Informed Search and Exploration

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 4
2. S. Russell's teaching materials

Introduction

- Informed Search
- Also called heuristic search
- Use problem-specific knowledge
- Search strategy: a node (in the fringe) is selected for exploration based on an evaluation function, $f(n)$
- Estimate of desirability
- Evaluation function generally consists of two parts
- The path cost from the initial state to a node $n, g(n)$ (optional)
- The estimated cost of the cheapest path from a node n to a goal node, the heuristic function, $h(n)$
- If the node n is a goal state $\rightarrow h(n)=0$
- Can't be computed from the problem definition (need experience)

Heuristics

- Used to describe rules of thumb or advise that are generally effective, but not guaranteed to work in every case
- In the context of search, a heuristic is a function that takes a state as an argument and returns a number that is an estimate of the merit of the state with respect to the goal
- Not all heuristic functions are beneficial
- Should consider the time spent on evaluating the heuristic function
- Useful heuristics should be computationally inexpensive

Best-First Search

- Choose the most desirable (seemly-best) node for expansion based on evaluation function
- Lowest cost/highest probability evaluation
- Implementation
- Fringe is a priority queue in decreasing order of desirability
- Several kinds of best-first search introduced
- Greedy best-first search
- A* search
- Iterative-Deepening A* search
- Recursive best-first search
memory-bounded heuristic search
- Simplified memory-bounded A* search

Map of Romania

Greedy Best-First Search

- Expand the node that appears to be closest to the goal, based on the heuristic function only
$f(n)=h(n)=$ estimate of cost from node n to the closest goal
- E.g., the straight-line distance heuristics $h_{S L D}$ to Bucharest for the route-finding problem
- $h_{\text {SLD }}(\operatorname{In}(\operatorname{Arad}))=366$
- "greedy" - at each search step the algorithm always tries to get close to the goal as it can

Greedy Best-First Search (cont.)

- Example 1: the route-finding problem

Greedy Best-First Search (cont.)

- Example 1: the route-finding problem

Greedy Best-First Search (cont.)

- Example 1: the route-finding problem

Greedy Best-First Search (cont.)

- Example 2: the 8-puzzle problem

7	2	3
4	6	5
1	8	\square

(a)

(b)
(1) Blank Tile
\square The last tile moved
$2+0+0+0+1+1+2+0=6$ (Manhattan distance)

Greedy Best-First Search (cont.)

- Example 2: the 8-puzzle problem (cont.)

Figure 11.6 Applying best-first search to the 8-puzzle: (a) initial configuration; (b) final configuration; and (c) states resulting from the first four steps of best-first search. Each state is labeled with its h-value (that is, the Manhattan distance from the state to the final state).

Properties of Greedy Best-First Search

- Prefer to follow a single path all the way to the goal, and will back up when dead end is hit (like DFS)
- Also have the possibility to go down infinitely
- Is neither optimal nor complete
- Not complete: could get suck in loops
- E.g., finding path from Iasi to Fagars
- Time and space complexity

- Worse case: $O\left(b^{m}\right)$
- But a good heuristic function could give dramatic improvement

A* Search

- Pronounced as "A-star search"
- Expand a node by evaluating the path cost to reach itself, $g(n)$, and the estimated path cost from it to the goal, $h(n)$
- Evaluation function

$$
\begin{aligned}
& f(n)=g(n)+h(n) \\
& g(n)=\text { path cost so far to reach } n \\
& h(n)=\text { estimated path cost to goal from } n \\
& f(n)=\text { estimated total path cost through } n \text { to goal }
\end{aligned}
$$

- Uniform-cost search + greedy best-first search ?
- Avoid expanding nodes that are already expansive

A* Search (cont.)

- A^{*} is optimal if the heuristic function $h(n)$ never overestimates
- Or say "if the heuristic function is admissible"
- E.g. the straight-line-distance heuristics are admissible

$$
\begin{array}{|l|}
\hline h(n) \leq h^{*}(n), \\
\text { where } h^{*}(n) \text { is the true path cost from } n \text { to goal }
\end{array}
$$

Finding the shortest-path goal

A* Search (cont.)

