
Adversarial Search

References:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 6
2. N. J. Nilsson. Artificial Intelligence: A New Synthesis. Chapter 12
3. S. Russell’s teaching materials

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

AI – Berlin Chen 2

Introduction

• Game theory
– First developed by von Neumann and Morgensten
– Widely studied by economists, mathematicians, financiers, etc.
– The action of one player (agent) can significantly affect the

utilities of the others
• Cooperative or competitive
• Deal with the environments with multiple agents

• Most games studied in AI are
– Deterministic (but strategic)
– Turn-taking
– Two-player
– Zero-sum
– Perfect information

This means deterministic, fully observable
environments in which there are two agents
whose actions must alternate
and in which the utility values at the end of
game are always equal or opposite

(state, action(state)) → next state

But not physical games

AI – Berlin Chen 3

Types of Games

• Games are one of the first tasks undertaken in AI
– The abstract nature of (nonphysical) games makes them an

appealing subject in AI
• Computers have surpassed humans in checkers and

Othello, and have defeated human champions in chess
and backgammon

• However, in Go, computers still perform at the amateur
level

Bridge, Poker

BackgammonChess, Checkers,
Go, Othello

Deterministic chance

Perfect information

Imperfect information

AI – Berlin Chen 4

Games as Search Problems

• Games are usually too hard to solve
– E.g., a chess game

• Average branching factor: 35
• Average moves by each player: 50
• Total number of nodes in the search tree: 35100 or 10154

• Total number of distinct states:1040

• The solution is a strategy that specifies a move for
every possible opponent reply
– Time limit: how to make the best possible use of time?

• Calculate the optimal decision may be infeasible
• Pruning is needed

– Uncertainty: due to the opponent’s actions and game complexity
• Imperfect information
• Chance

AI – Berlin Chen 5

Scenario

• Games with two players
– MAX, moves first

– MIN, moves second

– At the end of the game
• Winner awarded and loser penalized
• Or, draw

– Can be formally defined as a kind of search problem

Then, taking turns

Sense → Plan → Act

AI – Berlin Chen 6

Games as Search Problems

• Main components should be specified
– Initial State

• Board position, which player to move

– Successor Function
• A list of legal (move, state) pairs for each state

indicating a legal move and the resulting state

– Terminal Test
• Determine when the game is over
• Terminal states: states where the game has ended

– Utility Function (objective/payoff function)
• Give numeric values for all terminal states, e.g.:

– Win, loss or draw : +1, -1, 0
– Or values with a wider variety

Define the
game tree

From the viewpoint
of MAX

AI – Berlin Chen 7

Example Game Tree for Tic-Tac-Toe

• Tic-Tac-Toe also called Noughts and Crosses
– 2-player, deterministic, alternating

– The numbers on leaves indicate the utility values of terminal
states from the point of view of the MAX

game tree

AI – Berlin Chen 8

Minimax Search

• A strategy/solution for optimal decisions

• Examine the minimax value of each node in the
game tree

– Minmax value of a terminal state is just the utility from the point
of view of MAX

– Assume two players (MAX and MIN) play optimally (infallibly)
from the current node to the end of the game

()
()

() ()
() ()⎪

⎩

⎪
⎨

⎧

−
−

=−

∈

∈

 node MIN a is if ValueMinmaxmin
 node MAX a is if ValueMinmaxmax

 state terminala is if Utility

ValueMinmax

Successor

Successor

ns
ns
nn

n

ns

ns

AI – Berlin Chen 9

Minimax Search (cont.)

• Example: a trivial 2-ply (one-move-deep) game
– Perfect play for the deterministic, perfect-information game

• MAX and MIN play optimally
– Idea: Choose the move to a position with highest minimax value

= best achievable payoff against best play

AI – Berlin Chen 10

Tree for Tic-Tac-Toe

MAX MIN

AI – Berlin Chen 11

Tree for Tic-Tac-Toe (cont.)
MAX

MIN

AI – Berlin Chen 12

Tree for Tic-Tac-Toe (cont.)

MAX
MIN

AI – Berlin Chen 13

Minimax Search: Algorithm

For MAX Node

For MIN Node

AI – Berlin Chen 14

Minimax Search: Example

A

B

A

B

vA=-∞vA=-∞
A

B

vA=-∞

3

vB=∞ vB=3

A

B

vA=-∞

3

vB=3

12

A

B

vA=-∞

3

vB=3

12 8

A

B

vA=3

vB=3

3 12 8

Backed up
to root

Terminal-Test

AI – Berlin Chen 15

Minimax Search: Example (cont.)

