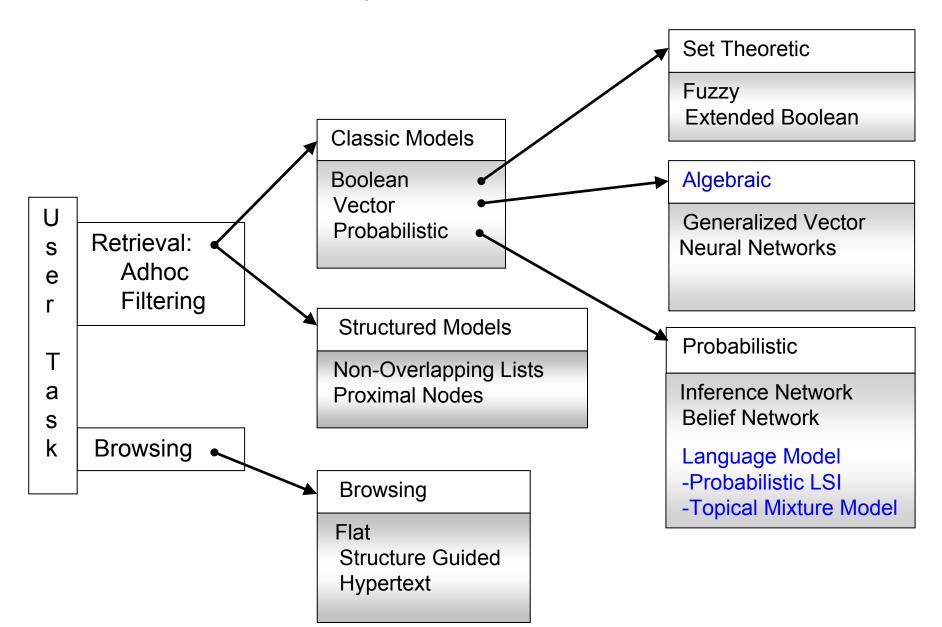
Language Models for Information Retrieval

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

References:

- 1. W. B. Croft and J. Lafferty (Editors). Language Modeling for Information Retrieval. July 2003
- 2. T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning, January-February 2001
- 3. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press, 2008. (Chapter 12)
- 4. D. A. Grossman, O. Frieder, Information Retrieval: Algorithms and Heuristics, Springer, 2004 (Chapter 2)

Taxonomy of Classic IR Models



Statistical Language Models (1/2)

- A probabilistic mechanism for "generating" a piece of text
 - Defines a distribution over all possible word sequences

$$W = w_1 w_2 \dots w_N$$
$$P(W) = ?$$

- What is LM Used for ?
 - Speech recognition
 - Spelling correction
 - Handwriting recognition
 - Optical character recognition
 - Machine translation
 - Document classification and routing
 - Information retrieval ...

Statistical Language Models (2/2)

- (Statistical) language models (LM) have been widely used for speech recognition and language (machine) translation for more than twenty years
- However, their use for use for information retrieval started only in 1998 [Ponte and Croft, SIGIR 1998]