- Example 1: the route-finding problem

A* Search (cont.)

- Example 1: the route-finding problem

A* Search (cont.)

- Example 1: the route-finding problem

A* Search (cont.)

- Example 1: the route-finding problem

A* Search (cont.)

- Example 1: the route-finding problem

A* Search (cont.)

- Example 2: the state-space just represented as a tree

Fringe (sorted)

Evaluation function of node n :
$f(n)=g(n)+h(n)$

Node	g(n)	$\underline{h(n)}$	$\underline{f(n)}$
A	0	15	15
B	4	9	13
C	3	12	15
D	2	5	7
E	7	4	11
F	7	2	9
G	11	3	14
L1	9	0	9
L2	8	0	8
L3	12	0	12
L4	5	0	5

Consistency of A* Heuristics

- A heuristic h is consistent if

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

- A stricter requirement on h
- If h is consistent (monotonic)

Finding the shortest-path goal

$$
\begin{aligned}
f\left(n^{\prime}\right) & =g\left(n^{\prime}\right)+h\left(n^{\prime}\right) \\
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n) \\
& \geq f(n)
\end{aligned}
$$

- I.e., $\quad f(n)$ is nondecreasing along any path during search

Contours of the Evaluation Functions

- Fringe (leaf) nodes expanded in concentric contours

- Uniformed search ($\forall n, h(n)=0)$
- Bands circulate around the initial state
- A* search
- Bands stretch toward the goal and is narrowly focused around the optimal path if more accurate heuristics were used

Contours of the Evaluation Functions (cont.)

- If G is the optimal goal
- A* search expands all nodes with $f(n)<f(G)$
- A* search expands some nodes with $f(n)=f(G)$
- A * expands no nodes with $f(n)>f(G)$

Optimality of A* Search

- A* search is optimal
- Proof
- Suppose some suboptimal goal G_{2} has been generated and is in the fringe (queue)
- Let n be an unexpanded node on a shortest path to an optimal goal G (suppose n is also in the fringe)

- A^{*} will never select G_{2} for expansion since $f\left(G_{2}\right)>f(n)$

Optimality of A* Search (cont.)

- Another proof
- Suppose when algorithm terminates, G_{2} is a complete path (a solution) on the top of the fringe and a node n that stands for a partial path presents somewhere on the fringe. There exists a complete path G passing through n, which is not equal to G_{2} and is optimal (with the lowest path cost)

1. G is a complete which passes through node $n, f(G)>=f(n)$
2. Because G_{2} is on the top of the fringe ,

$$
f\left(G_{2}\right)<=f(n)<=f(G)
$$

3. Therefore, it makes contrariety !!

- A* search is optimally efficient
- For any given heuristic function, no other optimal algorithms is guaranteed to expand fewer nodes than A^{*}

Completeness of A* Search

- A* search is complete
- If every node has a finite branching factor
- If there are finitely many nodes with $f(n) \leq f(G)$

Proof:
Because A* adds bands (expands nodes) in order of increasing f, it must eventually reach a band where f is equal to the path to a goal state.

- To Summarize again

If G is the optimal goal
A* expands all nodes with $f(n)<f(G)$
A ${ }^{*}$ expands smoe nodes with $f(n)=f(G)$
A* expands no nodes with $f(n)>f(G)$

Complexity of A* Search

- Time complexity: $O\left(b^{d}\right)$
- Space complexity: $O\left(b^{d}\right)$
- Keep all nodes in memory
- Not practical for many large-scale problems
- Theorem
- The search space of A^{*} grows exponentially unless the error in the heuristic function grows no faster than the logarithm of the actual path cost

$$
\left|h(n)-h^{*}(n)\right| \leq O\left(\log h^{*}(n)\right)
$$

Memory-bounded Heuristic Search

- Iterative-Deepening A* search
- Recursive best-first search
- Simplified memory-bounded A^{*} search

Iterative Deepening A* Search (IDA*)

- The idea of iterative deepening was adapted to the heuristic search context to reduce memory requirements
- At each iteration, DFS is performed by using the f-cost $(g+h)$ as the cutoff rather than the depth
- E.g., the smallest f-cost of any node that exceeded the cutoff on the previous iteration

Iterative Deepening A* Search (cont.)

