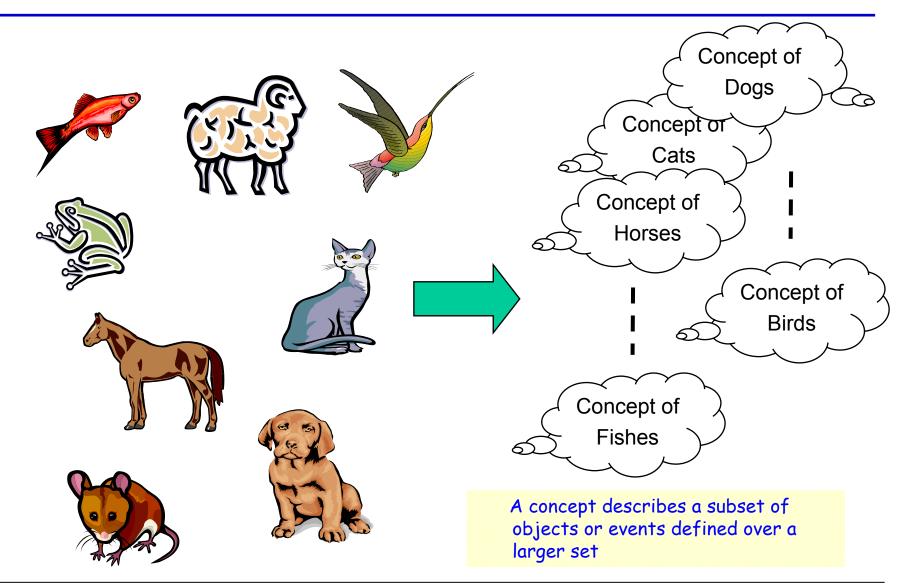
Concept Learning

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

References:

- 1. Tom M. Mitchell, Machine Learning, Chapter 2
- 2. Tom M. Mitchell's teaching materials

What is a Concept?



learning based on symbolic representations

- Acquire/Infer the definition of a general concept or category given a (labeled) sample of positive and negative training examples of the category
 - Each concept can be thought of as a Boolean-valued (true/false or yes/no) function
 - Approximate a Boolean-valued function from examples
 - Concept learning can be formulated as a problem of searching through a predefined space of potential hypotheses for the hypothesis that best fits the training examples
 - Take advantage of a naturally occurring structure over the hypothesis space
 - General-to-specific ordering of hypotheses

θ

 Θ

 Θ

G

 \ominus

 \oplus

 \ominus

θ

 \oplus

Training Examples for *EnjoySport*

- Concept to be learned
 - "Days on which Aldo enjoys his favorite water sport"

Attributes

	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	
	Sunny	Warm	Normal	Strong	Warm	Same	Yes	
; {	Sunny	Warm	High	Strong	Warm	Same	Yes	
	Rainy	Cold	High	Strong	Warm	Change	No	Concept to be
l	Sunny	Warm	High	Strong	Cool	Change	Yes	learned
	·						\	/

- Days (examples/instances) are represented by a set of attributes
- What is the general concept?
 - The task is to learn to predict the value of *EnjoySport* for an arbitrary day based on the values of other attributes
 - Learn a (a set of) hypothesis representation(s) for the concept

Representing Hypotheses

- Many possible representations for hypotheses *h*
- Here *h* is conjunction of constraints on attributes
- Each constraint can be
 - A specific value (e.g., "Water=Warm")
 - Don't care (e.g., "Water=?")
 - No value acceptable (e.g., "Water=Ø")
- For example

A hypothesis is
a vector of constraints

Sky	AirTemp	Humid	Wind	Water	Forecast				
< Sunny	?	?	Strong	?	Same >				
 Most general hypothesis 									
< ?	?	?	?	?	? >➡	All are positive examples			
- Most specific hypothesis All are negative									
< Ø	Ø	Ø	Ø	Ø	Ø >	examples			

Definition of Concept Learning Task

- Given
 - Instances X: possible days, each described by six attributes

(*Sunny, Cloudy, Rainy*) (*Warm, Cold*) (*Normal, High*) (*Strong, Week*) (*Warm, Cool*) (*Same, Change*)

- Target concept/function $c : EnjoySport X \rightarrow \{0, 1\}$

"No" "Yes"

- Hypotheses H : Conjunctions of Literals. E.g.,

<?,Cold, High, ?, ?, ? >

 Training examples D : Positive and negative examples (members/nonmembers) of the target function (concept)

