First-Order Logic and Inference

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

References:

1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapters 7,8 and 9
2. S. Russell's teaching materials

Pros and Cons of Propositional Logic (PL)

- PL is declarative
- Pieces of syntax correspond to facts
- Knowledge and inference are separate and inference is entirely domain-independent
- PL is compositional
- Meaning of a sentence is a function of the meaning of its parts
- E.g., meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- PL can deal with partial information
- The meaning of PL is context-independent
- PL has very limited expressive power
- E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square
$B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$,
$B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right), \ldots$

Natural Languages

－Natural Languages are
－Very expressive
－Mediums for communication rather than pure representation
－Context－dependent

- Not purely compositional（e．g．，＂和尚＂in Chinese）
- Ambiguous（e．g．，三人參加 in Chinese＝＞三－人參－加 or 三－人－參加）
－Major elements of natural Languages
－Nouns and noun phrases：refer to objects
－E．g．，people，houses，colors，．．．
－Verbs and verb phrases：refer to relations among objects
－E．g．，is red，is round，（properties）．．．；is brother of，has color，．．．
－Some of the relations are functions which return one value for a given input
－E．g．，father of，best friend，beginning of，．．．

First-Order Logic (FOL)

- Whereas PL assumes world containing facts, FOL assumes the world contains objects and relations
- FOL can express facts about some or all the objects in the universe
- Such as "Squares neighboring the wumpus are smelly"
- Objects: things with individual identities
- Relations
- Relations $\}$ Interrelations among objects
- Functions
- Properties: distinguish objects from others

Logics in General

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
degree of belief $\in[0,1]$		
Probability theory	facts	known interval value
Fuzzy logic	degree of truth $\in[0,1]$	kne

Examples

- One plus two equals three
- Objects: one, two, three, one plus two
- Relation: equals
- Function: plus
- Squares neighboring the wumpus are smelly
- Objects: wumpus, square
- Property: smelly
- Relation: neighboring
- Evil King John ruled England in 1200
- Objects: John, England, 1200
- Properties: evil, king
- Relation: ruled

Models for FOL

- A model contains objects and relations among them
- PL: models are sets of truth values for proposition symbols
- The domain of a model is the set of objects
- Objects are domain elements
- Example

5 objects: Richard, John, Richard's left legs, John's left legs, crown 2 binary relations: brother, on head
3 unary relations: person, king, crown
1 unary function: left leg

Syntax of FOL

- BNF (Backus-Naur Form) grammar for FOL

```
Sentence }->\mathrm{ AtomicSentence
    | (Sentence Connective Sentence)
    | Quantifier Variables, Sentence
    | \negSentence
AtomicSentence }->\mathrm{ Predicate(Term, ...)| Term = Term
Term }->\mathrm{ Function(Term, ...)
    | Constant complexterms
    | Variable
```

Connective $\rightarrow \Rightarrow|\wedge| \vee \mid \Leftrightarrow$
Quantifier $\rightarrow \forall \mid \exists$
Constant \rightarrow A $\left|X_{1}\right|$ John $\mid \ldots$
Variable $\rightarrow a|x| s \mid \ldots$
Predicate \rightarrow Before | HasColor| Raining | ...
Function \rightarrow Mother | LeftLeg | ...

Semantics of FOL

- The truth of any sentence is determined by a model and an interpretation for the sentence's symbols
- Interpretation specifies exactly which objects, relations and functions are referred by the constant, predicate, and function symbols
- Constant symbols \rightarrow objects
- Predicate symbols \rightarrow relations, properties
- Function symbols \rightarrow functional relations
- An atomic sentence Predicate $\left(\right.$ Term $_{1}, \ldots$, Term $\left._{n}\right)$ is true iff the objects referred to by $\operatorname{Term}_{1}, \ldots$, Term $_{n}$ are in the relation referred to by Predicate

Terms

- A term is a logic expression that refers to an object
- Simple term: e.g., constant/variable symbols
- Complex term: formed by a function symbol followed a parenthesized list of terms as arguments to the function symbol
- The complex term refers to an object that is the value of the function (symbol) applied to the arguments
- E.g., LeftLeg(John)
function symbol argument/term

Atomic Sentences

- An atomic sentence is formed by
- A predicate symbol followed by a parenthesized list of terms
- Predicate(Term ${ }_{1}, \ldots$, term $\left._{n}\right)$
- E.g., Brother(Richard, John)
- Or just term ${ }_{1}=$ term $_{2}$
- Atomic sentences can have complex terms as arguments
- E.g., Married(Father(Richard), Mother(John))

Complex Sentences

- An complex sentence is constructed using logical connectives
- Negation
\neg Brother(LeftLeg(Richard), John)
- Conjunction