Properties of IDA*

- IDA* is complete and optimal
- Space complexity: $O(b f(G) / \delta) \approx O(b d)$
- δ : the smallest step cost
$-f(G)$: the optimal solution cost
- Time complexity: $O\left(\alpha b^{d}\right)$
- α : the number of distinct f values smaller than the optimal goal
- Between iterations, IDA* retains only a single number the f-cost
- IDA* has difficulties in implementation when dealing with real-valued cost

Recursive Best-First Search (RBFS)

- Attempt to mimic best-first search but use only linear space
- Can be implemented as a recursive algorithm
- Keep track of the f-value of the best alternative path from any ancestor of the current node
- If the current node exceeds the limit, then the recursion unwinds back to the alternative path
- As the recursion unwinds, the f-value of each node along the path is replaced with the best f-value of its children

Recursive Best-First Search (cont.)

- Example: the route-finding problem

Recursive Best-First Search (cont.)

- Example: the route-finding problem

Recursive Best-First Search (cont.)

- Example: the route-finding problem

Recursive Best-First Search (cont.)

- Algorithm

Properties of RBFS

- RBFS is complete and optimal
- Space complexity: $O(b d)$
- Time complexity : worse case $O\left(b^{d}\right)$
- Depend on the heuristics and frequency of "mind change"
- The same states may be explored many times

Simplified Memory-Bounded A* Search (SMA*)

- Make use of all available memory M to carry out A^{*}
- Expanding the best leaf like A^{*} until memory is full
- When full, drop the worst leaf node (with highest f-value)
- Like RBFS, backup the value of the forgotten node to its parent if it is the best among the subtree of its parent
- When all children nodes were deleted/dropped, put the parent node to the fringe again for further expansion

Simplified Memory-Bounded A* Search (cont.)

```
function SMA*(problem) returms a solution sequence
    inputs: problem, a problem
    static:Queue, a queue of nodes ordered by f
    Queue \leftarrow MAKE-QUEUE({MAKE-NodE(InItIAL-STATE[problem])})
    loop do
    if Queue is empty then return failure
    n\leftarrowdeepest least-f-cost node in Queue
    if Goal-TEST(n) then return success
    s\leftarrow NEXT-SUCCESSOR( }n\mathrm{ )
    if s}\mathrm{ is not a goal and is at maximum depth then
        f(s)}\leftarrow
    else
        f(s)\leftarrow\operatorname{MAX}(\textrm{f}(n),\textrm{g}(s)+h(s))
    if all of }n\mathrm{ 's successors have been generated then
            update n's }f\mathrm{ -cost and those of its ancestors if necessary
    if SUCCESSORS( }n\mathrm{ ) all in memory then remove }n\mathrm{ from Queue
    if memory is full then
            delete shallowest, highest-f-cost node in Queue
            remove it from its parent's successor list
            insert its parent on Queue if necessary
    insert s on Queue
    end
```


Properties of SMA*

- Is complete if $M \geq d$
- Is optimal if $\mathrm{M} \geq d$
- Space complexity: $O(M)$
- Time complexity : worse case $O\left(b^{d}\right)$

Admissible Heuristics

- Take the 8-puzzle problem for example
- Two heuristic functions considered here
- $h_{1}(n)$: number of misplaced tiles
- $h_{2}(n)$: the sum of the distances of the tiles from their goal positions (tiles can move vertically, horizontally), also called Manhattan distance or city block distance

Start State

Goal State

- $h_{1}(n): 8$
- $h_{2}(n): 3+1+2+2+2+3+3+2=18$

Admissible Heuristics (cont.)

