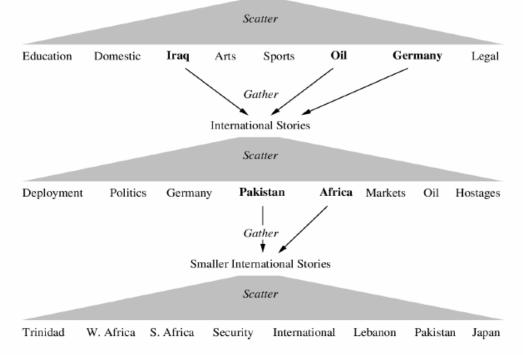
Clustering Techniques for Information Retrieval

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

References:

- 1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press, 2008. (Chapters 16 & 17)
- 2. Modern Information Retrieval, Chapters 5 & 7
- 3. "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," Jeff A. Bilmes, U.C. Berkeley TR-97-021

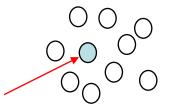
Clustering

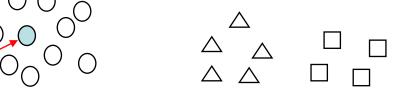

- Place similar objects in the same group and assign dissimilar objects to different groups
 - Word clustering
 - Neighbor overlap: words occur with the similar left and right neighbors (such as *in* and *on*)
 - Document clustering
 - Documents with the similar topics or concepts are put together
- But clustering cannot give a comprehensive description of the object
 - How to label objects shown on the visual display is a difficult problem

Clustering vs. Classification

- Classification is supervised and requires a set of labeled training instances for each group (class)
 - Learning with a teacher
- Clustering is unsupervised and learns without a teacher to provide the labeling information of the training data set
 - Also called automatic or unsupervised classification

Why Cluster Documents for IR (1/4)


- 1. Whole corpus analysis/navigation
 - Better user interface (users prefer browsing over searching since they are unsure about which search terms to use)
 - E.g., the *scatter-gather* approach



▶ Figure 16.3 The Scatter-Gather user interface. A collection of New York Times news stories is clustered ("scattered") into eight clusters (top row). The user manually *gathers* three of these into a smaller collection *International Stories* and performs another scattering operation. This process repeats until a small cluster with relevant documents is found (e.g., *Trinidad*).

Why Cluster Documents for IR (2/4)

- 2. Improve recall in search applications
 - Achieve better search results by
 - Alleviating the term-mismatch (synonym) problem facing the vector space model

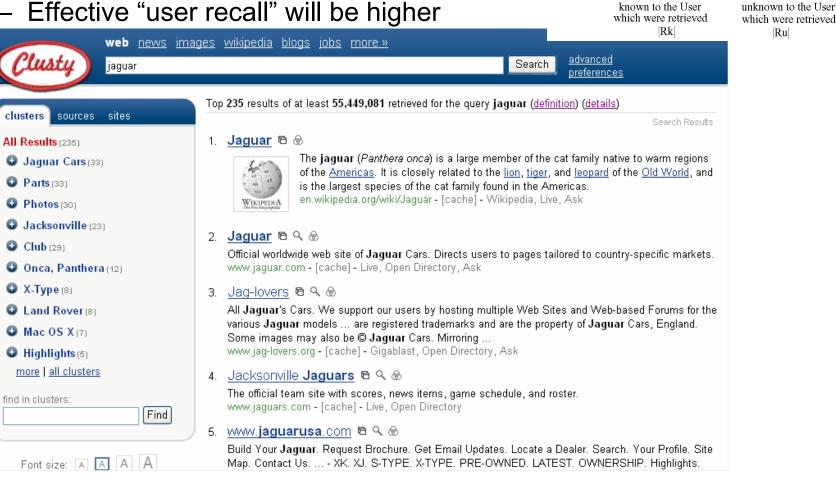
found relevant document

 Estimating the collection model of the language modeling (LM) retrieval approach more accurately

$$P(Q|\mathbf{M}_D) = \prod_{i=1}^{N} \left[\lambda \cdot P(w_i | \mathbf{M}_D) + (1 - \lambda) \cdot P(w_i | \mathbf{M}_C) \right]$$

The collection model can be estimated from the cluster the document D belongs to, instead of the entire collection

Why Cluster Documents for IR (3/4)


Relevant Docs

Relevant Docs

Relevant Docs known to the User

U

- 3. Better navigation of search results
 - Result set clustering
 - Effective "user recall" will be higher

http://clusty.com

Answer Set A

Relevant Docs

Why Cluster Documents for IR (4/4)

- 4. Speech up the search process
 - For retrieval models using exhaustive matching (computing the similarity of the query to every document) without efficient inverted index supports
 - E.g., latent semantic analysis (LSA), language modeling (LM) ?
 - Solution: cluster-based retrieval
 - First find the clusters that are closet to the query and then only consider documents from these clusters

Types of Clustering Algorithms

- Two types of structures produced by clustering algorithms
 - Flat or non-hierarchical clustering
 - Hierarchical clustering

• Flat clustering

- Simply consisting of a certain number of clusters and the relation between clusters is often undetermined
- Measurement: construction error minimization or probabilistic optimization

Hierarchical clustering

- A hierarchy with usual interpretation that each node stands for a subclass of its mother's node
 - The leaves of the tree are the single objects
 - Each node represents the cluster that contains all the objects of its descendants
- Measurement: similarities of instances

Hard Assignment vs. Soft Assignment (1/2)

- Another important distinction between clustering algorithms is whether they perform soft or hard assignment
- Hard Assignment
 - Each object (or document in the context of IR) is assigned to one and only one cluster
- Soft Assignment (probabilistic approach)
 - Each object may be assigned to multiple clusters
 - An object x_i has a probability distribution $P(\cdot|x_i)$ over clusters c_j where $P(x_i|c_j)$ is the probability that x_i is a member of c_i
 - Is somewhat more appropriate in many tasks such as NLP, IR, …

Hard Assignment vs. Soft Assignment (2/2)

- Hierarchical clustering usually adopts hard assignment
- While in flat clustering, both types of assignments are common

Summarized Attributes of Clustering Algorithms (1/2)

- Hierarchical Clustering
 - Preferable for detailed data analysis
 - Provide more information than flat clustering
 - No single best algorithm (each of the algorithms only optimal for some applications)
 - Less efficient than flat clustering (minimally have to compute *n* x *n* matrix of similarity coefficients)

Summarized Attributes of Clustering Algorithms (2/2)

- Flat Clustering
 - Preferable if efficiency is a consideration or data sets are very large
 - K-means is the conceptually feasible method and should probably be used on a new data because its results are often sufficient
 - *K*-means assumes a simple Euclidean representation space, and so cannot be used for many data sets, e.g., nominal data like colors (or samples with features of different scales)
 - The EM algorithm is the most choice. It can accommodate definition of clusters and allocation of objects based on complex probabilistic models
 - Its extensions can be used to handle topological/hierarchical orders of samples
 - E.g., Probabilistic Latent Semantic Analysis (PLSA)

Flat Clustering

Flat Clustering

- Start out with a partition based on randomly selected seeds (one seed per cluster) and then refine the initial partition
 - In a multi-pass manner (recursion/iterations)
- **Problems** associated with non-hierarchical clustering
 - When to stop? group average similarity, likelihood, mutual information
 - What is the right number of clusters (cluster cardinality) ?