Brother(Richard, John) \wedge Brother(John, Richard)

- Disjunction

$$
\text { King(Richard) } \vee \text { King(John) }
$$

- Implication

$$
\neg \text { King(Richard) } \Rightarrow \text { King(John) }
$$

The truth or falsehood of a complex sentence can be determined from the truth or falsehood of its component sentences

Universal Quantification

－The following sentence remains truth for all values of the variable
$\forall 〈$ variable〉 〈sentence〉
－Variables are lowercase
－E．g．，＂Everyone in Taiwan is industrious＂
$\forall x \operatorname{In}(x$, Taiwan $) \Rightarrow \operatorname{Industrious(x)}$
$\forall x P$ is true in a model m iff P with x being each possible object in the model
－Equivalent to the conjunction of instantiations of P

```
        In(Thomas, Taiwan) => Industrious(Thomas)
\In(Rich,Taiwan) }=>\mathrm{ Industrious(Rich)
\ I n ( V i c e n t , ~ T a i w a n ) ~ \Rightarrow I n d u s t r i o u s ( V i c e n t )
\In(Eileen, Taiwan) }=>\mathrm{ Industrious(Eileen)
^ .....
```


Universal Quantification: A Common Mistake

- Typically, \Rightarrow (implication) is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall
$\forall x \operatorname{In}(x$, Taiwan $) \wedge \operatorname{Industrious(x)}$
Means "Everyone is in Taiwan and everyone is industrious"
an overly strong statement

Existential Quantification

－The following sentence remains true for some values of the variable
\exists 〈variable〉〈 sentence〉
－E．g．，＂Someone in Taiwan is industrious＂ $\exists x \operatorname{In}(x$, Taiwan $) \wedge \operatorname{Industrious(x)}$
$\exists x P$ is true in a model m iff P with x being each possible object in the model
－Equivalent to the disjunction of instantiations of P

```
    (In(Thomas, Taiwan) ^Industrious(Thomas))
V (In(Rich, Taiwan) ^ Industrious(Rich))
V (In(Vicent, Taiwan) ^ Industrious(Vicent))
\vee (In(Eileen, Taiwan) ^ Industrious(Eileen))
V .....
```


Existential Quantification: A Common Mistake

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists
$\exists x \operatorname{In}(x$, Taiwan $) \Rightarrow \operatorname{Industrious}(x)$
Is true if there is anyone who is not in Taiwan
a overly weak statement

Properties of Quantifiers

- Nested Quantifiers (commutative!)
$\forall x \forall y$ is the same as $\forall y \forall x$
$\exists x \exists y$ is the same as $\exists y \exists x$
$\exists x \forall y$ is the same as $\forall y \exists x$
- Examples:
- "There is a person who loves everyone in the world" $\exists x \forall y \operatorname{Loves}(x, y)$
- "Everyone in the world is loved by at least one person" $\forall y \exists x \operatorname{Loves}(x, y)$
- Quantifier Duality
- Each of the following sentences can be expressed using the other

$$
\begin{aligned}
& \forall x \operatorname{Likes}(x, \text { IceCream }) \\
& \exists x \operatorname{Likes}(x, \text { IceCream })
\end{aligned} \Longleftrightarrow \neg \neg \exists x \neg \operatorname{Likes}(x, \text { IceCream }) ~=~ \neg \forall x \neg \operatorname{Likes(x,\text {IceCream})}
$$

Equality

- Make statements to the effect that two terms refer to the same object
- Determine the truth of an equality sentence by seeing that the referents of the two terms are the same objects
- E.g., state the facts about a given function

Father(John)=Henry

- E.g., insisting that two terms are not the same objects
$\exists x \exists y$ Brother $(x$, Richard $) \wedge$ Brother $(y$, Richard $) \wedge \neg(x=y)$
- Richard has at least two brothers

Review: De Morgan's Rules

$$
\begin{array}{rlrl}
\forall x \neg P & \equiv \neg \exists x P & \neg P \wedge \neg Q \equiv \neg(P \vee Q) \\
\neg \forall x P & \equiv \exists x \neg P & \neg(P \wedge Q) \equiv \neg P \vee \neg Q \\
\forall x P & \equiv \neg \exists x \neg P & & P \wedge Q \equiv \neg(\neg P \vee \neg Q) \\
\exists x P & \equiv \neg \forall x \neg P & & P \vee Q \equiv \neg(\neg P \wedge \neg Q)
\end{array}
$$

Using First-Order Logic

- Assertions and Queries
- Assertions:
- Sentences are added to KB using TELL, such sentences are called assertions

```
TELL(KB, King(John))
    TELL(KB, }\forallx\operatorname{King}(x)=>\mathrm{ Person(x) )
```