- Take the 8-puzzle problem for example
branching factor for 8-puzzle: 2~4
- Comparison of IDS and A*

solution length		Search Cost			Effective Branching Factor		
	d	IDS	$\mathrm{A}^{*}\left(h_{1}\right)$	$\mathrm{A}^{*}\left(h_{2}\right)$	IDS	$\mathrm{A}^{*}\left(h_{1}\right)$	$\mathrm{A}^{*}\left(h_{2}\right)$
1	2	10	6	6	2.45	1.79	1.79
	4	112	13	12	2.87	1.48	1.45
	6	680	20	18	2.73	1.34	1.30
	8	6384	39	25	2.80	1.33	1.24
	10	47127	93	39	2.79	1.38	1.22
	12	364404	227	73	2.78	1.42	1.24
\rightarrow	14	3473941	539	113	2.83	1.44	1.23
	16	-	1301	211	-	1.45	1.25
	18	-	3056	363	-	1.46	1.26
	20	-	7276	676	-	1.47	1.27
\rangle	22	-	18094	1219	-	1.48	1.28
-	24	-	39135	1641	-	1.48	1.26

Figure 4.8 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A^{*} algorithms with h_{1}, h_{2}. Data are averaged over 100 instances of the 8-puzzle, for various solution lengths.

100 random problems for each number

$$
\underbrace{\mathrm{N}+1}=1+b^{*}+\left(b^{*}\right)^{2}+\left(b^{*}\right)^{3}+\ldots+\left(b^{*}\right)^{d}
$$

Dominance

- For two heuristic functions h_{1} and h_{2} (both are admissible), if $h_{2}(n) \geq h_{1}(n)$ for all nodes n
- Then h_{2} dominates h_{1} and is better for search
- A* using h_{2} will not expand more node than A* using h_{1}

Inventing Admissible Heuristics

- Relaxed Problems
- The search heuristics can be achieved from the relaxed versions the original problem
- Key point: the optimal solution cost to a relaxed problem is an admissible heuristic for the original problem (not greater than the optimal solution cost of the original problem)
- Example 1: the 8-puzzle problem
- If the rules are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move any adjacent square, then $h_{2}(n)$ gives the shortest solution

Inventing Admissible Heuristics (cont.)

- Example 2: the speech recognition problem

Note: if the relaxed problem is hard to solve, then the values of the corresponding heuristic will be expansive to obtain

Inventing Admissible Heuristics (cont.)

- Composite Heuristics
- Given a collection of admissible heuristics $h_{1}, h_{2}, \ldots, h_{\mathrm{m}}$, none of them dominates any of others

$$
h(n)=\max \left\{h_{1}(n), h_{2}(n), \ldots, h_{m}(n)\right\}
$$

- Subproblem Heuristics
- The cost of the optimal solution of the subproblem is a lower bound on the cost of the complete problem

Start State

Goal State

Inventing Admissible Heuristics (cont.)

- Inductive Learning
- E.g., the 8-puzzle problem
$h^{\prime}(n)$
14
11
16
.
9

Start State
$x_{a}(n)$: number of misplaced tiles
$x_{b}(n)$: number of pairs of adjacent tiles that are adjacent in the goal state

$$
C_{a}=? C_{b}=?
$$

Tradeoffs

Iterative Improvement Algorithms

- In many optimization, path to solution is irrelevant
- E.g., 8-queen, VLSI layout, TSP etc., for finding optimal configuration
- The goal state itself is the solution
- The state space is a complete configuration
- In such case, iterative improvement algorithms can be used
- Start with a complete configuration (represented by a single "current" state)
- Make modifications to improve the quality

Iterative Improvement Algorithms (cont.)