 $k-1 \rightarrow k \rightarrow k+1$

- Algorithms introduced here
 - The *K*-means algorithm
 - The EM algorithm

Hierarchical clustering also has to face this problem

The *K*-means Algorithm (1/10)

- Also called *Linde-Buzo-Gray* (LBG) in signal processing
 - A hard clustering algorithm
 - Define clusters by the **center of mass** of their members
- The K-means algorithm also can be regarded as
 - A kind of vector quantization
 - Map from a continuous space (high resolution) to a discrete space (low resolution)
 - E.g. color quantization
 - 24 bits/pixel (16 million colors) \rightarrow 8 bits/pixel (256 colors)
 - A compression rate of 3

$$\boldsymbol{X} = \left\{ \boldsymbol{x}^{t} \right\}_{t=1}^{n} \xrightarrow{\text{index } j} \boldsymbol{F} = \left\{ \boldsymbol{m}_{j} \right\}_{j=1}^{k} \qquad \text{Dim}(\boldsymbol{x}^{\dagger}) = 24 \rightarrow |\boldsymbol{F}| = 2^{k}$$

 m_i : cluster centriod or reference vector, code word, code vector

The K-means Algorithm (2/10)

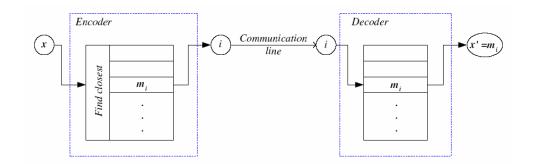


Figure 7.1: Given \boldsymbol{x} , the encoder sends the index of the closest code word and the decoder generates the code word with the received index as \boldsymbol{x}' . Error is $\|\boldsymbol{x}' - \boldsymbol{x}\|^2$.

Total reconstruction error (RSS : residual sum of squares)

$$E\left(\{\mathbf{m}_{i}\}_{i=1}^{k} | \mathbf{X}\right) = \sum_{t=1}^{N} \sum_{i=1}^{k} b_{i}^{t} \| \mathbf{x}^{t} - \mathbf{m}_{i} \| , \text{ where } b_{i}^{t} = \begin{cases} 1 & \text{if } \| \mathbf{x}^{t} - \mathbf{m}_{i} \| = \min_{j} \| \mathbf{x}^{t} - \mathbf{m}_{j} \| \\ 0 & \text{otherwise} \end{cases}$$

- $-b_{i}^{t}$ and m_{i} are unknown
- b_i^t depends on m_i and this optimization problem can not be solved analytically

The K-means Algorithm (3/10)

Initialization

- A set of initial cluster centers is needed $\{m_i\}_{i=1}^k$

Recursion

- Assign each object x^{t} to the cluster whose center is closest

$$b_i^t = \begin{cases} 1 & \text{if } \| \boldsymbol{x}^t - \boldsymbol{m}_i \| = \min_j \| \boldsymbol{x}^t - \boldsymbol{m}_j \| \\ 0 & \text{otherwise} \end{cases}$$

 Then, re-compute the center of each cluster as the centroid or mean (average) of its members

• Using the medoid as the cluster center ?

(a medoid is one of the objects in the cluster)

$$\boldsymbol{m}_i = \frac{\sum_{t=1}^N b_i^t \cdot \boldsymbol{x}^t}{\sum_{t=1}^N b_i^t}$$

These two steps are repeated until \boldsymbol{m}_i stabilizes

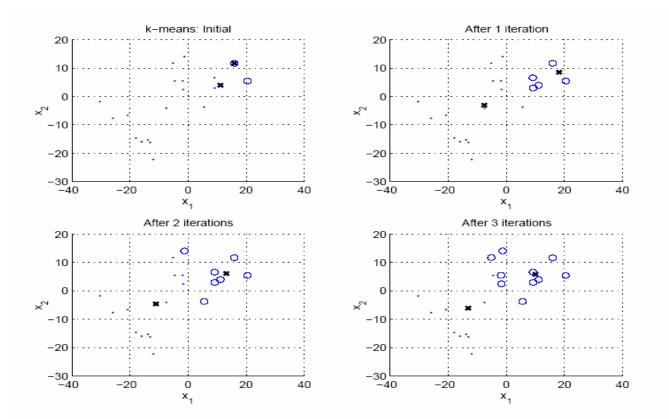
The K-means Algorithm (4/10)

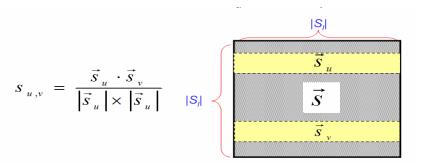
• Algorithm

Initialize $\boldsymbol{m}_i, i = 1, ..., k$, for example, to k random \boldsymbol{x}^t Repeat For all $\boldsymbol{x}^t \in \mathcal{X}$ $b_i^t \leftarrow \begin{cases} 1 & \text{if } \|\boldsymbol{x}^t - \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^t - \boldsymbol{m}_j\| \\ 0 & \text{otherwise} \end{cases}$ For all $\boldsymbol{m}_i, i = 1, ..., k$ $\boldsymbol{m}_i \leftarrow \sum_t b_i^t \boldsymbol{x}^t / \sum_t b_i^t$ Until \boldsymbol{m}_i converge

The *K*-means Algorithm (5/10)

• Example 1



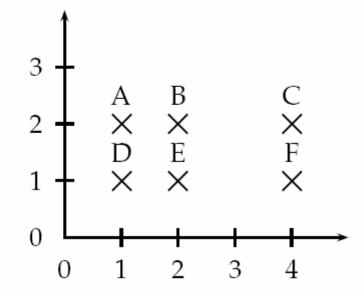

Figure 7.2: Evolution of k-means. Crosses indicate center positions. Data points are marked depending on the closest center.