- Queries
- Questions are asked using ASK, which are also called queries or goals

ASK(KB, King(John))
ASK(KB, Person(John)
ASK(KB, $\exists x$ Person (x))
\Longrightarrow return true
\Longrightarrow return true
\Longleftrightarrow return $\{x / J o h n\}$

A substitution or binding list

Using First-Order Logic

- Example: The Kinship Domain
- One's mother is one's female parent $\forall m, c \operatorname{Mother}(m, c) \Leftrightarrow(\operatorname{Female}(m) \wedge \operatorname{Parent}(m, c))$
- One's husband is one's male spouse

$$
\forall w, h \operatorname{Husband}(h, w) \Leftrightarrow(\operatorname{Male}(h) \wedge \operatorname{Spouse}(h, w))
$$

- A grandparent is a a parent of one's parent
$\forall g, c \operatorname{Grandparent}(g, c) \Leftrightarrow(\exists p \operatorname{Parent}(g, p) \wedge \operatorname{Parent}(p, c))$
- A sibling is another child of one's parents
$\forall x, y$ Sibling $(x, y) \Leftrightarrow \mathbf{x} \neq y \wedge(\exists p \operatorname{Parent}(p, x) \wedge \operatorname{Parent}(p, y))$
- A first cousin is a child of a parent's sibling
$\forall x, y \operatorname{FirstCousin}(x, y) \Leftrightarrow \exists p, p s \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p)$ $\wedge \operatorname{Parent}(p s, y)$

Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL $K B$ and perceives a stench and a breeze (but no glitter)
 Ask(KB, \exists a BestAction(a, 5))
- Does the KB entail any particular actions at $t=5$? Answer: Yes, \{a/shoot\} A substitution or binding list
- Given a sentence S and a substitution $\theta, \operatorname{Subst}(\theta, S)$ denotes the result of plugging θ into S; e.g.,
$S=\operatorname{Smarter}(x, y)$
$\theta=\{x /$ Vicent, $y /$ Thomas $\}$
$\operatorname{Subst}(\theta, \mathrm{S})=\operatorname{Smarter}($ Vicent, Thomas)
- $\operatorname{ASK}(K B, S)$ returns some/all θ (substitutions or binding lists) such that $K B \mid=\operatorname{Subst}(\theta, \mathrm{S})$

KB for the Wumpus World

- Perception
$\forall t, s, g, m, c \operatorname{Percept}([s, B r e e z e, g, m, c], t) \Rightarrow \operatorname{Breeze}(t)$
$\forall t, s, b, m, c \operatorname{Percept}([s, b, G l i t t e r, m, c], t) \Rightarrow \operatorname{Glitter}(t)$
- Reflex
$\forall t \operatorname{Glitter}(t) \Rightarrow$ BestAction(Grab, $t)$
- Environment

$$
\begin{aligned}
& \forall x, y, a, b \operatorname{Adjacent}([x, y],[a, b]) \Leftrightarrow \\
& \qquad[a, b] \in\{[x+1, y],[x-1, y],[x, y+1][x, y-1]\}
\end{aligned}
$$

- Properties of agent's locations
$\forall s, t \operatorname{At}($ Agent, s, $t) \wedge \operatorname{Breeze}(t) \Rightarrow \operatorname{Breezy}(s)$

KB for the Wumpus World

- Square are breezy near a pit
- Diagnostic rule - infer hidden causes from observable effects
- If a square is breezy, some adjacent square must contain a pit

$$
\forall s \operatorname{Breezy}(s) \Rightarrow \exists r \operatorname{Adjacent}(r, s) \wedge \operatorname{Pit}(r)
$$

- If a square is not breezy, no adjacent square contains a pit

$$
\forall s \neg \operatorname{Breezy}(s) \Rightarrow \neg \exists r \operatorname{Adjacent}(r, s) \wedge \operatorname{Pit}(r)
$$

- Combined:

$$
\forall s \operatorname{Breezy}(s) \Leftrightarrow \exists r \operatorname{Adjacent}(r, s) \wedge \operatorname{Pit}(r)
$$

- Causal rule - infer observable effects from hidden causes
- A pit causes all adjacent squares to be breezy

$$
\forall r \operatorname{Pit}(r) \Rightarrow[\forall s \text { Adjacent }(r, s) \Rightarrow \operatorname{Breezy}(s)]
$$

- If all squares adjacent to a given square are pitless, the square will not be breezy

$$
\forall s[\forall r \operatorname{Adjacent}(r, s) \Rightarrow \neg \operatorname{Pit}(r)] \Rightarrow \neg \operatorname{Breezy}(s)
$$