Query Likelihood Language Models

• Documents are ranked based on Bayes (decision) rule

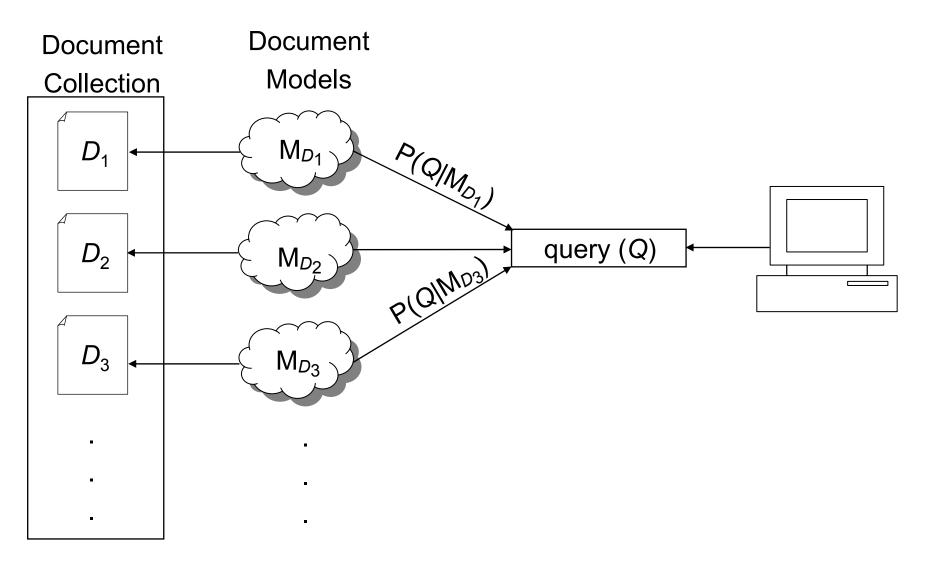
$$P(D|Q) = \frac{P(Q|D)P(D)}{P(Q)}$$

- P(Q) is the same for all documents, and can be ignored
- P(D) might have to do with authority, length, genre, etc.
 - There is no general way to estimate it
 - Can be treated as uniform across all documents
- Documents can therefore be ranked based on

P(Q|D) (or denoted as $P(Q|M_D)$)

- The user has a prototype (ideal) document in mind, and generates a query based on words that appear in this document
- A document D is treated as a model M_D to predict (generate) the query

Schematic Depiction



n-grams

• Multiplication (Chain) rule

 $P(w_1w_2....w_N) = P(w_1)P(w_2|w_1)P(w_3|w_1w_2)\cdots P(w_N|w_1w_2...w_{N-1})$

- Decompose the probability of a sequence of events into the probability of each successive events conditioned on earlier events
- *n*-gram assumption
 - Unigram

$$P(w_1w_2....w_N) = P(w_1)P(w_2)P(w_3)\cdots P(w_N)$$

- Each word occurs independently of the other words
- The so-called "bag-of-words" model
- Bigram

$$P(w_1w_2....w_N) = P(w_1)P(w_2|w_1)P(w_3|w_2)\cdots P(w_N|w_{N-1})$$

- Most language-modeling work in IR has used unigram language models
 - IR does not directly depend on the structure of sentences

Unigram Model (1/4)

• The likelihood of a query $Q = w_1 w_2 \dots w_N$ given a document *D*

$$P(Q|\mathbf{M}_D) = P(w_1|\mathbf{M}_D)P(w_2|\mathbf{M}_D)\cdots P(w_N|\mathbf{M}_D)$$
$$= \prod_{i=1}^{N} P(w_i|\mathbf{M}_D)$$

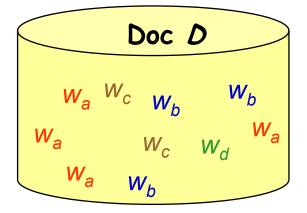
- Words are conditionally independent of each other given the document
- How to estimate the probability of a (query) word given the document $P(w|M_D)$?
- Assume that words follow a multinomial distribution given the document

$$P(C(w_1),...,C(w_V)|\mathbf{M}_D) = \frac{(\sum_{j=1}^{V} C(w_j))!}{\prod_{i=1}^{V} (C(w_i)!)} \prod_{i=1}^{V} \lambda_{w_i}^{C(w_i)}$$

where $C(w_i)$: the number of times a word occurs $\lambda_{w_i} = P(w_i | M_D), \quad \sum_{i=1}^V \lambda_{w_i} = 1$

Unigram Model (2/4)

- Use each document itself a sample for estimating its corresponding unigram (multinomial) model
 - If Maximum Likelihood Estimation (MLE) is adopted



$$\hat{P}(w_i | \mathbf{M}_D) = \frac{C(w_i, D)}{|D|}$$

where

 $C(w_i, D)$: number of times w_i occurs in D|D|: length of $D, \sum_i C(w_i, D) = |D|$

 $P(w_{b}|M_{D})=0.3$ $P(w_{c}|M_{D})=0.2$ $P(w_{d}|M_{D})=0.1$ $P(w_{e}|M_{D})=0.0$ $P(w_{f}|M_{D})=0.0$

The zero-probability problem

If w_e and w_f do not occur in D then $P(w_e | M_D) = P(w_f | M_D) = 0$

This will cause a problem in predicting the query likelihood (See the equation for the query likelihood in the preceding slide)

Unigram Model (3/4)

