
AI - Berlin Chen 1

Informed Search and Exploration

Reference:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 4
2. S. Russell’s teaching materials

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

AI - Berlin Chen 2

Introduction

• Informed Search
– Also called heuristic search
– Use problem-specific knowledge
– Search strategy: a node (in the fringe) is selected for exploration

based on an evaluation function,
• Estimate of desirability

• Evaluation function generally consists of two parts
– The path cost from the initial state to a node n, (optional)
– The estimated cost of the cheapest path from a node n to a goal

node, the heuristic function,
• If the node n is a goal state →
• Can’t be computed from the problem definition (need experience)

()nf

()nh

()ng

() 0=nh

AI - Berlin Chen 3

Heuristics

• Used to describe rules of thumb or advise that are
generally effective, but not guaranteed to work in every
case

• In the context of search, a heuristic is a function that
takes a state as an argument and returns a number that
is an estimate of the merit of the state with respect to the
goal

• Not all heuristic functions are beneficial
– Should consider the time spent on evaluating the heuristic

function
– Useful heuristics should be computationally inexpensive

AI - Berlin Chen 4

Best-First Search

• Choose the most desirable (seemly-best) node for
expansion based on evaluation function
– Lowest cost/highest probability evaluation

• Implementation
– Fringe is a priority queue in decreasing order of desirability

• Several kinds of best-first search introduced
– Greedy best-first search
– A* search
– Iterative-Deepening A* search
– Recursive best-first search
– Simplified memory-bounded A* search

memory-bounded
heuristic search

AI - Berlin Chen 5

Map of Romania

()nh

AI - Berlin Chen 6

Greedy Best-First Search

• Expand the node that appears to be closest to the goal,
based on the heuristic function only

– E.g., the straight-line distance heuristics to Bucharest for
the route-finding problem

•

• “greedy” – at each search step the algorithm always
tries to get close to the goal as it can

() () goalclosest the to node fromcost of estimate nnhnf ==

SLDh

()() 366=AradInhSLD

AI - Berlin Chen 7

Greedy Best-First Search (cont.)

• Example 1: the route-finding problem

AI - Berlin Chen 8

Greedy Best-First Search (cont.)

• Example 1: the route-finding problem

AI - Berlin Chen 9

Greedy Best-First Search (cont.)

• Example 1: the route-finding problem

– The solution is not optimal (?)

AI - Berlin Chen 10

Greedy Best-First Search (cont.)

• Example 2: the 8-puzzle problem

2+0+0+0+1+1+2+0=6 (Manhattan distance)

AI - Berlin Chen 11

Greedy Best-First Search (cont.)

• Example 2: the 8-puzzle problem (cont.)

AI - Berlin Chen 12

Properties of Greedy Best-First Search

• Prefer to follow a single path all the way to the goal, and
will back up when dead end is hit (like DFS)
– Also have the possibility to go down infinitely

• Is neither optimal nor complete
– Not complete: could get suck in loops

• E.g., finding path from Iasi to Fagars

• Time and space complexity
– Worse case: O(bm)
– But a good heuristic function could give dramatic improvement

AI - Berlin Chen 13

A* Search

• Pronounced as “A-star search”

• Expand a node by evaluating the path cost to reach
itself, , and the estimated path cost from it to
the goal,
– Evaluation function

– Uniform-cost search + greedy best-first search ?
– Avoid expanding nodes that are already expansive

() () ()nhngnf +=

()ng
()nh

()
()
() goal togh cost throupath totalestimated

 from goal cost topath estimated
reach far to socost path

nnf
nnh

nng

=
=
=

Hart, Nilsson, Raphael, 1968

AI - Berlin Chen 14

A* Search (cont.)

• A* is optimal if the heuristic function never
overestimates
– Or say “if the heuristic function is admissible”
– E.g. the straight-line-distance heuristics are admissible

()nh

() ()
() goal to fromcost path true theis where

,
*

*

nnh
nhnh ≤

Finding the shortest-path goal

AI - Berlin Chen 15

A* Search (cont.)

• Example 1: the route-finding problem

AI - Berlin Chen 16

A* Search (cont.)