The K-means Algorithm (6/10)

• Example 2

Cluster	Members	
1	ballot (0.28), polls (0.28), Gov (0.30), seats (0.32)	government
2	profit (0.21), finance (0.21), payments (0.22)	finance
3	NFL (0.36), Reds (0.28), Sox (0.31), inning (0.33),	sports
4	<i>quarterback</i> (0.30), <i>scored</i> (0.30), <i>score</i> (0.33) <i>researchers</i> (0.23), <i>science</i> (0.23)	research
5	Scott (0.28), Mary (0.27), Barbara (0.27), Edward (0.29) name	

Table 14.4 An example of K-means clustering. Twenty words represented asvectors of co-occurrence counts were clustered into 5 clusters using K-means.The distance from the cluster centroid is given after each word.

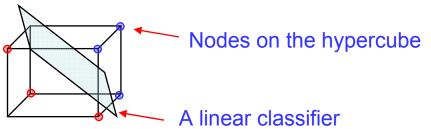


The *K*-means Algorithm (7/10)

- Complexity: O(*IKNM*)
 - I: Iterations; K: cluster number; N: object number; M: object dimensionality
- Choice of initial cluster centers (seeds) is important
 - Pick at random
 - Or, calculate the mean **m** of all data and generate *k* initial centers m_i by adding small random vector to the mean $\mathbf{m} \pm \boldsymbol{\delta}$
 - Or, project data onto the principal component (first eigenvector), divide it range into k equal interval, and take the mean of data in each group as the initial center m_i
 - Or, use another method such as hierarchical clustering algorithm on a subset of the objects
 - E.g., buckshot algorithm uses the group-average agglomerative clustering to randomly sample of the data that has size square root of the complete set

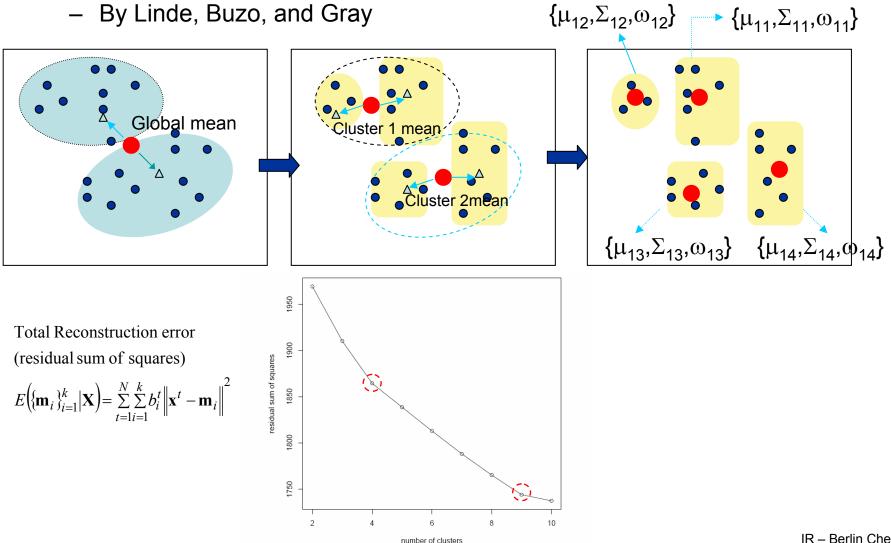
The K-means Algorithm (8/10)

Poor seeds will result in sub-optimal clustering

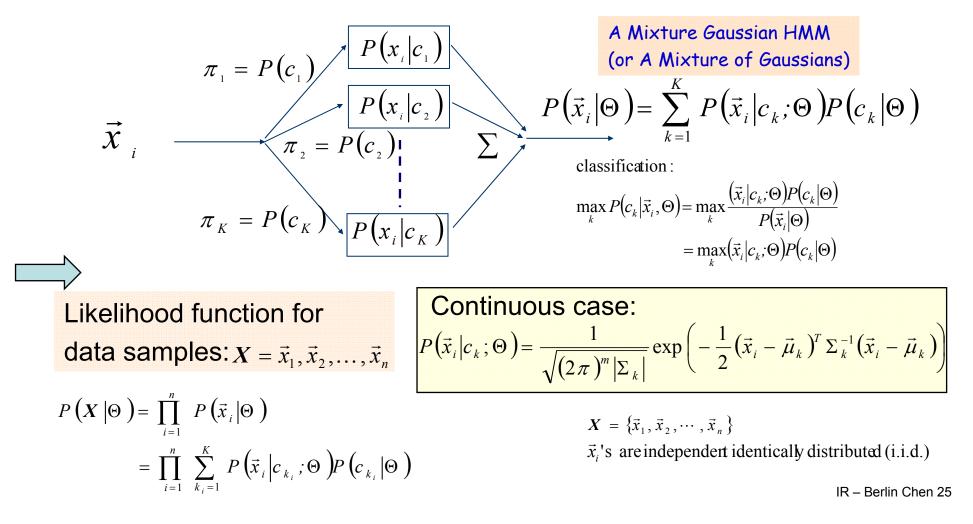


▶ **Figure 16.7** The outcome of clustering in k-means depends on the initial seeds. For seeds B and E, k-means converges to $\{A, B, C\}, \{D, E, F\}$, a suboptimal clustering. For seeds D and F, it converges to $\{A, B, D, E\}, \{C, F\}$, the global optimum for K = 2.

The *K*-means Algorithm (9/10)


- How to break ties when in case there are several centers with the same distance from an object
 - E.g., randomly assign the object to one of the candidate clusters (or assign the object to the cluster with lowest index)
 - Or, perturb objects slightly
- Applications of the K-means Algorithm
 - Clustering
 - Vector quantization
 - A preprocessing stage before classification or regression
 - Map from the original space to *I*-dimensional space/hypercube

 $l = \log_2 k$ (k clusters)