• Smooth the document-specific unigram model with a collection model (a mixture of two multinomials)

 $P(Q|\mathbf{M}_D) = \prod_{i=1}^{N} \left[\lambda \cdot P(w_i | \mathbf{M}_D) + (1 - \lambda) \cdot P(w_i | \mathbf{M}_C) \right]$

- The role of the collection unigram model $P(w_i | M_C)$
 - Help to solve zero-probability problem
 - Help to differentiate the contributions of different missing terms in a document (global information like IDF ?)
- The collection unigram model can be estimated in a similar way as what we do for the document-specific unigram model

Unigram Model (4/4)

- An evaluation on the Topic Detection and Tracking (TDT) corpra
 - Language Model

mAP		Unigram	Unigram+Bigram
	TQ/TD	0.6327	0.5427
TDT2	TQ/SD	0.5658	0.4803
	TQ/TD	0.6569	0.6141
TDT3	TQ/SD	0.6308	0.5808

- Vector Space Model

mAP		Unigram	Unigram+Bigram
	TQ/TD	0.5548	0.5623
TDT2	TQ/SD	0.5122	0.5225
	TQ/TD	0.6505	0.6531
TDT3	TQ/SD	0.6216	0.6233

$$P_{Unigram} \left(Q | M_D \right)$$

= $\prod_{i=1}^{N} \left[\lambda \cdot P(w_i | M_D) + (1 - \lambda) \cdot P(w_i | M_C) \right]$
$$P_{Unigram + Bigram} \left(Q | M_D \right)$$

= $\prod_{i=1}^{N} \left[\lambda_1 \cdot P(w_i | M_D) + \lambda_2 \cdot P(w_i | M_C) \right]$
 $\lambda_3 \cdot P(w_i | w_{i-1}, M_D) + (1 - \lambda_1 - \lambda_2 - \lambda_3) \cdot P(w_i | w_{i-1}, M_C) \right]$

Maximum Mutual Information

 Documents can be ranked based their mutual information with the query

$$MI(Q, D) = \log \frac{P(Q, D)}{P(Q)P(D)}$$
$$= \log P(Q|D) - \log P(Q)$$

being the same for all documents, and hence can be ignored

 Document ranking by mutual information (MI) is equivalent that by likelihood

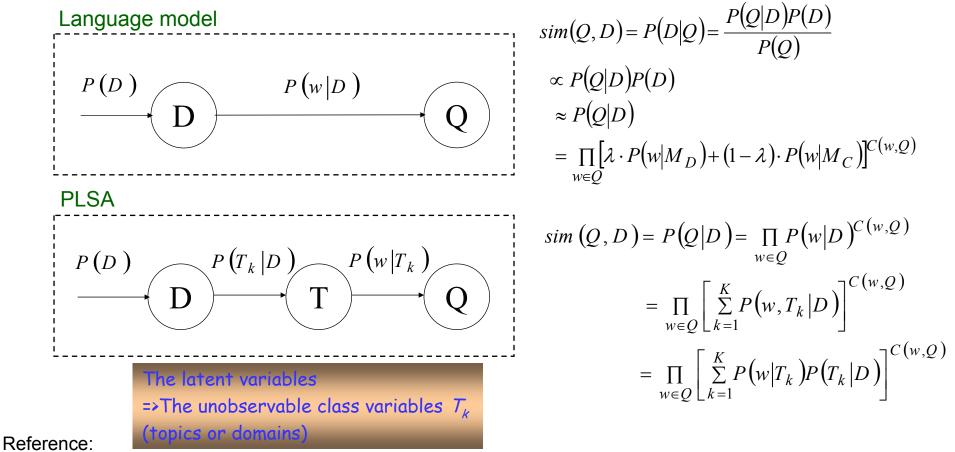
$$\underset{D}{\operatorname{arg max}} MI(Q,D) = \underset{D}{\operatorname{arg max}} P(Q|D)$$

Probabilistic Latent Semantic Analysis (PLSA)

Thomas Hofmann 1999

 Also called The Aspect Model, Probabilistic Latent Semantic Indexing (PLSI)

- Graphical Model Representation (a kind of Bayesian Networks)