• Example 1: the route-finding problem

AI - Berlin Chen 17

A* Search (cont.)

• Example 1: the route-finding problem

AI - Berlin Chen 18

A* Search (cont.)

• Example 1: the route-finding problem

AI - Berlin Chen 19

A* Search (cont.)

• Example 1: the route-finding problem

AI - Berlin Chen 20

A* Search (cont.)

• Example 2: the state-space just represented as a tree

A

B C D

E F G L4

L1 L2 L3

4 3 2

3

2

4

1

8

1

3

Fringe (sorted)

Fringe Top Fringe Elements
A(15) A(15)
C(15) C(15), B(13), D(7)
G(14) G(14), B(13), F(9), D(7)
B(13) B(13), L3(12), F(9), D(7)

L3(12) L3(12), E(11), F(9), D(7)

Node g(n) h(n) f(n)
A 0 15 15
B 4 9 13
C 3 12 15
D 2 5 7
E 7 4 11
F 7 2 9
G 11 3 14
L1 9 0 9
L2 8 0 8
L3 12 0 12
L4 5 0 5

() () ()
: node offunction Evaluation

nhngnf
n

+=
Finding the longest-path goal

() ()nhnh *≥

AI - Berlin Chen 21

Consistency of A* Heuristics

• A heuristic h is consistent if

– A stricter requirement on h

• If h is consistent (monotonic)

– I.e., is nondecreasing along any path during search

() () () ,, nhnancnh ′+′≤

n

n’

G

()nanc ′,,
()nh

() nh ′

() () ()
() () ()
() ()
()nf

nhng
nhnancng

nhngnf

≥
+≥

′+′+=

′+′=′

 ,,

()nf

Finding the shortest-path goal

, where h(‧) is the straight-line
distance to the nearest goal

successor of n

AI - Berlin Chen 22

Contours of the Evaluation Functions

• Fringe (leaf) nodes expanded in concentric contours

• Uniformed search ()
– Bands circulate around the initial state

• A* search
– Bands stretch toward the goal and is narrowly focused around

the optimal path if more accurate heuristics were used

() 0 , =∀ nhn

AI - Berlin Chen 23

Contours of the Evaluation Functions (cont.)

• If G is the optimal goal

– A* search expands all nodes with f(n) <f(G)

– A* search expands some nodes with f(n)=f(G)

– A* expands no nodes with f(n) > f(G)

AI - Berlin Chen 24

Optimality of A* Search
• A* search is optimal
• Proof

– Suppose some suboptimal goal G2 has been generated and is in
the fringe (queue)

– Let n be an unexpanded node on a shortest path to an optimal
goal G (suppose n is also in the fringe)

– A* will never select G2 for expansion since

() () ()
() () ()
() () () () ())(admissible is since)(

lsuboptioma is since)(

0 since

*
2

*
222

nhnhh nhngnf

GnhngGg

GhGgGf

≤+=≥

+=>

==

() () 2 nfGf >

AI - Berlin Chen 25

Optimality of A* Search (cont.)

• Another proof
– Suppose when algorithm terminates, G2 is a complete path (a

solution) on the top of the fringe and a node n that stands for a
partial path presents somewhere on the fringe. There exists a
complete path G passing through n, which is not equal to G2
and is optimal (with the lowest path cost)

1. G is a complete which passes through node n, f(G)>=f(n)
2. Because G2 is on the top of the fringe ,

f(G2)<=f(n)<=f(G)
3. Therefore, it makes contrariety !!

• A* search is optimally efficient
– For any given heuristic function, no other optimal algorithms is

guaranteed to expand fewer nodes than A*

AI - Berlin Chen 26

Completeness of A* Search

• A* search is complete
– If every node has a finite branching factor
– If there are finitely many nodes with

• To Summarize again

() () Gfnf ≤

Proof:
Because A* adds bands (expands nodes) in order
of increasing , it must eventually reach a band
where is equal to the path to a goal state.f

f

() ()
() ()

() () with nodes no expands A
 with nodes smoe expands A

 with nodes all expands A

*

*

*

Gfnf
Gfnf

Gfnf

>

=

<

If G is the optimal goal

AI - Berlin Chen 27

Complexity of A* Search

• Time complexity: O(bd)