- Combined:

$$
\forall s \operatorname{Breezy}(s) \Leftrightarrow \exists r \operatorname{Adjacent}(r, s) \wedge \operatorname{Pit}(r)
$$

Inference Rules for Quantifiers

- $\operatorname{Substitution~} \operatorname{Subst}(\theta, \alpha)$
- Refer to applying the substitution θ to the sentence α
- θ is a set of variable/(ground)term pairs

$$
\operatorname{Person}(x) \stackrel{y}{\theta=\{x / \text { John }\}} \operatorname{Person(John)} \underset{\operatorname{SuBST}(\theta, \alpha)}{ }
$$

- Universal Instantiation (UI)
- Infer any sentence obtained by substituting a ground term for the universally quantified variable
- A ground term is a term without variable
- could be a complex term

$$
\frac{\forall v \alpha}{\operatorname{SUBST}(\{v / g\}, \alpha)} \stackrel{\theta=\{x / \operatorname{John}\}}{\rightleftharpoons} \frac{\forall x \operatorname{King}(x) \wedge \operatorname{Greed} y(x) \Rightarrow \operatorname{Evil}(x)}{\operatorname{King}(J o h n) \wedge \operatorname{Greed}(J o h n) \Rightarrow \operatorname{Evil}(J o h n)}
$$

Inference Rules for Quantifiers

- Existential Instantiation (EI)
- Infer any sentence obtained by substituting a new constant symbol that does not appear elsewhere in the $K B$ for the existentially quantified variable

- A new constant symbol called Skolem constant

Universal/Existential Instantiation

- Universal instantiation can be applied several times to add new sentences
- The new $K B$ is logically equivalent to the old one
- Existential instantiation can be applied just once to replace the existential sentence
- The new $K B$ is not equivalent to the old one (?)
- But is satisfiable iff the old $K B$ was satisfiable

Reduction to Propositional Inference

- Suppose the KB contains:

```
\forallxKing(x) ^ Greedy(x) =>Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)
```

- Instantiate the universal sentence in all possible ways:

```
King(John) ^ Greedy(John) => Evil(John)
King(Richard) ^ Greedy(Richard) }=>\mathrm{ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)
```

- The new KB is propositionalized
- View the ground atomic sentences as propositional symbols King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction to Propositional Inference

- Claims
- A ground sentence is entailed by new $K B$ iff entailed by original KB
- Every FOL $K B$ can be propositionalized so as to preserve entailment
- Idea
- Propositionalize $K B$ and query, apply resolution, return result
- Problem
- When the $K B$ includes a function symbol, there are infinitely many ground terms can be generated from substitutions
- E.g., Father(Father(Father(John)))

Reduction to Propositional Inference

- Theorem: Herbrand (1930)
- If a sentence is entailed by the original FOL $K B$, there is a proof involving just a finite subset of the propositionalized $K B$
- Idea:
for $n=0$ to ∞ do
create a propositional $K B$ by instantiating with depth- n terms to see if the sentence α is entailed by this $K B$
- Problem
- It works if α is entailed, and it loops if α is not entailed

```
Father(John) }=>\mathrm{ Father(Father(John )) }=>\mathrm{ Father(Father(Father(John))) }=>\ldots...
depth 1 depth 2 depth 3 depth n
```


Reduction to Propositional Inference

- Theorem: Turing (1936), Church (1936)
- Entailment in FOL is semidecidable
- Algorithms exists that say yes to every entailed sentence
- The programs will halt
- But no algorithm exists that also say no to every nonentailed sentence
- The programs will stuck in a infinite loop
- More deeply nested terms were generated

Problems with Propositionalization

- Propositionalization approach is rather inefficient
- It seems to generate lots of irrelevant sentences
- E.g., from

```
\(\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)\)
King(John)
\(\forall y\) Greedy \((y)\)
Brother(Richard, John)
```

it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant

- With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations

Generalized Modus Ponens (GMP)

- For atomic sentences $p_{i}, p_{i}{ }^{\prime}$, and q, where there is a substitution θ such that $\operatorname{SUBST}\left(\theta, p_{i}{ }^{\prime}\right)=\operatorname{SUBST}\left(\theta, p_{i}\right)$ for all i
atomic sentences

$$
\frac{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{\operatorname{SUBST}(\theta, q)}
$$

n atomic sentences p_{i}^{\prime} 1 implication

$$
\begin{aligned}
& p_{1}^{\prime} \text { is } \operatorname{King}(\operatorname{John}) \text { ' } \quad{ }^{\prime} \text { is } \operatorname{King}(x) \text { the premises of an implication } \\
& p_{2}^{\prime} \text { is } \operatorname{Greed} y(y) \quad p_{2} \text { is } \operatorname{Greedy}(x) \\
& q \text { is } \operatorname{Evil}(x) \\
& \theta \text { is }\{x / J o h n, y / J o h n\} \text { : a set of variable/(ground)term pairs } \\
& \forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)
\end{aligned}
$$