 $< x_1, c(x_1) >, < x_2, c(x_2) >, \dots, < x_m, c(x_m) >$

• Determine

target concept value

 A hypothesis h in H (an approximate target function) such that h(x)=c(x) for all x in D

The Inductive Learning Hypothesis

- Any hypothesis found to approximate the target function well over a sufficiently large set of training examples
 will also approximate the target function well over other unobserved examples
 - Assumption of Inductive Learning
 - The best hypothesis regarding the unseen instances is the hypothesis that best fits the observed training data

Viewing Learning As a Search Problem (1/2)

 Concept learning can be viewed as the task of searching through a large space of hypotheses

Instance space *X*

Sky (Sunny/Cloudy/Rainy) AirTemp (Warm/Cold) Humidity (Normal/High) Wind (Strong/Weak) Water (Warm/Cool) Forecast (Same/Change)

=> 3*2*2*2*2=96 instances

Hypothesis space H

5*4*4*4*4=5120 syntactically Ø distinct hypotheses

1+4*3*3*3*3=973 semantically distinct hypotheses

Each hypothesis is represented as a conjunction of constraints

E.g.,

< Ø Warm Normal Strong Cool Same >

< Sunny Ø Normal Strong Cool Change>

Viewing Learning As a Search Problem (2/2)

- Study of learning algorithms that examine different strategies for searching the hypothesis space, e.g.,
 - Rote Learner
 - Find-S Algorithm
 - List-Then-Eliminate Algorithm
 - Candidate Elimination Algorithm
- How to exploit the naturally occurring structure in the hypothesis apace ?
 - Relations among hypotheses , e.g.,
 - General-to-Specific-Ordering

- Learning corresponding simply to storing each observed training example in memory
- Subsequent instances are classified by looking them up in memory
 - If found, the stored classification is returned
 - Otherwise, the system refuses to classify the new instances

General-to-Specific-Ordering of Hypothesis (1/3)

- Many concept learning algorithms organize the search through the hypothesis space by taking advantage of a naturally occurring structure over it
 - "general-to-specific ordering"

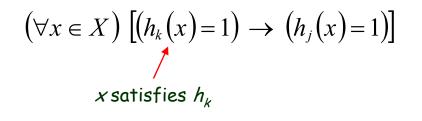
h₁= <Sunny, ?, ?, Strong, ?, ?> h₂= <Sunny, ?, ?, ?, ?, ?> Suppose that h_1 and h_2 classify positive examples

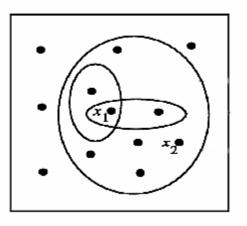
- h_2 is more general than h_1
 - $-h_2$ imposes fewer constraints on instances
 - $-h_2$ classify more positive instances than h_1 does
- A useful structure over the hypothesis space

General-to-Specific-Ordering of Hypothesis (2/3)

- More-General-Than Partial Ordering
 - Definition
 - Let h_j and h_k be Boolean-valued functions defined over X. Then h_j is more general than h_k ($h_j >_g h_k$) if and only if

Instances X

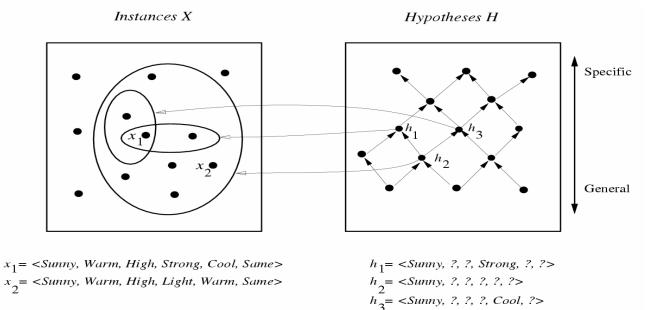




- We also can define the more-specific-than ordering

General-to-Specific Ordering of Hypotheses (3/3)

• An illustrative example



• Suppose instances are classified positive by h_1 , h_2 , h_3

- h_2 (imposing fewer constraints) are more general than h_1 and h_3

$$-h_1 \stackrel{?}{\longleftrightarrow} h_3$$

partial order relationantisymmetric, transitive

$$h_a \geq_g h_b, \ h_b \geq_g h_c \implies h_a \geq_g h_c$$

Find-S Algorithm (1/3)