A

B

vA=3

vB=3 CvC=∞

A

B

vA=3

vB=3 CvC=2

A

B

vA=3

vB=3 CvC=2

A

B

vA=3

vB=3 CvC=2

3 12 8 2 3 12 8 2 4

3 12 8 2 4 6

A

B

vA=3

vB=3 CvC=2

3 12 8 2 4 6

Backed up
to root

AI – Berlin Chen 16

Minimax Search: Example (cont.)

DvD=∞ vB=3 DvD=14

vB=3 DvD=5

14 5

vB=3 DvD=2

14 5 2

A

B

vA=3

CvC=2

3 12 8 2 4 6

A

B

vA=3

CvC=2

3 12 8 2 4 6 14

vB=3

A

B

vA=3

CvC=2

3 12 8 2 4 6

A

B

vA=3

CvC=2

12 8 2 4 63

AI – Berlin Chen 17

Minimax Search: Example (cont.)

A

B

vA=3

vB=3 CvC=2

3 12 8 2 4 6

DvD=2

14 5 2

Backed up
to root

AI – Berlin Chen 18

Minimax Search (cont.)

• Explanations of the Minmax Algorithm
– A complete depth-first, recursive exploration of the game tree

– The utility function is applied to each terminal state

– The utility (min or max values) of internal tree nodes are
calculated and then backed up through the tree as the recursion
unwind

– At the root, MAX chooses the move leading to the highest utility

AI – Berlin Chen 19

Properties of Minimax Search

• Is complete if tree is finite

• Is optimal if the opponent acts optimally

• Time complexity: O(bm)
– m : the maximum depth of the tree

• Space complexity: O(bm) or O(m) (when successors
generated one at a time)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
I.e., exact solution is completely infeasible

AI – Berlin Chen 20

Optimal Decisions in Multiplayer Games

• Extend the minimax idea to multiplayer games
• Replace the single value for each node with a vector of

values (utility vector)

• Alliances among players would be involved sometimes
– E.g., A and B form an alliance to attack C

If A and B are in an alliance

AI – Berlin Chen 21

α-β Pruning

• The problem with minimax search
– The number of nodes to examine is exponential in the

number of moves

• α-β pruning
– Applied to the minimax tree
– Return the same moves as minimax would, but prune away

branches that can’t possibly influence the final decision

• α: the value of best (highest-value) choice so far in
search of MAX

• β: the value of best (lowest-value) choice so far in
search of MIN

AI – Berlin Chen 22

α-β Pruning (cont.)

• Example

A

B The subtree to be explored
(considered) next should have
a utility equal to or higher than 3

AI – Berlin Chen 23

α-β Pruning (cont.)

• Example

B C

A

The utility of this subtree will
be no more than 2 (lower than
current α), so the remaining
children can be pruned

AI – Berlin Chen 24

α-β Pruning (cont.)

• Example

A

B C D

AI – Berlin Chen 25

α-β Pruning (cont.)

• Example

A

B C D

AI – Berlin Chen 26

α-β Pruning (cont.)

• Example

A

B C D

Can’t prune any successors of D at all because the
worst successors of D have been generated first

AI – Berlin Chen 27

α-β Pruning (cont.)

AI – Berlin Chen 28

α-β Pruning (cont.)

• The value of the root are independent of the value of the
pruned leaves x and y

() () () ()()
()()

()
3

2 where 2,,3max
2,,,2min,3max

2,5,14min,,,2min,8,12,3minmaxValueMinmax

=
≤=

=
=−

zz
yx

yxroot

AI – Berlin Chen 29

Tree for Tic-Tac-Toe (cont.)

Alpha value= -1 Beta value= -1

AI – Berlin Chen 30

α-β Pruning (cont.)

If m is better than n for Player (MAX), n will not be visited
in play and can therefore be pruned

Should examine some of n’s
descendant to reach the
conclusion

(MAX)

(MIN)

α

AI – Berlin Chen 31

α-β Pruning (cont.)
• Algorithm

For MAX Node

For MIN Node

Pruning: If one of its children has value larger
than that of its best MIN predecessor node ,
return immediately. (?)

Pruning: If one of its children has value lower
than that of its best MAX predecessor node ,
return immediately. (?)

AI – Berlin Chen 32

Properties of α-β Pruning

• Pruning does not affect final result

• The effectiveness of alpha-beta pruning is highly
dependent on the order in which the successors are
examined
– Worthwhile to try to examine first the successors that are likely to

be best

– E.g., If the third successor “2” of node D has been generated first,
the other two “14” and “5” can be pruned

A

B C D

AI – Berlin Chen 33

Properties of α-β Pruning (cont.)