- GMP used with $K B$ of definite clauses (exactly one positive literal)
- All variables assumed universally quantified

Unification

- A process to find a substitution θ which can be applied to two sentences p and q to make them look the same
$\operatorname{Unify}(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)$
- The UNIFY algorithm returns a unifier (θ) for the two sentences
- Example
- Query:

KB: Knows(John, Jane)
Knows(John, x) Knows(y, Bill) Knows(y, Mother(y)) Knows(x, Elizabeth)

Standardizing Apart

- Eliminate overlap of variables to avoid clashes by renaming variables

Unify(Knows(John, x), Knows(x, Elizabeth)) = fail
Unify(Knows(John, $x), \operatorname{Knows}\left(z_{17}\right.$, Elizabeth $\left.)\right)=\left\{x /\right.$ Elizabeth, $z_{17} /$ John $\}$

Most Generalized Unifier (MGU)

- Consider the following two unifications

$$
\begin{aligned}
& \operatorname{UNIFY}(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, z))=\{y / J o h n, x / z\} \quad \operatorname{Knows}(J o h n, z) \\
& \operatorname{UNIFY}(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, z))=\{y / J o h n, x / J o h n, z / J o h n\}
\end{aligned}
$$

Knows(John, John)

- We say the first unifier is more general than the second
- It places fewer restrictions on the values of variables
- For every unifiable pairs of expressions, there is a single most generalized unifier (MGU)
- E.g., the former unifier, $\{y / J o h n, x / z\}$, shown above

Unification Algorithm

```
function UNIFY(x,y,0) returns a substitution to make }x\mathrm{ and }y\mathrm{ identical
    inputs: }x\mathrm{ , a variable, constant, list, or compound
            y, a variable, constant, list, or compound
            0, the substitution built up so far (optional, defaults to empty)
    if }0=\mathrm{ failure then return failure
    else if }x=y\mathrm{ then return }
    else if VARIABLE?(x) then return UNIFY-VAR}(x,y,0
    else if VARIABLE?(y) then return UNIFY-VAR (y,x,0)
    else if COMPOUND?(x) and COMPOUND?( }y)\mathrm{ then
            return Unify(ARgs[x], ARgS[y], UNify(Op[x], Op[y],0)) //Op: function symbol
    else if LIST?(x) and LIsT?(y) then
            return Unify(Rest[ }x\mathrm{ ], Rest[ [ ] ], Unify(FiRst[x], First[ }y\mathrm{ ], }0\mathrm{ ))
    else return failure
```

function UNIFY-VAR $(v a r, x, \theta)$ returns a substitution inputs: var, a variable
x, any expression
θ, the substitution built up so far
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{UNify}(v a l, x, \theta)$ else if $\{x /$ val $\} \in \theta$ then return UNiFy (var, val, θ) else if OCCUR-CHECK? $(v a r, x)$ then return failure else return add $\{\operatorname{var} / x\}$ to θ

As matching a variable against a complex term, check whether the variable itself occurs inside the term.
If it does, the match fails.

Efficient Indexing and Retrieval

- Predicate Indexing

```
Query: Knows(John, x) //an instance of "Fetching"
    Employs(x, Richard)
    Employs(AIMA.org, y)
    Employs(x, y)
KB: Knows(John, Helen)
    Brother(John, Richard)
    Employs(John, Richard)
    ....
```

- Using a hash table
- Maintain indices on keys composed of a predicate plus (one to several) arguments

Forward Chaining

- Operations
- Start with the atomic sentences (known facts) in the $K B$ and apply Generalized Modus Ponens in the forward direction (trigger rules whose premises are satisfied)
- Unification of literals (Predicates in FOL)
- Adding new atomic sentences (conclusions of implications)
- Not just a renaming of a known fact
- Repeat until the query is answered or no further inferences can be made
- To apply FC, the $K B$ should be converted into a set of definite clauses

Definite Clauses

- Are disjunctions of literals, and of which exactly one is positive
- A definite clause is a Horn clause with exact one positive literal

$$
\text { E.g., } \quad \underset{(P 1 \vee \neg P 2 \vee \ldots \vee \neg P n \vee Q \text { can be converted to }}{ } \quad \begin{aligned}
& P 1 \wedge P 2 \wedge \ldots \wedge P n) \Rightarrow Q
\end{aligned}
$$

- More specifically, a definite clause is
- Either an atomic clause (an positive literal)
- Or an implication whose antecedent (premise/body) is a conjunction of positive literals and whose conclusion (head) is a single positive literal

```
King(John)
Greedy(y)
King(x)}\wedge\operatorname{Greedy(x) =>\operatorname{Evil}(x)
```

- Variables are assumed to be universally quantified
- Not all $K B$ can be converted into a set of definite clauses
- Because of the single-positive-literal restriction

Example $K B$

- The law is that it is a crime for an American to sell weapon to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold by Colonel West, who is American.
- Prove that West is a criminal

Criminal(West) true or false ?