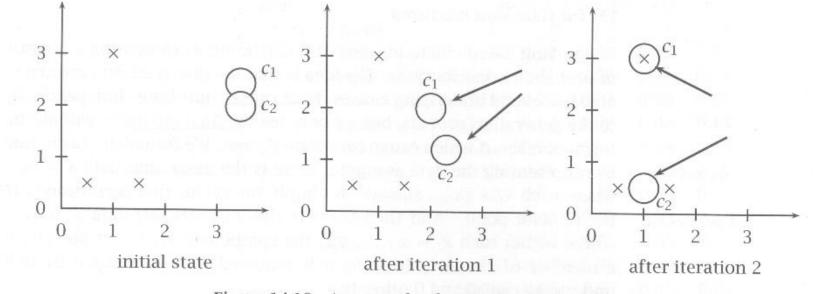
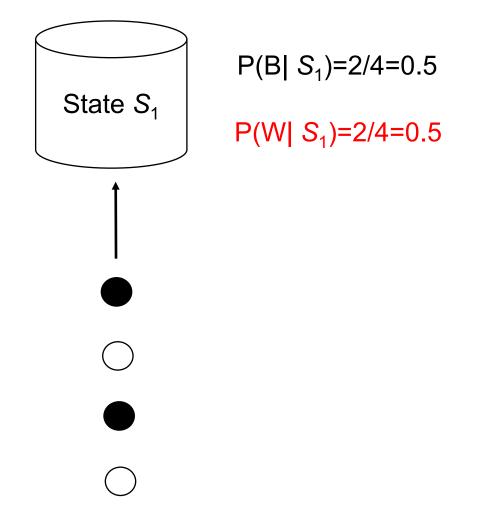

The K-means Algorithm (10/10)

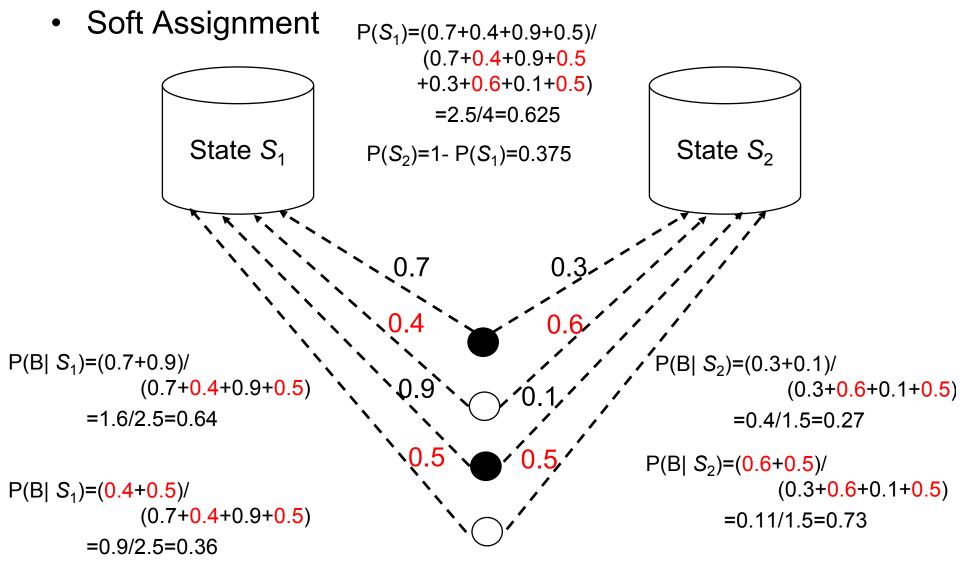
E.g., the LBG algorithm $M \rightarrow 2M$ at each iteration ٠

The EM Algorithm (1/2)

- A **soft version** of the *K*-mean algorithm
 - Each object could be the member of multiple clusters
 - Clustering as estimating a mixture of (continuous) probability distributions

The EM Algorithm (2/2)


Figure 14.10 An example of using the EM algorithm for soft clustering.

Maximum Likelihood Estimation (1/2)

• Hard Assignment

Maximum Likelihood Estimation (2/2)

Expectation-Maximization Updating Formulas (1/2)

• Mixture Weight

$$\hat{\pi}_{k} = P\left(c_{k} \middle| \hat{\Theta} \right) = \frac{w_{k}}{\sum\limits_{k=1}^{K} w_{k}} = \frac{\sum\limits_{l=1}^{n} \frac{P\left(\vec{x}_{i} \middle| c_{k}, \Theta\right) P\left(c_{k} \middle| \Theta\right)}{\sum\limits_{l=1}^{K} P\left(\vec{x}_{i} \middle| c_{l}, \Theta\right) P\left(c_{l} \middle| \Theta\right)}}{\sum\limits_{k=1i=1}^{K} \frac{P\left(\vec{x}_{i} \middle| c_{k}, \Theta\right) P\left(c_{k} \middle| \Theta\right)}{\sum\limits_{l=1}^{K} P\left(\vec{x}_{i} \middle| c_{l}, \Theta\right) P\left(c_{k} \middle| \Theta\right)}} = \frac{\sum\limits_{l=1}^{n} \frac{P\left(\vec{x}_{i} \middle| c_{k}, \Theta\right) P\left(c_{l} \middle| \Theta\right)}{\sum\limits_{l=1}^{K} P\left(\vec{x}_{i} \middle| c_{l}, \Theta\right) P\left(c_{l} \middle| \Theta\right)}}{n}$$

Mean of Gaussian

$$\hat{\vec{\mu}}_{k} = \frac{\sum_{i=1}^{n} w_{k,i} \cdot \vec{x}_{i}}{\sum_{i=1}^{n} w_{k,i}} = \frac{\sum_{i=1}^{n} \frac{P\left(\vec{x}_{i} \mid c_{k}, \Theta\right) P\left(c_{k} \mid \Theta\right)}{\sum_{l=1}^{K} P\left(\vec{x}_{i} \mid c_{l}, \Theta\right) P\left(c_{l} \mid \Theta\right)} \cdot \vec{x}_{i}}{\sum_{i=1}^{n} \frac{P\left(\vec{x}_{i} \mid c_{k}, \Theta\right) P\left(c_{k} \mid \Theta\right)}{\sum_{i=1}^{n} \frac{P\left(\vec{x}_{i} \mid c_{k}, \Theta\right) P\left(c_{k} \mid \Theta\right)}{\sum_{l=1}^{K} P\left(\vec{x}_{i} \mid c_{l}, \Theta\right) P\left(c_{l} \mid \Theta\right)}}$$

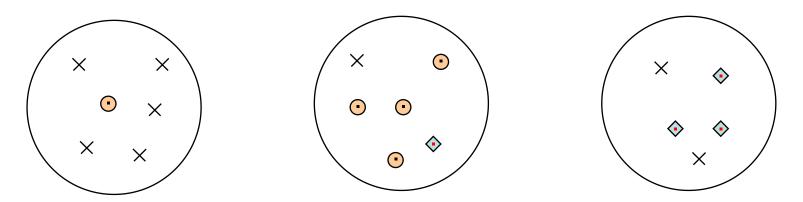
Expectation-Maximization Updating Formulas (2/2)