• If “perfect ordering” can be achieved
– Time complexity: O(bm/2)

• Effective branching factor becomes: b1/2

• Can double the depth of search within the time limit

• If “random ordering”
– Time complexity ≈ O(b3m/4) for moderate b

• Still have to search all the way to terminal states
for at least a portion of the search space
– The depth is usually not practical

AI – Berlin Chen 34

Properties of α-β Pruning (cont.)

AI – Berlin Chen 35

Imperfect, Real-Time Decisions

• Not feasible to search all the way to terminal states
in per move
– When minimax search is adopted alone, or even when

alpha-beta pruning is additionally involved

– Moves must be made in a reasonable amount of time

• Shannon (1960) said
– “…programs should cut off search earlier and apply a

heuristic function to states in the search, effectively
turning nonterminal nodes into terminal leaves…”

AI – Berlin Chen 36

Imperfect, Real-Time Decisions (cont.)

• Minimax or alpha-beta altered in two ways

– A heuristic evaluation function Eval is used to replace the
utility function

• Give an estimate of the expected utility of the game from a given
position

• Judge the value of a position

– A cutoff test is used to replace the terminal test
• Decide when to apply Eval
• Turn nonterminal nodes into terminal leaves
• A fixed depth limit is used (often add quiescence search)

AI – Berlin Chen 37

Evaluation Functions

• Criteria for good evaluation functions

– Should order the terminal states in the same way as the
true utility function

• Avoid selecting suboptimal moves

– Must not take too long to calculate
• Time controls usually enforced

– For nonterminal states, it should be strongly correlated with the
actual chances of winning

• Do not overestimate or underestimate too much
• Chances here mean uncertainty, which is introduced by

computational limits
– A guess/prediction should be made

AI – Berlin Chen 38

Evaluation Functions (cont.)

• Method 1: Most evaluation functions calculate and then
combine various features of a state to give the
estimation
– E.g., the number of pawns possessed by each side in the chess

game

– Many states (with different board configurations) would have the
same values of all features

• States in the same category will win, draw, or lose
proportionally/probabilistically

• Too many categories required to calculate the expected
values for evaluation functions, and hence too much
experience required to estimate the probabilities

() () () 52.0008.0120.0172.0 =×+−×++×
win loss draw

AI – Berlin Chen 39

Evaluation Functions (cont.)

• Method 2: Weighted linear function
– Directly compute separate numerical contributions from each

feature and then combine then to find the total value for a state

• Assumptions:
1. features are independent on each other
2. values of features won’t change with time

– The material value for each piece in the chess game
• E.g., a pawn has a value of 1, a bishop/knight for 3, a rook

for 5, a queen for 9 etc.

() () () () ()∑
=

=+++=
J

j
jjJJ sfwsfwsfwsfws

1
2211Eval L

weights can be learned via machine learning
techniques

The num. of each kind of piece on the board

AI – Berlin Chen 40

Cutting Off Search

• When to call the heuristic evaluation function in order to
appropriately cut off the search ?

if Cutoff-Test(state, depth) then return Eval(state)

• Replace the “Terminal-Test” line in the algorithm
• The amount of search is controlled by setting a fixed depth

limit such that the time constraint will not be violated
• Bookkeeping for the current node’s depth is needed

Cutoff-Test(state, depth)

• Return true for all depth greater than some fixed depth d, and
vice versa

• Return true for all terminal states

• Iterative deepening search (IDS) can be applied here
– Return the move selected by the deepest completed search

AI – Berlin Chen 41

Cutting Off Search: Problems

• Suppose when the program has searched to the depth
limit and reached the following position

(a) Black an advantage of a knight and two pawns and will
win the game

(b) Black will lose after white captures the queen

• A more sophisticated cutoff test (for quiescence) is
needed !

AI – Berlin Chen 42

Cutting Off Search: Quiescence

• A quiescent position is one which is unlikely to exhibit
wild swings in value in the near future

• Nonquiescent positions can be expanded further until
quiescent positions are reached
– Called quiescence search

• Search for certain types of moves
• E.g., search for “capture moves”

AI – Berlin Chen 43

Deterministic Games in Practices

• Checkers
– 1994, the computer defeated the human world champion

• Chess
– 1997, Deep blue defeated the human world champion

• Can seek 200 million positions per sec (almost 40 plies)

• Othello
– Computers are superior

• Go
– Humans are superior

AI – Berlin Chen 44

Nondeterministic Games: Backgammon

• Games that combine luck and skill
– Dice are rolled at the beginning of a player’s turn to determine

the legal moves
– E.g., Backgammon 1. Goal of the game: move all one’s pieces

off the board
2. White moves clockwise toward 25

Black moves counterclockwise toward 0
3. A piece can move to any position unless

there are multiple opponent pieces there
4. If the position to be move to has only one

opponent, the opponent will be captured
and restarted over

5. When one’s all pieces are in his home
board, the pieces can be moved off the
board

…

When white has rolled 6-5, it must choose
among four legal moves:
(5-10,5-11),(5-11,19-24),(5-10,10-16) and
(5-11,11-16)

home board of white

home board of black

西洋雙陸棋

AI – Berlin Chen 45

Nondeterministic Games: Backgammon (cont.)

