
Constraint Satisfaction Problems

References:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 5
2. S. Russell’s teaching materials

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

AI – Berlin Chen 2

Introduction

• Standard Search Problems
– State is a “black box” with no discernible internal structure

– Accessed by the goal test function, heuristic function, successor
function, etc.

• Constraint Satisfaction Problems (CSPs)
– State and goal test conform to a standard, structured, and very

simple representation

• State is defined by variables Xi with values vi from domain Di

• Goal test is a set of constraints C1,C2,..,Cm, which specifies
allowable combinations of values for subsets of variables

– Some CSPs require a solution that maximizes an objective
function

Derive heuristics
without
domain-specific
knowledge

AI – Berlin Chen 3

Introduction (cont.)

• Consistency and completeness of a CSP
– Consistent (or called legal)

• An assignment that does not violate any constraints

– Complete
• Every variable is assigned with a value

• A “solution” to a CSP is a complete assignment satisfying all the
constraints

AI – Berlin Chen 4

Example: Map-Coloring Problem

– Variables: WA, NT, Q, NSW, V, SA, T
– Domains: Di= {red, green, blue}
– Constraints: neighboring regions must have different colors

AI – Berlin Chen 5

Example: Map-Coloring Problem (cont.)

• Solutions: assignments satisfying all constraints, e.g.,
{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

AI – Berlin Chen 6

Example: Map-Coloring Problem (cont.)

• The CSP can be visualized as a Constraint Graph
– Nodes: correspond to variables
– Arcs: correspond to constraints

– A visualization of representation of (binary) constraints

Constraint Graph

AI – Berlin Chen 7

Example: 8-Queens Problem

– Variables: Q1, Q2,…, Q8

– Domains: Di= {1, 2, …, 8}
– Constraints: no queens at the same row, column, and diagonal

AI – Berlin Chen 8

Benefits of CSPs

• Conform the problem representation to a standard
pattern
– A set of variables with assigned values

• Generic heuristics can be developed with no domain-
specific expertise

• The structure of constraint graph can be used to simplify
the solution process
– Exponential reduction

AI – Berlin Chen 9

Formulation

• Incremental formulation
– Initial state: empty assignment { }
– Successor function: a value can be assigned to any unassigned

variables, provided that no conflict occurs
– Goal test: the assignment is complete
– Path cost: a constant for each step

• Complete formulation
– Every state is a complete assignment that may or may not

satisfies the constraints
– Local search (such as hill-climbing) can be applied

CSPs can be formulated as search problems

AI – Berlin Chen 10

Variables and Domains

• Discrete variables
– Finite domains (size d)

• E.g., color-mapping (d colors), Boolean CSPs (variables are either
true or false, d=2), etc.

• Number of complete assignment: O(dn) (exponential in number of variables)

– Infinite domains (integers, strings, etc.)
• Job scheduling, variables are start and end days for each job
• A constraint language is needed, e.g., StartJob1 +5 ≤ StartJob3

– Linear constraints are solvable, while nonlinear constraints un-
decidable

• How to convert to a finite-domain problem ?

• Continuous variables
• E.g., start and end times for Hubble Telescope observations
• Linear constraints are solvable in polynomial time by linear

programming methods

C1

C3

C2C4

convex
region

AI – Berlin Chen 11

Constraints
• Unary constraints

– Restrict the value of a single variable
– E.g., SA≠green
– Can be simply preprocessed before search

• Binary constraints
– Restrict the values of a pair of variables
– E.g., SA≠WA
– Can be represented as a constraint graph

• High-order constraints
– Three or more variables are involved when the value-assigning

constriction is considered
– E.g., column constraints in the cryptarithmetic problem

• Preference (soft) constraints
– A cost for each variable assignment
– E.g., the university timetabling problem
– Can be viewed as constrained optimization problems

absolute
constraints

AI – Berlin Chen 12

Constraints (cont.)