Covariance Matrix of Gaussian

$$\hat{\Sigma}_{k} = \frac{\sum_{i=1}^{n} w_{k,i} \cdot (\vec{x}_{i} - \hat{\vec{\mu}}_{k})(\vec{x}_{i} - \hat{\vec{\mu}}_{k})^{T}}{\sum_{i=1}^{n} w_{k,i}}$$

$$= \frac{\sum_{i=1}^{n} \frac{P(\vec{x}_{i} | c_{k}, \Theta) P(c_{k} | \Theta)}{\sum_{i=1}^{K} P(\vec{x}_{i} | c_{l}, \Theta) P(c_{l} | \Theta)} \cdot (\vec{x}_{i} - \hat{\vec{\mu}}_{k})(\vec{x}_{i} - \hat{\vec{\mu}}_{k})^{T}}{\sum_{i=1}^{n} \frac{P(\vec{x}_{i} | c_{k}, \Theta) P(c_{l} | \Theta)}{\sum_{i=1}^{n} \frac{P(\vec{x}_{i} | c_{k}, \Theta) P(c_{k} | \Theta)}{\sum_{i=1}^{K} P(\vec{x}_{i} | c_{l}, \Theta) P(c_{l} | \Theta)}}$$

More facts about The EM Algorithm


- The initial cluster distributions can be estimated using the *K*-means algorithm
- The procedure terminates when the likelihood function
 P (X |Θ) is converged or maximum number of
 iterations is reached

Evaluation of Clustering (1/2)

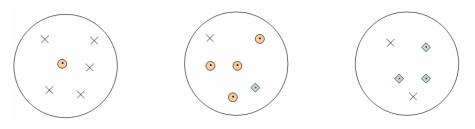
- Internal criterion for the quality of a clustering result
 - The typical objective is to attain
 - High intra-cluster similarity (documents with a cluster are similar)
 - Low inter-cluster similarity (document from different clusters are dissimilar)
 - The measured quality depends on both the document representation and the similarity measure used
 - Good scores on an internal criterion do not necessarily translate into good effective in an application

Evaluation of Clustering (2/2)

- External criterion for the quality of a clustering result
 - Evaluate how well the clustering matches the gold standard classes produced by human judges
 - That is, the quality is measured by the ability of the clustering algorithm to discover some or all of the hidden patterns or latent (true) classes

- Two common criteria
 - Purity
 - Rand Index (RI)

Purity (1/2)


- Each cluster is first assigned to class which is most frequent in the cluster
- Then, the accuracy of the assignment is measured by counting the number of correctly assigned documents and dividing by the sample size

Purity
$$(\Omega, \Gamma) = \frac{1}{N} \sum_{k} \max_{j} |\omega_{j} \cap c_{k}|$$

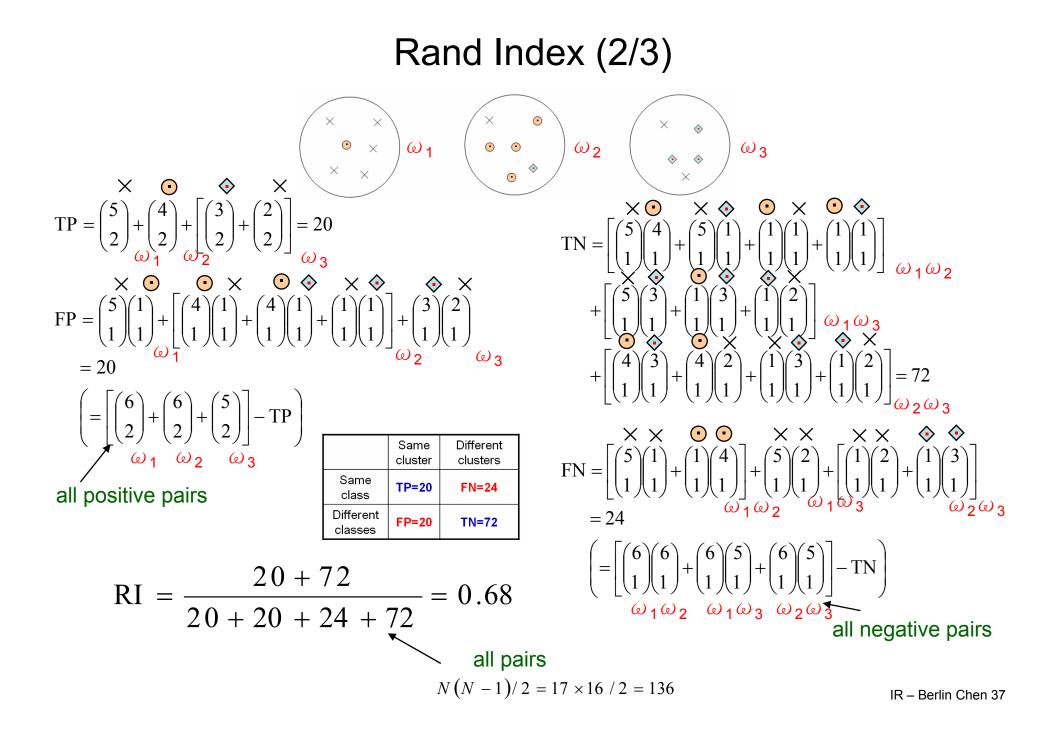
$$-\Omega = \{\omega_1, \omega_2, \dots, \omega_K\}: \text{ the set of clusters}$$

$$\Gamma = \{c, c, \dots, c_K\}: \text{ the set of classes}$$

- $\Gamma = \{c_1, c_2, \dots, c_J\} : \text{the set of classes}$
- -N : the sample size

Purity
$$(\Omega, \Gamma) = \frac{1}{17}(5+4+3) = 0.71$$

Purity (2/2)


- High purity is easy to achieve for a large number of clusters (?)
 - Purity will be 1 if each document gets its own cluster
 - Therefore, purity cannot be used to trade off the quality of the clustering against the number of clusters

Rand Index (1/3)

- Measure the similarity between the clusters and the classes in ground truth
 - Consider the assignments of all possible pairs of distinct documents in the cluster and the true class

Number of points	Same cluster in clustering	Different clusters in clustering
Same class in ground truth	TP (True Positive)	FN (False Negative)
Different classes in ground truth	FP (False Positive)	TN (True Negative)

$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$

Rand Index (3/3)