• Space complexity: O(bd)
– Keep all nodes in memory
– Not practical for many large-scale problems

• Theorem
– The search space of A* grows exponentially unless the error in

the heuristic function grows no faster than the logarithm of the
actual path cost

() () ()() log- ** nhOnhnh ≤

AI - Berlin Chen 28

Memory-bounded Heuristic Search

• Iterative-Deepening A* search

• Recursive best-first search

• Simplified memory-bounded A* search

AI - Berlin Chen 29

Iterative Deepening A* Search (IDA*)

• The idea of iterative deepening was adapted to the
heuristic search context to reduce memory requirements

• At each iteration, DFS is performed by using the
-cost () as the cutoff rather than the depth

– E.g., the smallest -cost of any node that exceeded the cutoff on
the previous iteration

cutoff3

cutoff1

cutoff4 cutoffk

f hg +
f

cutoff2

cutoff5

AI - Berlin Chen 30

Iterative Deepening A* Search (cont.)

Iterations

AI - Berlin Chen 31

Properties of IDA*

• IDA* is complete and optimal

• Space complexity: O(bf(G)/δ) ≈ O(bd)
– δ : the smallest step cost
– f(G): the optimal solution cost

• Time complexity: O(αbd)
– α: the number of distinct values smaller than the optimal

goal

• Between iterations, IDA* retains only a single number –
the -cost

• IDA* has difficulties in implementation when dealing with
real-valued cost

f

f

AI - Berlin Chen 32

Recursive Best-First Search (RBFS)

• Attempt to mimic best-first search but use only linear
space
– Can be implemented as a recursive algorithm
– Keep track of the -value of the best alternative path from any

ancestor of the current node
– If the current node exceeds the limit, then the recursion unwinds

back to the alternative path
– As the recursion unwinds, the -value of each node along the

path is replaced with the best -value of its children

f

f
f

AI - Berlin Chen 33

Recursive Best-First Search (cont.)

• Example: the route-finding problem

AI - Berlin Chen 34

Recursive Best-First Search (cont.)

• Example: the route-finding problem

AI - Berlin Chen 35

Recursive Best-First Search (cont.)

• Example: the route-finding problem

Re-expand the forgotten nodes
(subtree of Rimnicu Vilcea)

AI - Berlin Chen 36

Recursive Best-First Search (cont.)

• Algorithm

Evaluation function made
monotonously increasing ?

A child
node

AI - Berlin Chen 37

Properties of RBFS

• RBFS is complete and optimal

• Space complexity: O(bd)

• Time complexity : worse case O(bd)

– Depend on the heuristics and frequency of “mind change”
– The same states may be explored many times

AI - Berlin Chen 38

Simplified Memory-Bounded A* Search (SMA*)

• Make use of all available memory M to carry out A*

• Expanding the best leaf like A* until memory is full

• When full, drop the worst leaf node (with highest -value)
– Like RBFS, backup the value of the forgotten node to its parent if

it is the best among the subtree of its parent
– When all children nodes were deleted/dropped, put the parent

node to the fringe again for further expansion

f

AI - Berlin Chen 39

Simplified Memory-Bounded A* Search (cont.)

AI - Berlin Chen 40

Properties of SMA*

• Is complete if M ≥ d

• Is optimal if M ≥ d

• Space complexity: O(M)

• Time complexity : worse case O(bd)

AI - Berlin Chen 41

Admissible Heuristics

• Take the 8-puzzle problem for example
– Two heuristic functions considered here

• h1(n): number of misplaced tiles
• h2(n): the sum of the distances of the tiles from

their goal positions (tiles can move vertically,
horizontally), also called Manhattan distance or
city block distance

• h1(n): 8
• h2(n): 3+1+2+2+2+3+3+2=18

AI - Berlin Chen 42

Admissible Heuristics (cont.)