1. T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning, January-February 2001 IR – Berlin Chen 13

PLSA: Formulation

- Definition
 - P(D): the prob. when selecting a doc D

 $-P(T_k|D)$: the prob. when pick a latent class T_k for the doc D

 $-P(w|T_k)$: the prob. when generating a word W from the class T_k

PLSA: Assumptions

 Bag-of-words: treat docs as memoryless source, words are generated independently

sim
$$(Q, D) = P(Q|D) = \prod_{w} P(w|D)^{C(w,Q)}$$

• Conditional independent: the doc D and word w are independent conditioned on the state of the associated latent variable T_k

$$P(w, D|T_{k}) \approx P(w|T_{k})P(D|T_{k})$$

$$P(w|D) = \sum_{k=1}^{K} P(w, T_{k}|D) = \sum_{k=1}^{K} \frac{P(w, D, T_{k})}{P(D)} = \sum_{k=1}^{K} \frac{P(w, D|T_{k})P(T_{k})}{P(D)}$$

$$= \sum_{k=1}^{K} \frac{P(w|T_{k})P(D|T_{k})P(T_{k})}{P(D)} = \sum_{k=1}^{K} \frac{P(w|T_{k})P(T_{k}, D)}{P(D)}$$

$$= \sum_{k=1}^{K} P(w|T_{k})P(T_{k}|D)$$

PLSA: Training (1/2)

 Probabilities are estimated by maximizing the collection likelihood using the Expectation-Maximization (EM) algorithm

$$L_{C} = \sum_{D} \sum_{w} C(w, D) \log P(w|D)$$
$$= \sum_{D} \sum_{w} C(w, D) \log \left[\sum_{T_{k}} P(w|T_{k}) P(T_{k}|D) \right]$$

EM tutorial:

- Jeff A. Bilmes "<u>A Gentle Tutorial of the EM Algorithm and its Application</u> to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," U.C. Berkeley TR-97-021

PLSA: Training (2/2)

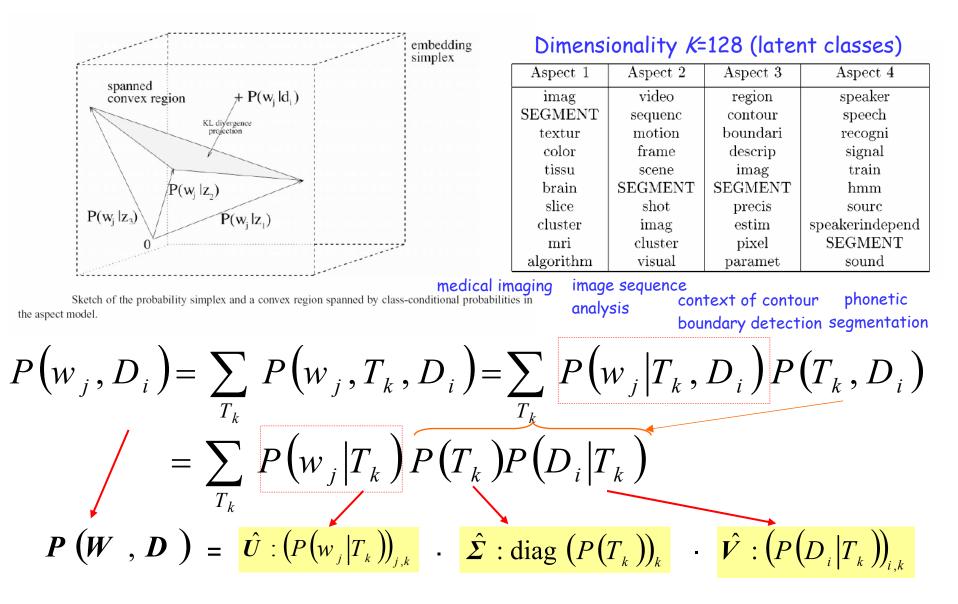
• E (expectation) step

$$P\left(T_{k} \mid w, D\right) = \frac{P\left(w \mid T_{k}\right)P\left(T_{k} \mid D\right)}{\sum_{T_{k}} P\left(w \mid T_{k}\right)P\left(T_{k} \mid D\right)}$$