• A game tree includes chance nodes

If two dice used:
- 21 distinct rolls

- 15 () with probabilities 1/18
- 6 () with probabilities 1/36

6
2C
6
1C

MIN’s

MAX’s

MAX’s move

MIN’s move

MAX’s move

AI – Berlin Chen 46

Nondeterministic Games in General

• Chance introduced by dice, card-shuffling
– E.g., a simplified example with coin-flipping

AI – Berlin Chen 47

Algorithm for Nondeterministic Games

• Expectiminimax gives perfect play
– Just like minimax, except chance nodes must be also handled

()

()
() ()
() ()
() ()()⎪

⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⋅

=

∑ ∈

∈

∈

 node chance a is if imaxexpectimin

 node MIN a is if imaxexpectiminmin
 node MAX a is if imaxexpectiminmax

 state terminala is if Utility

imaxexpectimin

Successor

Successor

Successor

ns

ns

ns

nssP

ns
ns
nn

n

AI – Berlin Chen 48

Pruning in Nondeterministic Game Trees

• A version of α-β pruning is possible

AI – Berlin Chen 49

Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible

AI – Berlin Chen 50

Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible

AI – Berlin Chen 51

Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible

AI – Berlin Chen 52

Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible

AI – Berlin Chen 53

Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible

AI – Berlin Chen 54

Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible

AI – Berlin Chen 55

Pruning in Nondeterministic Game Trees (cont.)

• A version of α-β pruning is possible

1.5

AI – Berlin Chen 56

Pruning with Bounds

• More pruning if we can bound the leaf values

AI – Berlin Chen 57

Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values

AI – Berlin Chen 58

Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values

AI – Berlin Chen 59

Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values

AI – Berlin Chen 60

Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values

AI – Berlin Chen 61

Pruning with Bounds (cont.)

• More pruning if we can bound the leaf values

– Save 2/7 operations than the previously unconstrained approach

1.5

AI – Berlin Chen 62

Nondeterministic Games in Practice

• For backgammon with two dice rolled
– 20 legal moves on average (could be more than 4,000 for 1-1 roll)

• Branching factor b≈20
– 21 possible rolls

• Number of distinct rolls n=21
– E.g., if depth=4

20x(21x20)3≈1.2x109

• α-β pruning is much less effective here

possible chances branching factor

21X20
20

AI – Berlin Chen 63

Digression: Exact Value Do Matter

• Behavior is preserved only by positive linear
transformation of evaluation function Eval
– Hence, Eval should be proportional to the expected payoff

AI – Berlin Chen 64

Games of Imperfect Information

• E.g., card game, where opponent’s initial cards are
unknown
– Typically we can calculate a probability for each possible deal
– Seems just like having one big dice roll at the beginning of the

game

• Idea: compute the minimax value of each action in each
deal, then choose the action with highest expected value
over all deals
– Special case: if an action is optimal for all deals, it’s optimal

• GIB, current best bridge program, approximate this idea
by
– Generating 100 deals consistent with bidding information
– Picking the action that wins most tricks on average

AI – Berlin Chen 65

Example

• Four-card bridge/whist/hearts hand, MAX to play first

-1 -1
club

heart
spade
diamond

AI – Berlin Chen 66

Example (cont.)

• Four-card bridge/whist/hearts hand, MAX to play first

-1 -1

AI – Berlin Chen 67

Example (cont.)

• Four-card bridge/whist/hearts hand, MAX to play first

-1 -1 +1.5 ?

AI – Berlin Chen 68

Example (cont.)

0.5

MIN

MAX

MAX

MIN +1

+1

+1
MAX

+1.5

0.5

MIN

MAX

MAX

MIN
+1

+1

MAX MAX

0.5

0.5 0.5

MAX

MAX

MIN

MIN

MAX

MIN

+1

-1

1

+1 +2

+1
MAX

0.5

0.5 0.5

MAX

MAX

MIN

MIN

MAX

MIN

+1

-1

1

+1 +2

+1.5

0 2 2 0 2 2

AI – Berlin Chen 69

Example (cont.)

• It is a good idea to play a card that will help one discover
things about one’s opponent’s cards or that will tell one’s
partner about one’s own cards

• It is best to give away as little information to the
opponent as possible, and often the best way to do this
is to act unpredictable