• Take the 8-puzzle problem for example
– Comparison of IDS and A*

100 random problems
for each number

N+1=1+ b*+(b*)2+(b*)3+… +(b*)d

Nodes generated by A* b*: effective branching factor

branching factor for
8-puzzle: 2~4

solution
length

AI - Berlin Chen 43

Dominance

• For two heuristic functions h1 and h2 (both are admissible),
if h2(n) ≥ h1(n) for all nodes n
– Then h2 dominates h1 and is better for search
– A* using h2 will not expand more node than A* using h1

f(G)f(s)

f becomes larger

AI - Berlin Chen 44

Inventing Admissible Heuristics

• Relaxed Problems
– The search heuristics can be achieved from the

relaxed versions the original problem
• Key point: the optimal solution cost to a relaxed problem

is an admissible heuristic for the original problem
(not greater than the optimal solution cost of the original

problem)

– Example 1: the 8-puzzle problem
• If the rules are relaxed so that a tile can move anywhere,

then h1(n) gives the shortest solution
• If the rules are relaxed so that a tile can move any adjacent

square, then h2(n) gives the shortest solution

AI - Berlin Chen 45

Inventing Admissible Heuristics (cont.)

– Example 2: the speech recognition problem

Original Problem
(keyword spotting)

Relaxed Problem
(used for heuristic calculation)

Note: if the relaxed problem is hard to solve, then the values
of the corresponding heuristic will be expansive to obtain

AI - Berlin Chen 46

Inventing Admissible Heuristics (cont.)

• Composite Heuristics
– Given a collection of admissible heuristics h1,h2,…,hm, none of

them dominates any of others

• Subproblem Heuristics
– The cost of the optimal solution of the subproblem is a lower

bound on the cost of the complete problem

() () () (){ } ,...,,max 21 nhnhnhnh m=

AI - Berlin Chen 47

Inventing Admissible Heuristics (cont.)

• Inductive Learning
– E.g., the 8-puzzle problem

xa(n) xa(n) h’(n)
5 4 14
3 6 11
6 3 16
. . .
. . .
2 7 9

h’(n) =Ca‧xa(n)＋ Cb‧xb(n)

Ca =? Cb =?

xa(n): number of misplaced tiles
xb(n): number of pairs of adjacent tiles

that are adjacent in the goal state

Linear combination

AI - Berlin Chen 48

Tradeoffs

Search Effort

Heuristic ComputationSearch Effort

Heuristic Computation

Heuristic ComputationSearch Effort

Search Effort

Heuristic Computation

Time

Relaxation of problem
for heuristic computation

AI - Berlin Chen 49

Iterative Improvement Algorithms

• In many optimization, path to solution is irrelevant
– E.g., 8-queen, VLSI layout, TSP etc., for finding optimal

configuration
– The goal state itself is the solution
– The state space is a complete configuration

• In such case, iterative improvement algorithms can
be used
– Start with a complete configuration (represented by

a single “current” state)
– Make modifications to improve the quality

AI - Berlin Chen 50

Iterative Improvement Algorithms (cont.)

• Example: the n-queens problem
– Put n queens on an nxn board with no queens on the same row,

column, or diagonal
– Move a queen to reduce number of conflicts

(4, 3, 4, 3) (4, 3, 4, 2) (4, 1, 4, 2)

5 conflicts 3 conflicts 1 conflict

AI - Berlin Chen 51

Iterative Improvement Algorithms (cont.)

• Example: the traveling salesperson problem (TSP)
– Find the shortest tour visiting all cities exactly one
– Start with any complete tour, perform pairwise exchanges

1 2

34

5

1→2→4→3→5→1 1→2→5→3→4→1

34

1 2

5

AI - Berlin Chen 52

Iterative Improvement Algorithms (cont.)

• Local search algorithms belongs to iterative
improvement algorithms
– Use a current state and generally move only to the neighbors of

that state
– Properties

• Use very little memory
• Applicable to problems with large or infinite state space

• Local search algorithms to be considered
– Hill-climbing search
– Simulated annealing
– Local beam search
– Genetic algorithms

AI - Berlin Chen 53

Iterative Improvement Algorithms (cont.)

• Completeness or optimality of the local search
algorithms should be considered

AI - Berlin Chen 54

Hill-Climbing Search

• “Like climbing Everest in the thick fog with amnesia”

• Choose any successor with a higher value (of objective
or heuristic functions) than current state
– Choose Value[next] ≥ Value[current]

• Also called greedy local search

AI - Berlin Chen 55

Hill-Climbing Search (cont.)