• M (Maximization) step

$$\hat{P}\left(w\left|T_{k}\right.\right) = \frac{\sum_{D} C\left(w, D\right) P\left(T_{k}\left|w, D\right.\right)}{\sum_{w} \sum_{D} C\left(w, D\right) P\left(T_{k}\left|w, D\right.\right)}$$
$$\hat{P}\left(T_{k}\left|D_{i}\right.\right) = \frac{\sum_{w} C\left(w, D\right) P\left(T_{k}\left|w, D\right.\right)}{\sum_{w'} C\left(w', D\right.\right)}$$

PLSA: Latent Probability Space (1/2)



PLSA: Latent Probability Space (2/2)



PLSA: One more example on TDT1 dataset

aviation	space missions	family love	Hollywood love
Aspect 1	Aspect 2	Aspect 3	Aspect 4
plane	space	home	film
airport	$\operatorname{shuttle}$	family	movie
crash	mission	like	music
flight	astronauts	love	new
safety	launch	kids	$_{\mathrm{best}}$
aircraft	station	mother	hollywood
air	crew	life	love
passenger	nasa	happy	actor
board	satellite	friends	entertainment
airline	earth	$_{ m cnn}$	star

The 2 aspects to most likely generate the word 'flight' (left) and 'love' (right), derived from a K = 128 aspect model of the TDT1 document collection. The displayed terms are the most probable words in the class-conditional distribution $P(w_j | z_k)$, from top to bottom in descending order.

PLSA: Experiment Results (1/4)

- Experimental Results
 - Two ways to smoothen empirical distribution with PLSA
 - Combine the cosine score with that of the vector space model (so does LSA)

PLSA-U* (See next slide)

Combine the multinomials individually
PLSA-Q*

$$P_{PLSA-Q*}(w|D) = \lambda \left[P_{Empirical}(w|D) + (1-\lambda) \cdot P_{PLSA}(w|D) \right]$$

$$P_{PLSA-Q^*}(Q \mid D) = \prod_{w \in Q} \left(\lambda \cdot P_{Empirical}(w \mid D) + (1 - \lambda) \cdot P_{PLSA}(w \mid D)\right)^{c(w,D)}$$

Both provide almost identical performance

- It's not known if PLSA was used alone

PLSA: Experiment Results (2/4)

PLSA-U*

- Use the low-dimensional representation P(T_k | Q) and P(T_k | D) (be viewed in a *k*-dimensional latent space) to evaluate relevance by means of cosine measure
- Combine the cosine score with that of the vector space model
- Use the ad hoc approach to re-weight the different model components (dimensions) by

$$R_{PLSA-U*}(Q,D) = \frac{\sum_{k} P(T_{k}|Q)P(T_{k}|D)}{\sqrt{\sum_{k} P(T_{k}|Q)^{2}} \sqrt{\sum_{k} P(T_{k}|D)^{2}}} , \text{where } P(T_{k}|Q) = \frac{\sum_{w \in Q} C(w,Q)P(T_{k}|w,Q)}{\sum_{w' \in Q} \sum_{w' \in Q} C(w',Q)}$$
online folded-in
$$\widetilde{R}_{PLSA-U*}(Q,D) = \lambda \cdot R_{PLSA-U*}(Q,D) + (1-\lambda) \cdot R_{VSM}(\bar{Q},\bar{D})$$

PLSA: Experiment Results (3/4)

• Why
$$R_{PLSI-Q^*}(Q, D_i) = \frac{\sum\limits_{k} P(T_k | Q) P(T_k | D_i)}{\sqrt{\sum\limits_{k} P(T_k | Q)^2} \sqrt{\sum\limits_{k} P(T_k | D_i)^2}}$$
?
 $\frac{w_1}{w_2}$
 $\frac{w_2}{w_1}$
 $\frac{w_1}{w_2}$
 $\frac{w_1}{w_1}$
 $\frac{w_1}{w_2}$
 $\frac{w_1}{w_1}$
 $\frac{w_1}{w_2}$
 $\frac{w_1}{w_1}$
 $\frac{w_1}{w_2}$
 $\frac{w_1}{w_1}$
 $\frac{w_1}{w_2}$
 $\frac{w_1}{w_1}$
 $\frac{w_1}{w_1}$
 $\frac{w_1}{w_2}$
 $\frac{w_1}{w_1}$
 $\frac{w_1}{w_$

- Reminder that in LSA, the relations between any two docs can D_i be formulated as