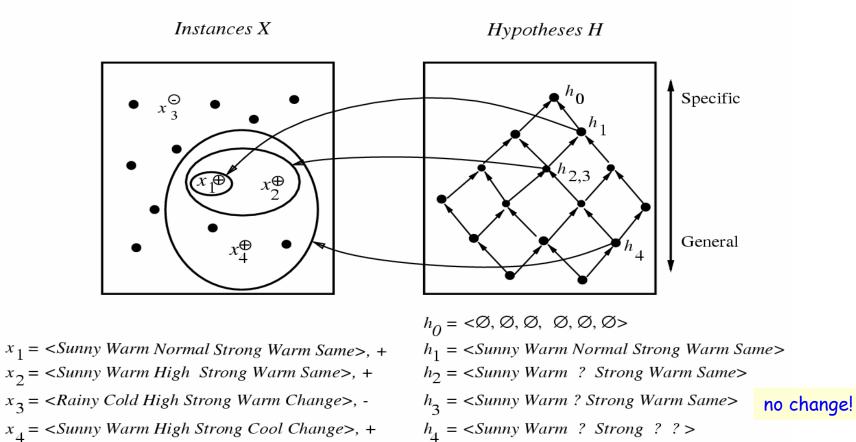
 Find a maximally specific hypothesis by using the more-general-than partial ordering to organize the search for a hypothesis consistent with the observed training examples

 $h \leftarrow \left< \phi, \phi, \phi, \phi, \phi, \phi \right>$

- 2. For each positive training instance *x*
 - For each attribute constraint *a_i* in *h*
 - If the constraint a_i in h is satisfied by x
 - Then do nothing
 - Else replace a_i in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis *h*

Find-S Algorithm (2/3)

Hypothesis Space Search by *Find-S*



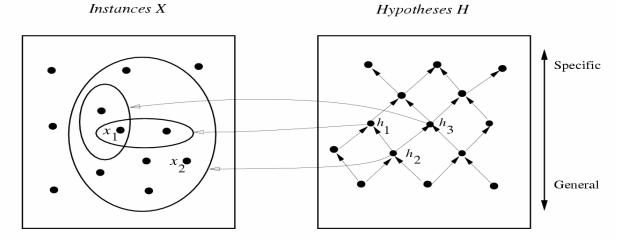
 Substitute a "?" in place of any attribute value in *h* that is not satisfied by the new example

Find-S Algorithm (3/3)

- Why *F*-*S* never check a negative example ?
 - The hypothesis h found by it is the most specific one in H
 - Assume the target concept c is also in H which will cover both the training and unseen positive examples
 - c is more general than h

can be represented as a conjunction of attributes

 Because the target concept will not cover the negative examples, thus neither will the hypothesis h



Complaints about Find-S

- Can not tell whether it has learned concept (Output only one. Many other consistent hypotheses may exist!)
- Picks a maximally specific *h* (why?) (Find a most specific hypothesis consistent with the training data)
- Can not tell when training data inconsistent
 - What if there are noises or errors contained in training examples
- Depending on *H*, there might be several !

Consistence of Hypotheses

 A hypothesis h is consistent with a set of training examples D of target concept c if and only if h(x)=c(x) for each training example <x, c(x)> in D

Consistent
$$(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \quad h(x) = c(x)$$

- But *satisfaction* has another meaning
 - An example x is said to satisfy a hypothesis h when h(x)=1, regardless of whether x is a positive or negative example of the target concept

The version space VS_{H,D} with respect to hypothesis space H and training examples D is the subset of hypotheses from H consistent with all training examples in D

$$VS_{H,D} \equiv \left\{ h \in H \mid Consistent \ (h, D) \right\}$$

- A subspace of hypotheses
- Contain all plausible versions (描述) of the target concepts