- Example: the n-queens problem
- Put n queens on an $n \times n$ board with no queens on the same row, column, or diagonal
- Move a queen to reduce number of conflicts

$(4,3,4,3)$
5 conflicts

$(4,3,4,2)$
3 conflicts

$(4,1,4,2)$
1 conflict

Iterative Improvement Algorithms (cont.)

- Example: the traveling salesperson problem (TSP)
- Find the shortest tour visiting all cities exactly one
- Start with any complete tour, perform pairwise exchanges

$1 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 1$

Iterative Improvement Algorithms (cont.)

- Local search algorithms belongs to iterative improvement algorithms
- Use a current state and generally move only to the neighbors of that state
- Properties
- Use very little memory
- Applicable to problems with large or infinite state space
- Local search algorithms to be considered
- Hill-climbing search
- Simulated annealing
- Local beam search
- Genetic algorithms

Iterative Improvement Algorithms (cont.)

- Completeness or optimality of the local search algorithms should be considered

Hill-Climbing Search

- "Like climbing Everest in the thick fog with amnesia"
- Choose any successor with a higher value (of objective or heuristic functions) than current state
- Choose Value[next] \geq Value[current]

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
    inputs: problem, a problem
    local variables: current, a node
                            neighbor, a node
    current }\leftarrow\mathrm{ MAKE-NODE(INITIAL-STATE[problem])
    loop do
        neighbor }\leftarrow\mathrm{ a highest-valued successor of current
    if VALUE[neighbor] \leq VALUE[current] then return STATE[current]
    current}\leftarrow\mathrm{ neighbor
```

- Also called greedy local search

Hill-Climbing Search (cont.)

- Example: the 8 -queens problem
- The heuristic cost function is the number of pairs of queens that are attacking each other

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	V/k	13	16	13	16
V/V	14	17	15	V/V	14	16	16
17	Nk	16	18	15	Nk	15	V/V
18	14	V	15	15	14	V/V	16
14	14	13	17	12	14	12	18

- $h=3+4+2+3+2+2+1=17$ (calculated from left to right)
- Best successors have $h=12$
(when one of queens in Column 2,5,6, and 7 is moved)

Hill-Climbing Search (cont.)

- Problems:
- Local maxima: search halts prematurely
- Plateaus: search conducts a random walk
- Ridges: search oscillates with slow progress (resulting in a set of maxima)

Neither complete nor optimal

- Solution ? sideways move?

8-queens stuck in a local minimum

Ridges cause oscillation

Hill-Climbing Search (cont.)

- Several variants
- Stochastic hill climbing
- Choose at random from among the uphill moves
- First-choice hill climbing
- Generate successors randomly until one that is better than current state is generated
- A kind of stochastic hill climbing
- Random-restart hill climbing
- Conduct a series of hill-climbing searches from randomly generated initial states
- Stop when goal is found

Simulated Annealing Search

- Combine hill climbing with a random walk to yield both efficiency and completeness
- Random walk: moving to a successor chosen uniformly at random from the set of successors
- Steps for Simulated Annealing Search
- Pick a random move at each iteration instead of picking the best move
- If the move improve the situation \rightarrow accept!

$$
\Delta E=\text { VALUE [next] - VALUE [current] }
$$

- Otherwise $(\Delta E<0)$, have a probability $\left(e^{\Delta E / T}\right)$ to move to a worse state
- The probability decreases exponentially as ΔE decreases
- The probability decreases exponentially as T (temperature) goes down (as time goes by)

Simulated Annealing Search (cont.)

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
            schedule, a mapping from time to "temperature"
    local variables: current, a node
            next, a node
            T, a "temperature" controlling the probability of downward steps
    current }\leftarrow\mathrm{ MAKE-NODE(InItIAL-STATE[problem])
    for }t\leftarrow1\mathrm{ to }\infty\mathrm{ do
    T\leftarrowschedule[t]
    if T=0 then return current
    next}\leftarrow\mathrm{ a randomly selected successor of current
    \DeltaE\leftarrowVALUE[next] - VaLUE[current]
    if }\DeltaE>0\mathrm{ then current }\leftarrow\mathrm{ next
    else current }\leftarrow\mathrm{ next only with probability e 王
```

Be negative here!