 $A'^{\mathsf{T}}A' = (U' \Sigma 'V'^{\mathsf{T}})^{\mathsf{T}} '(U' \Sigma 'V'^{\mathsf{T}}) = V' \Sigma '^{\mathsf{T}} U^{\mathsf{T}} U' \Sigma 'V'^{\mathsf{T}} = (V' \Sigma ')(V' \Sigma ')^{\mathsf{T}}$

$$sim\left(D_{i}, D_{s}\right) = coine\left(\hat{D}_{i}\Sigma, \hat{D}_{s}\Sigma\right) = \frac{\hat{D}_{i}\Sigma^{2}\hat{D}_{s}^{T}}{\left|\hat{D}_{i}\Sigma\right|\left|\hat{D}_{s}\Sigma\right|}$$

 $D_1 D_2 \quad D_i \quad D_n \quad t_1 \dots t_k \dots t_K$

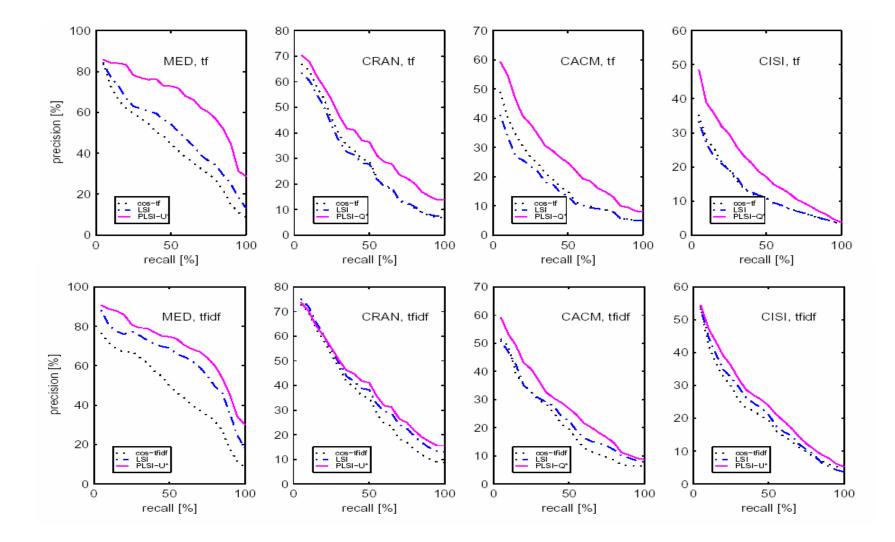
- PLSA mimics LSA in similarity measure \hat{D}_i and \hat{D}_s are row vectors

$$R_{PLSI-Q^{*}}(D_{i}, D_{s}) = \frac{\sum_{k} P(D_{i}|T_{k})P(T_{k})P(T_{k})P(D_{s}|T_{k})}{\sqrt{\sum_{k} [P(D_{i}|T_{k})P(T_{k})]^{2}} \sqrt{\sum_{k} [P(D_{i}|T_{k})P(T_{k})]^{2}}} = \frac{\sum_{k} P(T_{k}|D_{i})P(D_{i})P(D_{k}|D_{s})P(D_{s})}{\sqrt{\sum_{k} [P(T_{k}|D_{i})P(D_{i}')]^{2}} \sqrt{\sum_{k} [P(T_{k}|D_{s})P(D_{s})]^{2}}} P(D_{i}|T_{k})P(T_{k}) = P(T_{k}|D_{i})P(D_{i})}$$

$$= \frac{\sum_{k} P(T_{k}|D_{i})P(D_{k}|D_{s})}{\sqrt{\sum_{k} P(T_{k}|D_{i})^{2}} \sqrt{\sum_{k} P(T_{k}|D_{s})^{2}}}$$
IR – Berlin Chen 23

 $D_1 D_2 \quad D_i \quad D_n$

PLSA: Experiment Results (4/4)



PLSA vs. LSA

- Decomposition/Approximation
 - LSA: least-squares criterion measured on the L2- or Frobenius norms of the word-doc matrices
 - PLSA: maximization of the likelihoods functions based on the cross entropy or Kullback-Leibler divergence between the empirical distribution and the model
- Computational complexity
 - LSA: SVD decomposition
 - PLSA: EM training, is time-consuming for iterations?