• Example: the cryptarithmetic problem (high-order constraints)

– Variables: F, T, U, W , R, O, X1 , X2 , X3
– Domains: {0,1, 2, …, 9} and {0,1}
– Constraints:

• Alldiff (F, T, U, W , R, O)
• O+O=R+10∙X1
• X1+W+W= U +10∙X2
• X2+T+T= O +10∙X3
• X3= F

constraint

constraint
hypergraph

C1

C2

C3
C4

C5

C1

C2C3C4C5

auxiliary variable

AI – Berlin Chen 13

Standard Search Approach

• If incremental formulation is used
• Breadth-first search with search tree with depth limit n

– Every solution appears at depth n with n variable assigned
– DFS (or depth-limited search) also can be applied (smaller

space requirement)
– The order of assignment is not important

nd

(n-1)d (n-1)d
(n-2)d (n-2)d

nd

n(n-1)d2

n!dn leaves

Depth=n

Initial state: empty assignment {}
Successor function: a value can be assigned to any

unassigned variables, provided
that no conflict occurs

Goal test: the assignment is complete

However, there are totally dn distinct
leaf nodes (because of commutativity)

n(n-1) (n-2)d3

Variables (n) and Values (d)

AI – Berlin Chen 14

Backtracking Search

• DFS for CSPs (uninformed search)
– One variable is considered orderly at a time (level) for expansion
– Backtrack when no legal values left to assign

• The basic uniformed search for CSPs

AI – Berlin Chen 15

Backtracking Search (cont.)

AI – Berlin Chen 16

Backtracking Search (cont.)

• Algorithm

– When it fails: back up to the preceding variable and try a different
value of it

• Chronological backtracking

decide which variable
to be assigned a value

decide which value
to be used

a list of unassigned variables

// if result=failure

AI – Berlin Chen 17

Improving Backtracking Efficiency

• General-purpose methods help to speedup the search

– What variable should be considered next?

– In what order should variable’s values be tried?

– Can we detect the inevitable failure early?

– Can we take advantage of problem structure?

AI – Berlin Chen 18

Improving Backtracking Efficiency (cont.)

• Variable Order
– Minimum remaining value (MRV)

• Also called ”most constrained variable”, “fail-first”
– Degree heuristic

• Act as a “tie-breaker”

• Value Order
– Least constraining value

• If full search, value order does not matter

• Propagate information through constraints
– Forward checking
– Constraint propagation

AI – Berlin Chen 19

Variable Ordering

• The simple static ordering seldom results in the most
efficient search

• Minimum Remaining Values (MRV) heuristic
– Also called “most constrained variable” or “fail-first” heuristic

– Choose the variable with the most constraints (on values) from
the remaining variables

• If a variable X with zero legal values remained, MRV selects it and
causes a failure immediately

• The search tree can be therefore pruned
– Reduce the number of branch factor at lower levels ASAP

?

AI – Berlin Chen 20

Variable Ordering (cont.)

• MRV doesn’t help at all in choosing the first region to
color in Australia
– All regions have three legal colors

• So, the degree heuristic can be further applied
– Select the variable that is involved in the largest number of

constraints on other unassigned variables
– A useful tie-breaker!
– Reduce the branch factor on future choices

5

3
3

3

2

2

05
3 3

2
3

2

2 2
1

2
1

10
2

1

0
1

1?

AI – Berlin Chen 21

?

Allow 1 value for SA

Allow 0 value for SA

Value Ordering

• Least-Constraining-Value heuristic
– Given a variable, choose the value that rules out the fewest

chooses of values for the remaining (neighboring) variables
– I.e., leave the maximum flexibility for subsequent variable

assignments

• If all the solutions (not just the first one) are needed, the
value ordering doesn’t matter

AI – Berlin Chen 22

AI – Berlin Chen 23

Forward Checking

• Not only consider constraints on a variable!
• But propagate constraint information from assigned

variables to connected unassigned variables
• Keep track of remaining legal values for unsigned

variables, and terminate the search when any variable
has no legal values
– Remove the inconsistent value of the unassigned variable
– Before searching is performed on the unsigned variables

AI – Berlin Chen 24

Forward Checking (cont.)

Note: MRV, degree heuristic etc.,
were not used here

after
WA=red

after
Q=green

AI – Berlin Chen 25

Forward Checking (cont.)

Forward checking doesn’t provide early
detection for all inconsistency

• NT and SA can’t both be blue

after
V=blue

AI – Berlin Chen 26

Constraint Propagation

• Repeated enforce constraints locally

• Propagate the implications of a constraint on one
variable onto other variables

• Method
– Arc consistency

AI – Berlin Chen 27

Arc Consistency

• X → Y is consistent iff
for every value x of X there is some value y of Y
that is consistent (allowable)

– A method for implementing constraint propagation exists
– Substantially stronger than forward checking

AI – Berlin Chen 28

Arc Consistency (cont.)