Example $K B$

- It is a crime for an American to sell weapon to hostile nations

$$
\begin{equation*}
\text { American }(x) \wedge \text { Weapon }(y) \wedge \text { Sells }(x, y, z) \wedge \text { Hostile }(z) \Rightarrow \operatorname{Criminal}(x) \tag{1}
\end{equation*}
$$

- The country Nono has some missiles

$$
\left.\begin{array}{rl}
& \exists x \operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x) \\
\Longleftrightarrow & \operatorname{Owns}\left(\operatorname{Nono}, M_{1}\right) \text {, } \operatorname{Missile}\left(M_{1}\right) \quad 3
\end{array} \begin{array}{l}
\text { existential elimination/instantiation } \tag{3}\\
\text { AND elimination }
\end{array}\right)
$$

- All its (Nono's) missiles are sold to it by West

$$
\begin{equation*}
\operatorname{Missile}(x) \wedge \text { Owns(Nono, } x) \Rightarrow \text { Sells(West }, x, \text { Nono }) \tag{4}
\end{equation*}
$$

- Missiles are weapons

$$
\begin{equation*}
\text { Missile }(x) \Rightarrow \text { Weapon }(x) \tag{5}
\end{equation*}
$$

- An enemy of America counts as "hostile"

A datalog KB: composed of a set of FOL definite clauses with no function symbols

$$
\begin{equation*}
\text { Enemy }(x, \text { America }) \Rightarrow \operatorname{Hostile}(x) \tag{6}
\end{equation*}
$$

Example $K B$

- West, who is American

$$
\text { American(West) } 7
$$

- The country Nono, an enemy of America
Enemy(Nono, America) 8

Example KB: FC Proof

- Start with the atomic sentences (known facts) in the $K B$

Proof Tree

Example KB: FC Proof

- Apply Generalized Modus Ponens in the forward direction to trigger rules whose premises are satisfied
- Adding new atomic sentences (conclusions)

Proof Tree

Example KB: FC Proof

- Apply Generalized Modus Ponens in the forward direction to trigger rules whose premises are satisfied
- Adding new atomic sentences (conclusions)

Forward Chaining Algorithm

```
function FOL-FC-ASK(KB,\alpha) returns a substitution or false
    inputs: }KB\mathrm{ , the knowledge base, a set of first-order definite clauses
    \alpha, the query, an atomic sentence
    local variables: new, the new sentences inferred on each iteration
    repeat until new is empty
    new}\leftarrow{
    for each sentence r in KB do renaming the variables
        ( }\mp@subsup{p}{1}{}\wedge\ldots\wedge\mp@subsup{p}{n}{}=>q)\leftarrow\mathrm{ STANDARDIZE-APART (r) pattern matching
        for each }0\mathrm{ such that SUBST }(0,\mp@subsup{p}{1}{}\wedge\ldots\wedge\mp@subsup{p}{n}{})=\operatorname{SUBST}(0,\mp@subsup{p}{1}{\prime}\wedge\ldots\wedge\mp@subsup{p}{n}{\prime}
                for some }\mp@subsup{p}{1}{\prime},\ldots,\mp@subsup{p}{n}{\prime}\mathrm{ in KB atomic sentences
        q
        if q}\mp@subsup{q}{}{\prime}\mathrm{ is not a renaming of some sentence already in }KB\mathrm{ or new then do
            add q}\mp@subsup{q}{}{\prime}\mathrm{ to new
            \phi\leftarrowUNIFY (q},\alpha) the new fact unified with the query
        if \phi is not fail then return }
    add new to KB
    return false
```


Forward Chaining Algorithm

- Problems
- The inner loop (pattern matching) is very expensive
- Rules will be rechecked on every iteration to see if its premises are satisfied
- Many facts generated are irrelevant to the goal

Incremental Forward Chaining

- Every new fact inferred on iteration t must be derived from at least one new fact from iteration $t-1$
- Check a rule only if its premise include a conjunct p_{i} can be unified with a fact p_{i}^{\prime} newly inferred at iteration $t-1$
- If so, fix p_{i} to match with p_{i}^{\prime} and allow the other conjuncts of the rule to match with facts from any previous iteration