List-Then-Eliminate Algorithm

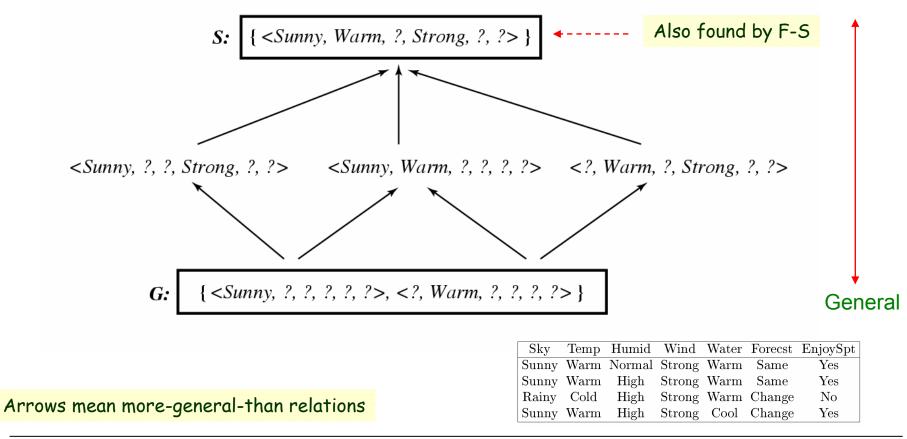
- 1. VersionSpace \leftarrow a list containing all hypotheses in H
- 2. For each training example, $\langle x, c(x) \rangle$ remove from *VersionSpace* any hypothesis *h* for which $h(x) \neq c(x)$
 - i.e., eliminate hypotheses inconsistent with any training examples
 - The VersionSpace shrinks as more examples are observed
- 3. Output the list of hypotheses in *VersionSpace*

Drawbacks of List-Then-Eliminate

- The algorithm requires exhaustively enumerating all hypotheses in *H*
 - An unrealistic approach ! (full search)
- If insufficient (training) data is available, the algorithm will output a huge set of hypotheses consistent with the observed data

Example Version Space

 Employ a much more compact representation of the version space in terms of its most general and least general (most specific) members
 Specific



Representing Version Space

The General boundary G, of version space
 VS_{H,D} is the set of its maximally general members

 $G = \left\{ g \in H \middle| Consistent(g, D) \land (\neg \exists g' \in H) [(g' >_g g) \land Consistent(g', D)] \right\}$

The Specific boundary S, of version space
 VS_{H,D} is the set of its maximally specific members

 $S = \left\{ s \in H | Consistent(s, D) \land (\neg \exists s' \in H) [(s >_g s') \land Consistent(s', D)] \right\}$

 Every member of the version space lies between these boundaries

$$VS_{H,D} = \left\{ h \in H \middle| (\exists s \in S) (\exists g \in G) \ g \ge_g h \ge_g s \right\}$$

Version Space Representation Theorem

• $G \leftarrow$ maximally general hypotheses in H

 $G_0 \leftarrow \{\langle ?, ?, ?, ?, ?, ? \rangle \}$

Should be specialized

• S ← maximally specific hypotheses in *H*

$$S_0 \leftarrow \left\{ \left\langle \phi, \phi, \phi, \phi, \phi, \phi \right\rangle \right\}$$
 Should be generalized

Mitchell 1979

Candidate Elimination Algorithm (2/3)

- For each training example *d*, do
 - If *d* is a positive example
 - Remove from *G* any hypothesis inconsistent with *d*
 - For each hypothesis *s* in *S* that is not consistent with *d*
 - Remove s from S
 - Add to S all minimal generalizations *h* of *s* such that
 - » *h* is consistent with *d*, and
 - » some member of *G* is more general than *h*
 - Remove from S any hypothesis that is more general than another hypothesis in S
 - (i.e., partial-ordering relations exist)

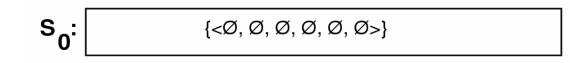
positive training examples force the S boundary become increasing general

Candidate Elimination Algorithm (3/3)

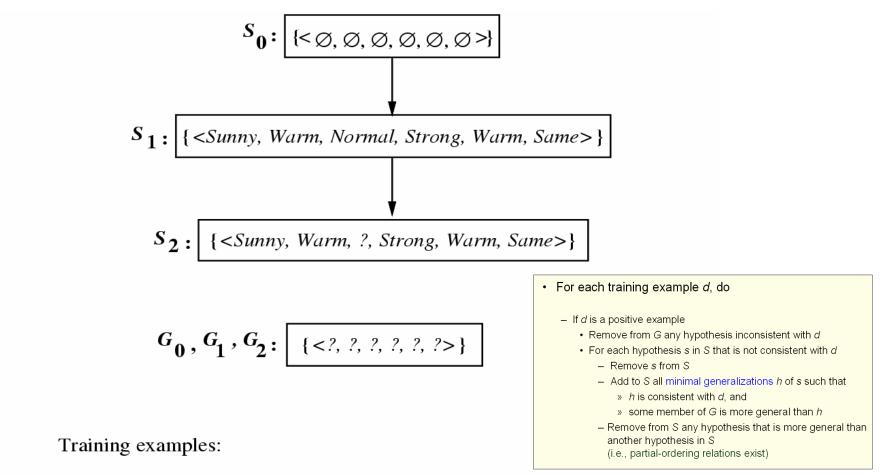
If *d* is a negative example
Remove from *S* any hypothesis inconsistent with *d*For each hypothesis *g* in *G* that is not consistent with *d*Remove *g* from *G*Add to *G* all minimal specializations *h* of *g* such that *h* is consistent with *d*, and
some member of S is more specific than *h*Remove from *G* any hypothesis that is less general than another hypothesis in *G* (i.e., partial-ordering relations exist)