– If X loses a value, neighbors of X need to be rechecked
– Arc consistency detects failure earlier than forward checking
– Can be run as a preprocessor or after each assignment

AI – Berlin Chen 29

Arc Consistency (cont.)

• Algorithm

If some values of a nodes Xi is removed,
arcs pointing to it (Xk, Xi) must be
reinserted on the queue for checking again

O(d2)

O(n2)

O(d)

O(n2d3)

O(n2) ()12 −×= nnCn

d : number of values in the
domain of each variable

each variable at most has d values
to be removed

AI – Berlin Chen 30

Arc Consistency (cont.)

• Arc consistency doesn’t reveal every possible
inconsistency !
– E.g. a particular assignment {WA=red, NSW=red} which is

inconsistent but can’t be found by arc consistency algorithm
• NT,SA,Q have two colors left for assignments

– Arc consistency is just 2-consistency
• 1-consistency, 2-consistency,…, k-consistency, etc.

AI – Berlin Chen 31

Handling Special Constraints

Alldiff (F, T, U, W , R, O)
variables m
value n
m>n ?

Alldiff (NT, SA,Q)
variables m=3
value n= 2
m>n ?

AI – Berlin Chen 32

Local Search for CSPs

• If complete formulation is used

• Local search can easily be extended to CSPs with
objection functions
– Hill-climbing, simulated annealing etc. can be applied

• Method
– Allow states with unsatisfied constraints
– Operators

• reassign variable values
– Variable selection

• Randomly select any conflict variable
– E.g. the “min-conflicts” heuristic

• For a given variable, selecting the value that results the minimum
number of conflicts with other variables

• E.g., hill-climbing with h(n)=total number of violated constraints

AI – Berlin Chen 33

Local Search for CSPs (cont.)

• Especially suitable for problems for on-line settings

AI – Berlin Chen 34

Local Search for CSPs (cont.)

initialization (randomly generated or …)

randomly select a variable

select the value of the variable
with minimum conflicts

AI – Berlin Chen 35

AI – Berlin Chen 36

Problem Structure

• The structure of the problem represented by the
constraint graph can be used to find solutions quickly

– E.g., Tasmania and the mainland are independent sub-problems

• Identify the connected components (as sub-problems) of
constraint graph to reduce the solution time

AI – Berlin Chen 37

Problem Structure (cont.)

• Suppose that each sub-problem has c variables out
of n total

– With decomposition
• Worse-case solution cost: n/c∙dc

– Without decomposition
• Worse-case solution cost: dn

– E.g., n=80, d=2, c=20
280=40 billion year at 10 million nodes/sec
4x220=0.4 seconds at 10 million nodes/sec

• Completely independent sub-problems are rare
– Sub-problems of a CSP are often connected

linear in n

exponential in n

AI – Berlin Chen 38

Tree-Structured CSPs

• Tree-Structured CSPs are the simplest ones
– Can be solved in time linear in the number of variables

• Algorithm for tree-structured CSPs
1. Choose a variable as the root, order variables from root to leaves

such that every node’s parent precedes it in the ordering
2. For j from n down to 2, apply arc consistency to the arc (Xi,Xj),

where Xi is the parent of Xj, remove the values from Domain[Xi]
as necessary

3. For j from 1 to n, assign Xj consistently with parent Xi

root

O(nd2), if no loops Why in reverse order ?

AI – Berlin Chen 39

Reducing Constraint Graphs to Trees

• Method 1
– Initiate a subset of variables S (cycle cutset, with size c) such

that the remaining constraint graph is a tree
– Prune the domains of the remaining variables that are

inconsistent with S
– If the remaining CSP has a solution, return it together with the

assignment for S

• E.g., if the value assigned to SA is a wrong one, do again !

O(dc(n-c)d2)

O(dc)

O((n-c)d2) Tree-structure CSP

AI – Berlin Chen 40

Reducing Constraint Graphs to Trees (cont.)
• Method 2

– Construct a tree decomposition of the constraint graph into a set
of connected subproblems

– Each subproblem is solved independently and the resulting
solutions are then combined

– Properties
• Every variable must appear in at least one subproblem
• Two variables connected by a constraint must appear together
• A variable connecting some subproblems must appear in all of them

solutions agree with
the shared variables

