed to find local maximum
– Not Guaranteed to find global maximum

( ) ( )
x
xxxxx

d
dff αα +=∇+=ˆ

maximization

minimization

( ) ( )
x
xxxxx

d
dff αα −=∇−=ˆ

the gradient of
objective function
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Online Search

• Offline search mentioned previously
– Nodes expansion involves simulated rather real actions
– Easy to expand a node in one part of the search space and then 

immediately expand a node in another part of the search space 

• Online search
– Expand a node physically occupied

• The next node expanded (except when backtracking) is the child of 
previous node expanded 

– Traveling all the way across the tree to expand the next node is
costly



AI - Berlin Chen   77

Online Search (cont.)

• Algorithms for online search
– Depth-first search

• If the actions of agent is reversible (backtracking is allowable)
– Hill-climbing search 

• However random restarts are prohibitive
– Random walk

• Select at random one of the available actions from current state
• Could take exponentially many steps to find the goal