• Example: the 8-queens problem
– The heuristic cost function is the number of pairs of queens that

are attacking each other

– h=3+4+2+3+2+2+1=17 (calculated from left to right)

– Best successors have h=12
(when one of queens in Column 2,5,6, and 7 is moved)

AI - Berlin Chen 56

Hill-Climbing Search (cont.)

• Problems:
– Local maxima: search halts prematurely
– Plateaus: search conducts a random walk
– Ridges: search oscillates with slow progress

(resulting in a set of maxima)

• Solution ? sideways move?

Neither complete
nor optimal

8-queens stuck in a local minimum Ridges cause oscillation

AI - Berlin Chen 57

Hill-Climbing Search (cont.)

• Several variants
– Stochastic hill climbing

• Choose at random from among the uphill moves

– First-choice hill climbing
• Generate successors randomly until one that is better than current

state is generated
• A kind of stochastic hill climbing

– Random-restart hill climbing
• Conduct a series of hill-climbing searches from randomly generated

initial states
• Stop when goal is found

AI - Berlin Chen 58

Simulated Annealing Search
• Combine hill climbing with a random walk to yield both

efficiency and completeness
– Random walk: moving to a successor chosen uniformly at

random from the set of successors

• Steps for Simulated Annealing Search
– Pick a random move at each iteration instead of picking the best

move
– If the move improve the situation → accept!

– Otherwise() , have a probability () to move to a
worse state

• The probability decreases exponentially as decreases
• The probability decreases exponentially as (temperature)

goes down (as time goes by)

TEe /Δ

EΔ

][VALUE][VALUE currentnextE −=Δ

T

0<ΔE

AI - Berlin Chen 59

Simulated Annealing Search (cont.)

Be negative here!

AI - Berlin Chen 60

Local Beam Search

• Keep track of k states rather than just one
– Begin with k randomly generated states

– All successors of the k states are generated at each iteration

• If any one is a goal → halt!

• Otherwise, select k best successors from them and continue
the iteration

– Information is passed/exchanged among these k
search threads

• Compared to the random-restart search
– Each process run independently

AI - Berlin Chen 61

Local Beam Search (cont.)

• Problem
– The k states may quickly become concentrated in a small region

of the state space
– Like an expensive version of hill climbing

• Solution
– A variant version called stochastic beam search

• Choose a given successor at random with a probability in increasing
function of its value

• Resemble the process of natural selection

AI - Berlin Chen 62

Genetic Algorithms (GAs)

• Developed and patterned after biological evolution

• Also regarded as a variant of stochastic beam search
– Successors are generated from multiple current states

• A population of potential solutions are maintained

– States are often described by bit strings (like chromosomes)
whose interpretation depends on the applications

• Binary-coded or alphabet
(11, 6, 9) → (101101101001)

• Encoding: translate problem-specific knowledge to GA framework

– Search begins with a population of randomly generated
initial states

AI - Berlin Chen 63

Genetic Algorithms (cont.)

• The successor states are generated by combining two
parent states, rather then by modifying a single state

– Current population/states are evaluated with a fitness function
and selected probabilistically as seeds for producing the next
generation

• Fitness function: the criteria for ranking
• Recombine parts of the best (most fit) currently known states
• Generate-and-test beam search

• Three phases of GAs
– Selection → Crossover → Mutation

AI - Berlin Chen 64

Genetic Algorithms (cont.)

• Selection
– Determine which parent strings (chromosomes) participate in

producing offspring for the next generation

– The selection probability is proportional to the fitness values

– Some strings (chromosomes) would be selected more than once

() ()
()∑ =

= P

j j

i
i

hFitness
hFitnessh

1

Pr

AI - Berlin Chen 65

Genetic Algorithms (cont.)

• Two most common (genetic) operators which try to
mimic biological evolution are performed at each
iteration

– Crossover
• Produce new offspring by crossing over the two mated parent

strings at randomly (a) chosen crossover point(s) (bit position(s))
• Selected bits copied from each parent

– Mutation
• Often performed after crossover
• Each (bit) location of the randomly selected offspring is subject to

random mutation with a small independent probability

• Applicable problems
– Function approximation & optimization, circuit layout etc.