Local Beam Search

- Keep track of k states rather than just one
- Begin with k randomly generated states
- All successors of the k states are generated at each iteration
- If any one is a goal \rightarrow halt!
- Otherwise, select k best successors from them and continue the iteration
- Information is passed/exchanged among these k search threads
- Compared to the random-restart search
- Each process run independently

Local Beam Search (cont.)

- Problem
- The k states may quickly become concentrated in a small region of the state space
- Like an expensive version of hill climbing
- Solution
- A variant version called stochastic beam search
- Choose a given successor at random with a probability in increasing function of its value
- Resemble the process of natural selection

Genetic Algorithms (GAs)

- Developed and patterned after biological evolution
- Also regarded as a variant of stochastic beam search
- Successors are generated from multiple current states
- A population of potential solutions are maintained
- States are often described by bit strings (like chromosomes) whose interpretation depends on the applications
- Binary-coded or alphabet $(11,6,9) \rightarrow(101101101001)$
- Encoding: translate problem-specific knowledge to GA framework
- Search begins with a population of randomly generated initial states

Genetic Algorithms (cont.)

- The successor states are generated by combining two parent states, rather then by modifying a single state
- Current population/states are evaluated with a fitness function and selected probabilistically as seeds for producing the next generation
- Fitness function: the criteria for ranking
- Recombine parts of the best (most fit) currently known states
- Generate-and-test beam search
- Three phases of GAs
- Selection \rightarrow Crossover \rightarrow Mutation

Genetic Algorithms (cont.)

- Selection
- Determine which parent strings (chromosomes) participate in producing offspring for the next generation
- The selection probability is proportional to the fitness values

$$
\operatorname{Pr}\left(h_{i}\right)=\frac{\text { Fitness }\left(h_{i}\right)}{\sum_{j=1}^{P} \text { Fitness }\left(h_{j}\right)}
$$

- Some strings (chromosomes) would be selected more than once

Genetic Algorithms (cont.)

- Two most common (genetic) operators which try to mimic biological evolution are performed at each iteration
- Crossover
- Produce new offspring by crossing over the two mated parent strings at randomly (a) chosen crossover point(s) (bit position(s))
- Selected bits copied from each parent
- Mutation
- Often performed after crossover
- Each (bit) location of the randomly selected offspring is subject to random mutation with a small independent probability
- Applicable problems
- Function approximation \& optimization, circuit layout etc.

Genetic Algorithms (cont.)

Genetic Algorithms (cont.)

- Example 1: the 8 -queens problem

Genetic Algorithms (cont.)

- Example 2: common crossover operators

Initial strings Crossover Mask Offspring

Genetic Algorithms (cont.)

- Example 3: HMM adaptation in Speech Recognition

sequences of HMM mean vectors

$$
\begin{aligned}
& \boldsymbol{h}_{1}=\left(k_{1}, k_{2}, k_{3}, \ldots, k_{D}\right) \Longrightarrow \boldsymbol{s}_{1}=\left(k_{1} \cdot i_{f}+m_{1} \cdot\left(1-i_{f}\right), k_{2} \cdot i_{f}+m_{2}\left(1-i_{f}\right), m_{3} \cdot i_{f}+k_{3}\left(1-i_{f}\right), \ldots . m_{3} \cdot i_{f}+k_{D}\left(1-i_{f}\right)\right) \\
& \boldsymbol{h}_{2}=\left(m_{1}, m_{2}, m_{3}, \ldots, m_{D}\right) \quad \boldsymbol{s}_{2}=\left(m_{1} \cdot i_{f}+k_{1} \cdot\left(1-i_{f}\right), m_{2} \cdot i_{f}+k_{2}\left(1-i_{f}\right), k_{3} \cdot i_{f}+m_{3}\left(1-i_{f}\right), \ldots k_{3} \cdot i_{f}+m_{D}\left(1-i_{f}\right)\right) \\
& \text { crossover } \\
& \text { (reproduction) } \\
& g_{d} \Longleftrightarrow \hat{g}_{d}=g_{d}+\varepsilon \cdot \sigma_{d} \\
& \text { mutation }
\end{aligned}
$$

Genetic Algorithms (cont.)