negative training examples force the G boundary become increasing specific

Example Trace (1/5)



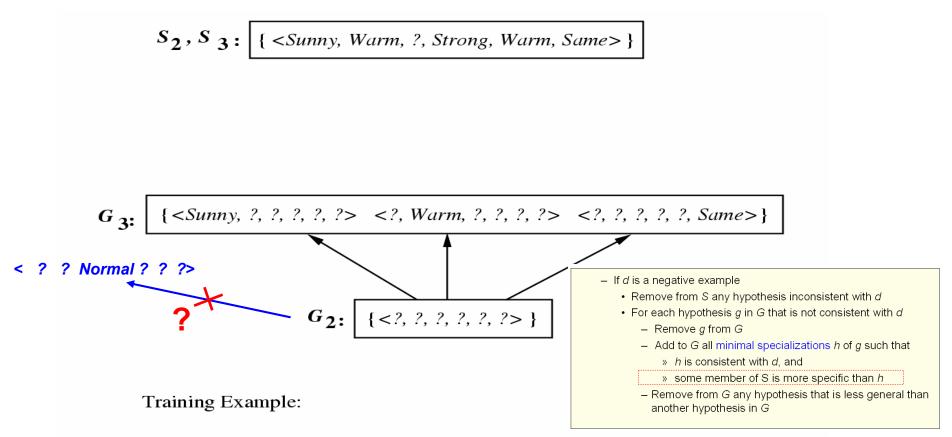
G₀: {<?, ?, ?, ?, ?, ?>}



1. <Sunny, Warm, <u>Normal</u>, Strong, Warm, Same>, Enjoy Sport = Yes

2. <Sunny, Warm, <u>High</u>, Strong, Warm, Same>, Enjoy Sport = Yes

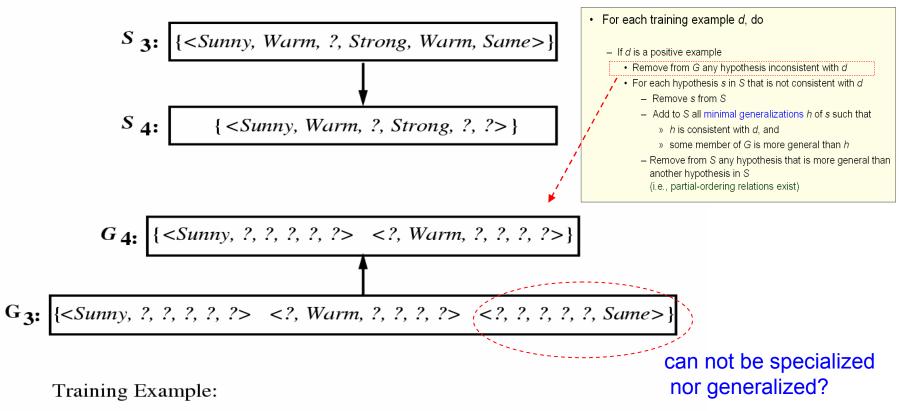
Example Trace (3/5)



3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

- G₂ has six ways to be minimally specified
 - Why <?,?, Normal,?,?,? > etc. do not exist in G_3 ?