AI - Berlin Chen 66

Genetic Algorithms (cont.)

Encoding Schemes

Fitness Evaluation

Testing the End of the Algorithm

Parent Selection

Crossover Operators

Mutation Operators

Halt
YES

NO

AI - Berlin Chen 67

Genetic Algorithms (cont.)

• Example 1: the 8-queens problem

2 4 7 4 8 5 5 23 2 7 5 2 4 1 1 3 2 7 4 8 5 5 2

number of non attacking
pairs of queens

parents offspring

() ()
()∑ =

= P

j j

i
i

hFitness
hFitnessh

1

Pr

AI - Berlin Chen 68

Genetic Algorithms (cont.)

• Example 2: common crossover operators

AI - Berlin Chen 69

Genetic Algorithms (cont.)

• Example 3: HMM adaptation in Speech Recognition

()Dkkkk ,....,,, 3211 =h

()Dmmmm ,....,,, 3212 =h

() () () ()()
() () () ()()fDfffffff

fDfffffff

imikimikikimikim

ikimikimimikimik

−+⋅−+⋅−+⋅−⋅+⋅=

−+⋅−+⋅−+⋅−⋅+⋅=

1...., ,1 ,1 ,1

1,....,1 ,1 ,1

33322112

33322111

s

s

dg ddd gg σε ⋅+=ˆ

sequences of HMM mean vectors

crossover
(reproduction)

mutation

()

()

()
∑ = ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
P

j

j

i

i

T
P

T
P

1
exp

exp
Pr

hO

hO

h

AI - Berlin Chen 70

Genetic Algorithms (cont.)

AI - Berlin Chen 71

Genetic Algorithms (cont.)

• Main issues
– Encoding schemes

• Representation of problem states
– Size of population

• Too small → converging too quickly, and vice versa
– Fitness function

• The objective function for optimization/maximization
• Ranking members in a population

AI - Berlin Chen 72

Properties of GAs

• GAs conduct a randomized, parallel, hill-climbing search
for states that optimize a predefined fitness function

• GAs are based an analogy to biological evolution

• It is not clear whether the appeal of GAs arises from their
performance or from their aesthetically pleasing origins
in the theory of evolution

AI - Berlin Chen 73

Local Search in Continuous Spaces

• Most real-world environments are continuous
– The successors of a given state could be infinite

• Example:
Place three new airports anywhere in Romania, such
that the sum of squared distances from each cities to
its nearest airport is minimized

x1,y1

x2,y2

x3,y3

objective function: f =?

AI - Berlin Chen 74

Local Search in Continuous Spaces (cont.)

• Two main approach to find the maximum or minimum of
the objective function by taking the gradient

1. Set the gradient to be equal to zero (=0) and try to find the
closed form solution

• If it exists → lucky!

2. If no closed form solution exists
• Perform gradient search !

AI - Berlin Chen 75

Local Search in Continuous Spaces (cont.)

• Gradient Search
– A hill climbing method
– Search in the space defined by the real numbers
– Guaranteed to find local maximum
– Not Guaranteed to find global maximum

() ()
x
xxxxx

d
dff αα +=∇+=ˆ

maximization

minimization

() ()
x
xxxxx

d
dff αα −=∇−=ˆ

the gradient of
objective function

AI - Berlin Chen 76

Online Search

• Offline search mentioned previously
– Nodes expansion involves simulated rather real actions
– Easy to expand a node in one part of the search space and then

immediately expand a node in another part of the search space

• Online search
– Expand a node physically occupied

• The next node expanded (except when backtracking) is the child of
previous node expanded

– Traveling all the way across the tree to expand the next node is
costly

AI - Berlin Chen 77

Online Search (cont.)

• Algorithms for online search
– Depth-first search

• If the actions of agent is reversible (backtracking is allowable)
– Hill-climbing search

• However random restarts are prohibitive
– Random walk

• Select at random one of the available actions from current state
• Could take exponentially many steps to find the goal