- The rand index has a value between 0 and 1
 - 0 indicates that the clusters and the classes in ground truth do not agree on any pair of points
 - 1 indicates that the clusters and the classes in ground truth are exactly the same

F-Measure Based on Rand Index

• F-Measure: harmonic mean of precision (P) and recall (R)

$$P = \frac{\text{TP}}{\text{TP} + \text{FP}}, \qquad R = \frac{\text{TP}}{\text{TP} + \text{FN}}$$
$$F_b = \frac{b^2 + 1}{\frac{b^2}{R} + \frac{1}{P}} = \frac{(b^2 + 1)PR}{b^2 P + R}$$

	Same cluster	Different clusters
Same class	ТР	FN
Different classes	FP	TN

- If we want to penalize false negatives (FN) more strongly than false positives (FP), then we can set b > 1
 - That is, giving more weight to recall (R)

Hierarchical Clustering

Hierarchical Clustering

- Can be in either bottom-up or top-down manners
 - Bottom-up (agglomerative) 凝集的
 - Start with individual objects and grouping the most similar ones
 - E.g., with the minimum distance apart

$$sim (x, y) = \frac{1}{1 + d(x, y)}$$

distance measures will be discussed later on

- The procedure terminates when one cluster containing all objects has been formed
- Top-down (divisive) _{分裂的}
 - Start with all objects in a group and divide them into groups so as to maximize within-group similarity

Hierarchical Agglomerative Clustering (HAC)

- A bottom-up approach
- Assume a similarity measure for determining the similarity of two objects
- Start with all objects in a separate cluster (a singleton) and then repeatedly joins the two clusters that have the most similarity until there is one only cluster survived
- The history of merging/clustering forms a binary tree or hierarchy

HAC: Algorithm

1 Given: a set $X = \{x_1, \dots, x_n\}$ of objects 2 a function sim: $\mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X}) \to \mathbb{R}$ 3 for i := 1 to n do Initialization (for tree leaves): 4 $C_i := \{x_i\}$ end Each object is a cluster 5 $C := \{c_1, \ldots, c_n\}$ 6 j := n + 17 while C > 1 cluster number 8 $(c_{n_1}, c_{n_2}) := \operatorname{arg\,max}_{(c_u, c_v) \in C \times C} \operatorname{sim}(c_u, c_v)$ 9 $C_j = C_{n_1} \cup C_{n_2}$ merged as a new cluster 10 $C := C \setminus \{c_{n_1}, c_{n_2}\} \cup \{c_j\}$ The original two clusters j := j + 1are removed Figure 14.2 Bottom-up hierarchical clustering.

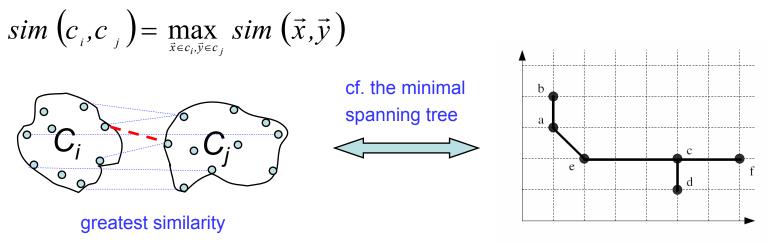
Distance Metrics

• Euclidian Distance (L_2 norm)

$$L_2(\vec{x}, \vec{y}) = \sum_{i=1}^m (x_i - y_i)^2$$

- Make sure that all attributes/dimensions have the same scale (or the same variance)
- L₁ Norm (City-block distance)

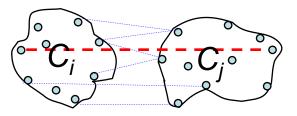
$$L_1(\vec{x}, \vec{y}) = \sum_{i=1}^m |x_i - y_i|$$

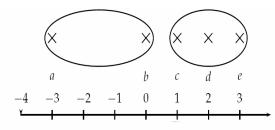

Cosine Similarity (transform to a distance by subtracting from 1)

$$1 - \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| \cdot |\vec{y}|}$$

ranged between 0 and 1

Measures of Cluster Similarity (1/7)


- Especially for the bottom-up approaches
- Single-link clustering
 - The similarity between two clusters is the similarity of the two closest objects in the clusters
 - Search over all pairs of objects that are from the two different clusters and select the pair with the greatest similarity
 - Elongated clusters are achieved


Measures of Cluster Similarity (2/7)

- Complete-link clustering
 - The similarity between two clusters is the similarity of their two most dissimilar members
 - Sphere-shaped clusters are achieved
 - Preferable for most IR and NLP applications

$$sim\left(c_{i},c_{j}\right) = \min_{\vec{x} \in c_{i}, \vec{y} \in c_{j}} sim\left(\vec{x}, \vec{y}\right)$$

least similarity

- More sensitive to outliers

► **Figure 17.6** Outliers in complete-link clustering. The four points have the coordinates $-3 + 2 \times \epsilon$, $0, 1 + 2 \times \epsilon$, 2 and $3 - \epsilon$. Complete-link clustering creates the two clusters shown as ellipses. Intuitively, $\{b, c, d, e\}$ should be one cluster, but it is split by outlier *a*.

Measures of Cluster Similarity (3/7)