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
    inputs: population, a set of individuals
            FITNESS-FN, a function that measures the fitness of an individual
    repeat
        new_population \leftarrowempty set
        loop for i from 1 to SIZE(population) do
            x\leftarrowRANDOM-SELECTION(population, FITNESS-FN)
            y\leftarrowRANDOM-SELECTION(population, FITNESS-FN)
            child}\leftarrow\operatorname{REPRODUCE}(x,y
            if (small random probability) then child }\leftarrow\operatorname{MUTATE(child)
            add child to new_population
        population }\leftarrow\mathrm{ new_population.
    until some individual is fit enough, or enough time has elapsed
    return the best individual in population, according to FITNESS-FN
function REPRODUCE (x,y) returns an individual
    inputs: }x,y\mathrm{ , parent individuals
    n}\leftarrow\operatorname{LENGTH}(x
    c\leftarrowrandom number from 1 to n
    return APPEND(SUBSTRING}(x,1,c),\operatorname{SuBSTRING}(y,c+1,n)
```


Genetic Algorithms (cont.)

- Main issues
- Encoding schemes
- Representation of problem states
- Size of population
- Too small \rightarrow converging too quickly, and vice versa
- Fitness function
- The objective function for optimization/maximization
- Ranking members in a population

Properties of GAs

- GAs conduct a randomized, parallel, hill-climbing search for states that optimize a predefined fitness function
- GAs are based an analogy to biological evolution
- It is not clear whether the appeal of GAs arises from their performance or from their aesthetically pleasing origins in the theory of evolution

Local Search in Continuous Spaces

- Most real-world environments are continuous
- The successors of a given state could be infinite
- Example:

Place three new airports anywhere in Romania, such that the sum of squared distances from each cities to its nearest airport is minimized
objective function: $f=$?

Local Search in Continuous Spaces (cont.)

- Two main approach to find the maximum or minimum of the objective function by taking the gradient

1. Set the gradient to be equal to zero $(=0)$ and try to find the closed form solution

- If it exists \rightarrow lucky!

2. If no closed form solution exists

- Perform gradient search !

Local Search in Continuous Spaces (cont.)

- Gradient Search
- A hill climbing method
- Search in the space defined by the real numbers
- Guaranteed to find local maximum
- Not Guaranteed to find global maximur

maximization
the gradient of

$$
\underset{\text { imization }}{\hat{\boldsymbol{x}}=\boldsymbol{x}}+\alpha \nabla f(\boldsymbol{x})=\boldsymbol{x}+\alpha \frac{d f(\boldsymbol{x})}{d \boldsymbol{x}}
$$

$$
\hat{\boldsymbol{x}}=\boldsymbol{x}-\alpha \nabla f(\boldsymbol{x})=\boldsymbol{x}-\alpha \frac{d f(\boldsymbol{x})}{d \boldsymbol{x}}
$$

Online Search

- Offline search mentioned previously
- Nodes expansion involves simulated rather real actions
- Easy to expand a node in one part of the search space and then immediately expand a node in another part of the search space
- Online search
- Expand a node physically occupied

- The next node expanded (except when backtracking) is the child of previous node expanded
- Traveling all the way across the tree to expand the next node is costly

Online Search (cont.)

- Algorithms for online search
- Depth-first search
- If the actions of agent is reversible (backtracking is allowable)
- Hill-climbing search
- However random restarts are prohibitive
- Random walk
- Select at random one of the available actions from current state
- Could take exponentially many steps to find the goal