Properties of Forward Chaining

- FC is sound and complete for first-order definite clauses
- FC terminates for Datalog in poly iterations: (at most $p \cdot n^{k}$)
- Datalog = first-order definite clauses + no functions

With $p k$-ary predicates and n constants

- May not terminate in general if α is not entailed
- Entailment with datalog is decidable
- Entailment with definite clauses is semi-decidable
- When $K B$ with functional symbols

```
NatNum(0)
\foralln NatNum(n) => NatNum(S(n))
Will add:
NatNum(S(0)), NatNum(S(S(0))), NatNum(S(S(S(0)))), ...
```


Hard Matching Example

- Express a finite-domain CSP as a single definite clause together with some associated ground facts
- E.g., the map coloring problem

$$
\begin{aligned}
& \text { Diff }(w a, n t) \wedge \text { Diff }(w a, s a) \wedge \\
& \text { Diff }(n t, q) \text { Diff }(n t, s a) \wedge \\
& \text { Diff }(q, n s w) \wedge \text { Diff }(q, \text { sa }) \wedge \\
& \text { Diff(} n s w, v) \wedge \text { Diff(} n s w, \text { sa }) \wedge \\
& \text { Diff }(v, \text { sa }) \Rightarrow \text { Colorable }()
\end{aligned}
$$

- Matching a definite clause against a set of facts is NP-hard ${ }^{\text {Known facts }}$

Backward Chaining

- Work backward from the goal (query), chaining through rules to find known facts that support the proof
- Put the query on a stack
- Pop it and find the set of all substitutions that satisfies the query
- Find all implications in KB whose heads (conclusions) can be unified with the goals and put their bodies (premises) on the stack as new goals
- Goals unified with known facts generate no new goals
- If all goals on the stack are satisfied, (the current branch of) the proof succeeds

Example KB: BC Proof

Criminal(West)

Put the query on a stack
Pup it and find the set of all substitutions that satisfies the query

Example KB: BC Proof

new subgoals

Example KB: BC Proof

Unified with
known fact

Example KB: BC Proof

Backward Chaining Algorithm

function FOL-BC-ASK $(K B$, goals, $\theta)$ returns a set of substitutions inputs: $K B$, a knowledge base
goals, a list of conjuncts forming a query (θ already applied)
θ, the current substitution, initially the empty substitution $\}$
local variables: answers, a set of substitutions, initially empty
if goals is empty then return $\{\theta\}$
$q^{\prime} \leftarrow \operatorname{SUBST}(\theta, \operatorname{FIRST}($ goals $))$
for each sentence r in $K B$ where Standardize-Apart $(r)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$ and $\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)$ succeeds
new_goals $\leftarrow\left[p_{1}, \ldots, p_{n} \mid \operatorname{REST}(\right.$ goals $\left.)\right] \quad$ stack: LIFO
answers $\leftarrow \mathrm{FOL}-\mathrm{BC}-\operatorname{AsK}\left(K B\right.$, new_goals, $\left.\operatorname{CompOSE}\left(\theta^{\prime}, \theta\right)\right) \cup$ answers
return answers

Properties of Backward Chaining

- Depth-first recursive proof search
- Space is linear in size of proof
- Incomplete due to infinite loops
- Can be fixed by checking current goal against every goal on stack
- Inefficient due to repeated subgoals
- Can be fixed by using caching of previous results (extra space !)

Conjunctive Normal Form (CNF) for FOL

- A CNF sentence in FOL
- A conjunction (via \wedge 's operations) of clauses
- Each clause is a disjunction (via V 's operations) of literals, where literals contain variables which are assumed to be universally quantified
$\forall x$ American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$
CNF
$\longleftrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg \operatorname{Sells}(x, y, z) \vee \neg$ Hostile $(z) \vee$ Criminal (x)
- Every sentence of FOL can be converted into an inferentially equivalent CNF
- The CNF sentence will be unsatisfiable if the oroginal one is unsatisfiable

Conversion to CNF

- Example :

Everyone who loves all animals is loved by someone

$$
\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{loves}(x, y)] \Rightarrow \exists y \operatorname{loves}(y, x)
$$

- Eliminate implications

$$
\forall x[\neg \forall y \neg \text { Animal }(y) \vee \operatorname{loves}(x, y)] \vee \exists y \operatorname{loves}(y, x)
$$

- Move negation (\neg) inwards

$$
\begin{aligned}
& \forall x[\exists y \neg(\neg \operatorname{Animal}(y) \vee \operatorname{loves}(x, y))] \vee \exists y \operatorname{loves}(y, x) \\
& \forall x[\exists y \text { Animal }(y) \wedge \neg \operatorname{loves}(x, y)] \vee \exists y \operatorname{loves}(y, x)
\end{aligned}
$$