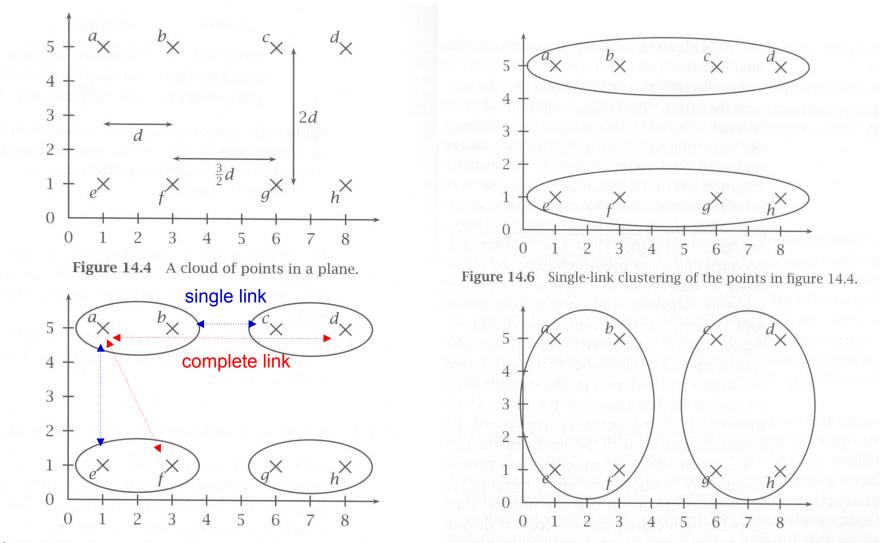
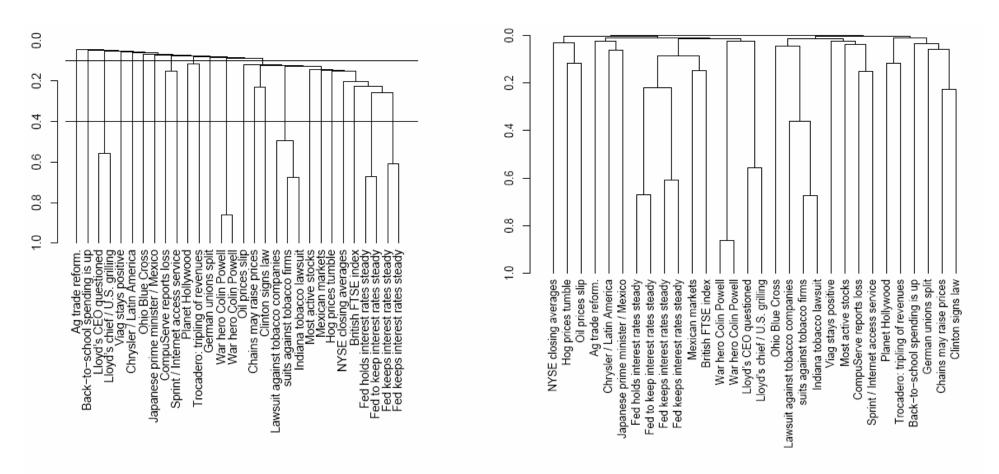
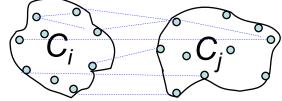



Figure 14.5 Intermediate clustering of the points in figure 14.4. Figure 14.7 Complete-link clustering of the points in figure 14.4.



▶ Figure 17.1 A dendrogram of a single-link clustering of 30 documents from Reuters-RCV1. The y-axis represents combination similarity, the similarity of the two component clusters that gave rise to the corresponding merge. For example, the combination similarity of *Lloyd's CEO questioned* and *Lloyd's chief / U.S. grilling* is ≈ 0.56 . Two possible cuts of the dendrogram are shown: at 0.4 into 24 clusters and at 0.1 into 12 clusters.

▶ Figure 17.4 A dendrogram of a complete-link clustering of 30 documents from Reuters-RCV1. This complete-link clustering is more balanced than the single-link clustering of the same documents in Figure 17.1. When cutting the last merger, we obtain two clusters of similar size (documents 1–16 and documents 17–30). The y-axis represents combination similarity.

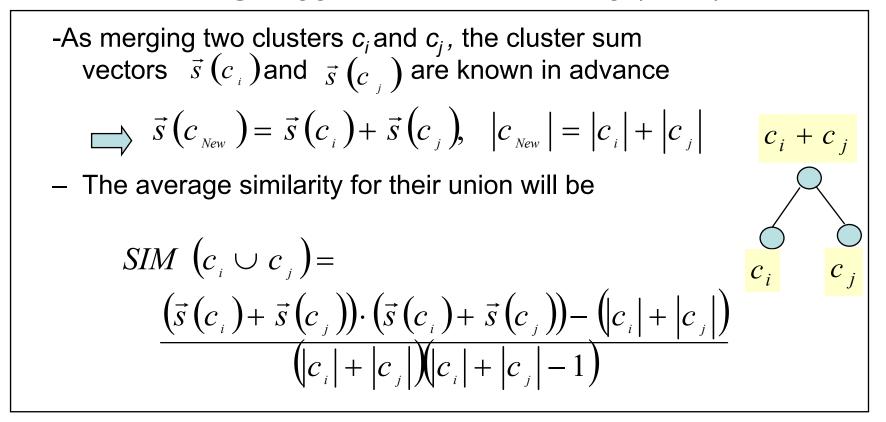
Measures of Cluster Similarity (5/7)

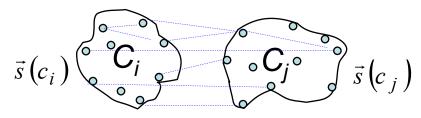
- Group-average agglomerative clustering
 - A compromise between single-link and complete-link clustering
 - The similarity between two clusters is the average similarity between members

- If the objects are represented as length-normalized vectors and the similarity measure is the cosine
 - There exists an fast algorithm for computing the average similarity

$$sim (\vec{x}, \vec{y}) = \cos (\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|} = \vec{x} \cdot \vec{y}$$

length-normalized vectors

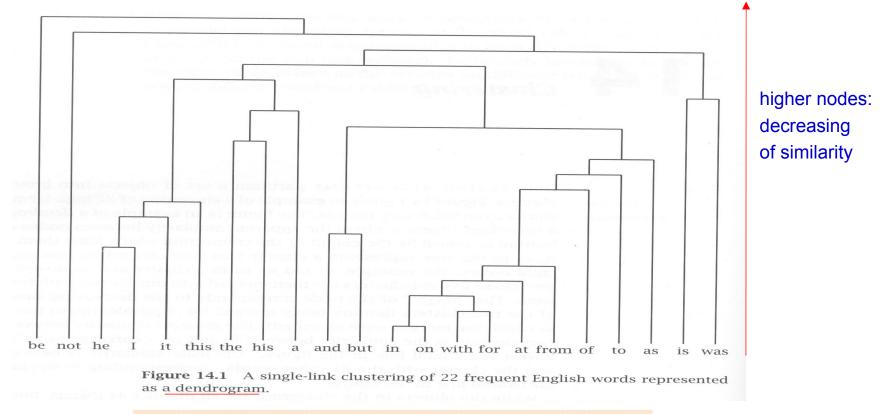

Measures of Cluster Similarity (6/7)


• **Group-average** agglomerative clustering (cont.)