Example Trace (4/5)

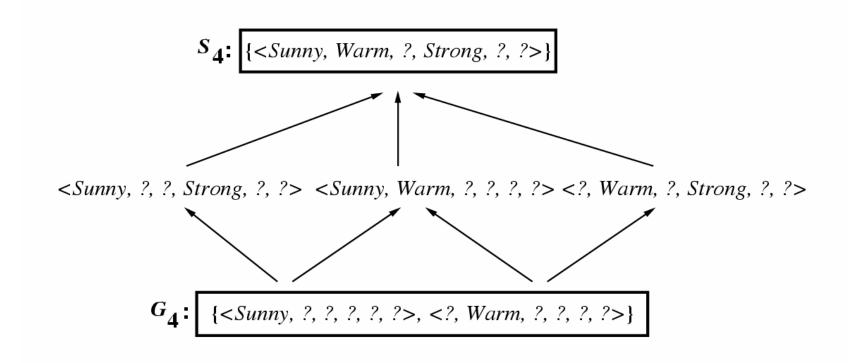


4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

• Notice that,

ЯD

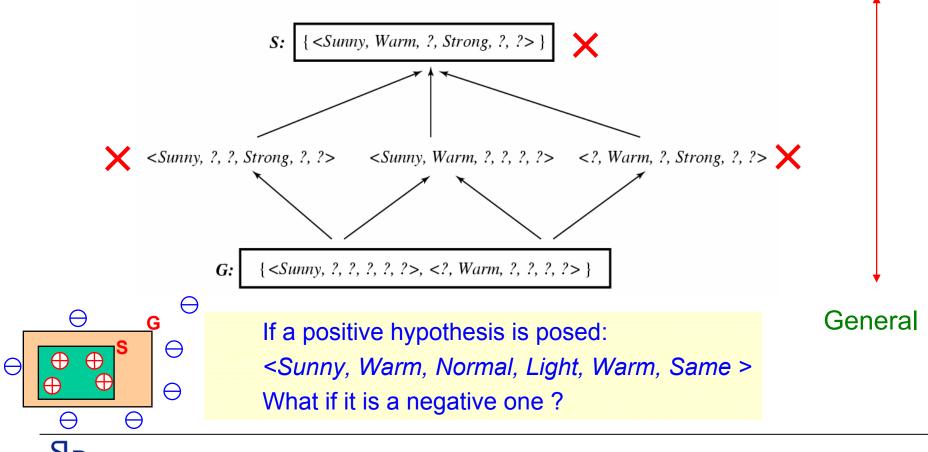
- S is a summary of the previously positive examples
- G is a summary of the previously negative examples

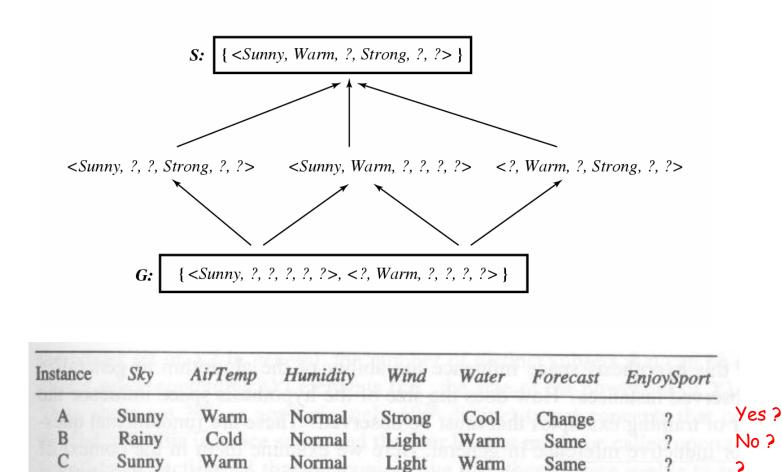


• S and G boundaries move monotonically closer to each other, delimiting a smaller and smaller version space

What Next Training Example

- Learner can generate useful queries
 - Discriminate among the alternatives competing hypotheses in the current version space
 Specific





Strong

Warm

Same

majority vote?

D

Sunny

Cold

Normal

9

9

?

?

Biased Hypothesis Space

- Biased hypothesis space
 - Restrict the hypothesis space to include only conjunctions of attribute values
 - I.e., bias the learner to consider only conjunctive ypothesis
- Cannot represent disjunctive target concepts

"Sky=Sunny or Sky=Cloud"

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Cool	Change	Yes
2	Cloudy	Warm	Normal	Strong	Cool	Change	Yes
3	Rainy	Warm	Normal	Strong	Cool	Change	No

After the first two examples learned: <?, Warm, Normal, Strong, Cool, Change>

- Concept learning as search through *H*
- General-to-specific ordering over *H*
- Version space candidate elimination algorithm
 S and G boundaries characterize learners uncertainty
- Learner can generate useful queries