- Standardize apart (renaming)

$$
\forall x[\exists y \text { Animal }(y) \wedge \neg \operatorname{loves}(x, y)] \vee \forall \operatorname{loves}(z, x)
$$

Conversion to CNF

- Skolemize (remove existential quantifier)

$$
\begin{aligned}
& \forall x[\operatorname{Animal}(A) \wedge \neg \operatorname{loves}(x, A)] \vee \operatorname{loves}(B, x) ? \\
& \forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{loves}(x, F(x))] \vee \operatorname{loves}(G(x), x)
\end{aligned}
$$

- Existential variables replaced by skolem functions
- The skolemized sentence is satisfiable when the original one is satisfiable
- Drop universal quantifiers

$$
[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{loves}(x, F(x))] \vee \operatorname{loves}(G(x), x)
$$

- Distribute conjunction (\wedge) over disjunction (\bigvee)

$$
[\operatorname{Animal}(F(x)) \vee \operatorname{loves}(G(x), x)] \wedge[\neg \operatorname{loves}(x, F(x)) \vee \operatorname{loves}(G(x), x)]
$$

Resolution

- The binary resolution rule for FOL can be express as
$\frac{l_{1} \vee \cdots \vee l_{k}, m_{1} \vee \cdots \vee m_{n}}{\operatorname{SUBST}\left(\theta, l_{1} \vee \cdots l_{i-1} \vee l_{i+1} \cdots \vee l_{k} \vee m_{1} \vee \cdots m_{j-1} \vee m_{j+1} \cdots \vee m_{n}\right)}$
where $\operatorname{UNIFY}\left(l_{i}, \neg m_{j}\right)=\theta$
Or

$$
\text { Or } \begin{array}{ll}
& l_{1} \wedge \cdots \wedge l_{k} \Rightarrow p_{1} \wedge \cdots \wedge p_{s} \\
& q_{1} \wedge \cdots \wedge q_{r} \Rightarrow m_{1} \wedge \cdots \wedge m_{n}
\end{array}
$$

$\overline{\operatorname{SUBST}}\left(\theta, l_{1} \wedge \cdots l_{i-1} \wedge l_{i+1} \cdots \wedge l_{k} \wedge q_{1} \wedge \cdots \wedge q_{r}\right.$

$$
\left.\Rightarrow p_{1} \wedge \cdots \wedge p_{s} \wedge m_{1} \wedge \cdots m_{j-1} \wedge m_{j+1} \cdots \wedge m_{n}\right)
$$

where $\operatorname{UNIFY}\left(l_{i}, m_{j}\right)=\theta$

Resolution

- The combination of binary resolution rule and factoring is complete
- Factoring: remove multiple copies of literals if they are unifiable (the unifier must be applied to the entire clause)

$$
\begin{aligned}
& {[\operatorname{Animal}(F(x)) \vee \operatorname{loves}(G(x), x)] \text { and }[\neg \operatorname{loves}(u, v) \vee \neg \operatorname{Kills}(u, v)]} \\
& \theta=\{u / G(x), v / x\} \\
& \longleftrightarrow \quad[\operatorname{Animal}(F(x)) \vee \neg \operatorname{Kills}(G(x), x)]
\end{aligned}
$$

Resolution: Example Proof 1

- Proved by refutation

Resolution: Example Proof 2

Problem:

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?
A. $\quad \forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{loves}(x, y)] \Rightarrow \exists y \operatorname{loves}(y, x)$
B. $\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Kills}(x, y)] \Rightarrow \forall z \neg \operatorname{loves}(z, x)$
C. $\forall x \operatorname{Animal}(x) \Rightarrow$ loves $(J a c k, x)$
D. Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)
E. Cat(Tuna)
F. $\forall x \operatorname{Cat}(x) \Rightarrow \operatorname{Animal}(x) \quad$ (background knowledge!)
\neg G. \neg Kills(Curiosity, Tuna)

Resolution: Example Proof 2

```
A1. Animal(F(x))\vee loves(G(x), x)
A2. }\neg\operatorname{loves}(x,F(x))\\operatorname{loves}(G(x),x
B. }\neg\mathrm{ Animal(y) }\vee\neg\operatorname{Kills(x,y) \vee\negloves(z, x)
C. }\neg\mathrm{ Animal(x) }\vee\mathrm{ loves(Jack, x)
D. Kills(Jack, Tuna) \ Kills(Curiosity, Tuna)
E. Cat(Tuna)
F. }\neg\operatorname{Cat}(x)\vee\operatorname{Animal(x) (background knowledge!)
\negG.}\neg\mathrm{ Kills(Curiosity, Tuna)
```


Resolution: Example Proof 2