- The average similarity *SIM* between vectors in a cluster
$$c_j$$
 is defined as
 $SIM(c_j) = \frac{1}{|c_j| |(c_j|-1)} \sum_{\vec{x} \in c_j} \sum_{\substack{\vec{y} \in c_j \\ \vec{y} \neq \vec{x}}} sim(\vec{x}, \vec{y}) = \frac{1}{|c_j| |(c_j|-1)} \sum_{\vec{x} \in c_j} \sum_{\substack{\vec{y} \neq c_j \\ \vec{y} \neq \vec{x}}} \vec{x} \cdot \vec{y}$
- The sum of members in a cluster c_j : $\vec{s}(c_j) = \sum_{\substack{\vec{x} \in c_j \\ \vec{y} \neq \vec{x}}} \vec{x}$
- Express $SIM(c_j)$ in terms of $\vec{s}(c_j)$
 $\vec{s}(c_j) \cdot \vec{s}(c_j) = \sum_{\substack{x \in c_j \\ \vec{x} \in c_j \\ \vec{x} \neq \vec{x}}} \vec{x} \cdot \vec{s}(c_j) = \sum_{\substack{x \in c_j \\ \vec{x} \in c_j \\ \vec{x} \neq \vec{x}}} \vec{x} \cdot \vec{y}$ length-normalized vector
 $= |c_j| (|c_j|-1)SIM(c_j) + \sum_{\substack{x \in c_j \\ \vec{x} \neq \vec{x}}} \vec{x} \cdot \vec{x}| = 1$
 $= |c_j| (|c_j|-1)SIM(c_j) + |c_j|$
 $\therefore SIM(c_j) = \frac{\vec{s}(c_j) \cdot \vec{s}(c_j) - |c_j|}{|c_j| (|c_j|-1)}$

Measures of Cluster Similarity (7/7)

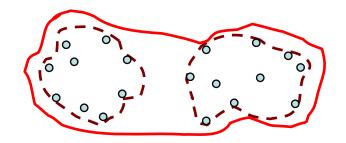
Group-average agglomerative clustering (cont.)



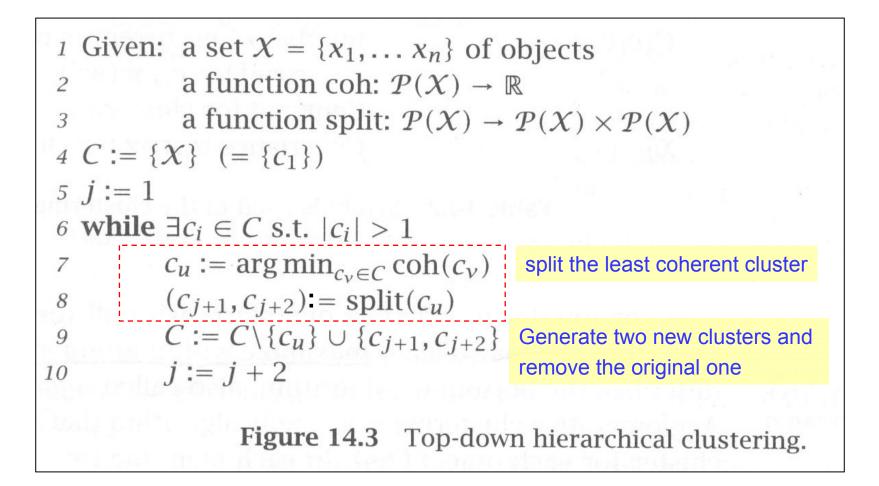
IR - Berlin Chen 51

Example: Word Clustering

- Words (objects) are described and clustered using a set of features and values
 - E.g., the left and right neighbors of tokens of words

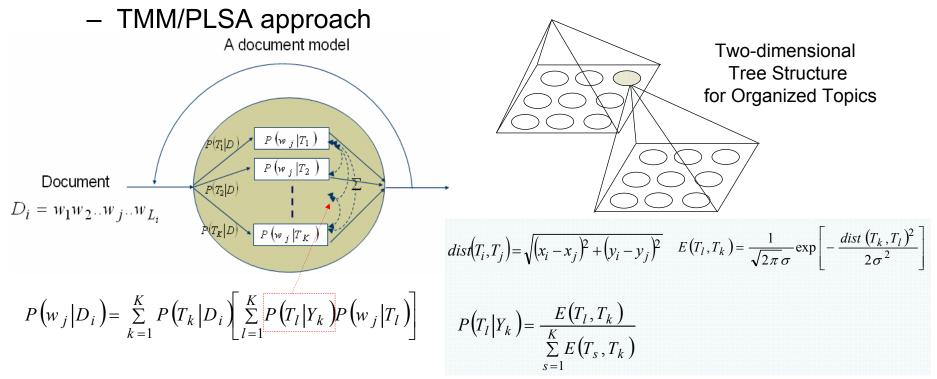

"be" has least similarity with the other 21 words !

Divisive Clustering (1/2)


- A top-down approach
- Start with all objects in a single cluster
- At each iteration, select the least coherent cluster and split it
- Continue the iterations until a predefined criterion (e.g., the cluster number) is achieved
- The history of clustering forms a binary tree or hierarchy

Divisive Clustering (2/2)

- To select the least coherent cluster, the measures used in bottom-up clustering (e.g. HAC) can be used again here
 - Single link measure
 - Complete-link measure
 - Group-average measure
- How to split a cluster
 - Also is a clustering task (finding two sub-clusters)
 - Any clustering algorithm can be used for the splitting operation, e.g.,
 - Bottom-up (agglomerative) algorithms
 - Non-hierarchical clustering algorithms (e.g., *K*-means)



Divisive Clustering: Algorithm

Hierarchical Document Organization (1/7)

• Explore the Probabilistic Latent Topical Information

- Documents are clustered by the latent topics and organized in a twodimensional tree structure, or a two-layer map
- Those related documents are in the same cluster and the relationships among the clusters have to do with the distance on the map
- When a cluster has many documents, we can further analyze it into an other map on the next layer

Hierarchical Document Organization (2/7)

• The model can be trained by maximizing the total loglikelihood of all terms observed in the document collection

$$L_{T} = \sum_{i=1}^{N} \sum_{n=1}^{J} c\left(w_{j}, D_{i}\right) \log P\left(w_{j} | D_{i}\right)$$
$$= \sum_{i=1}^{N} \sum_{n=1}^{J} c\left(w_{j}, D_{i}\right) \log \left\{ \sum_{k=1}^{K} P\left(T_{k} | D_{i}\right) \left[\sum_{l=1}^{K} P\left(T_{l} | Y_{k}\right) P\left(w_{j} | T_{l}\right) \right] \right\}$$

- EM training can be performed

$$\hat{P}(w_{j} \mid T_{k}) = \frac{\sum_{i=1}^{N} c(w_{j}, D_{i}) P(T_{k} \mid w_{j}, D_{i})}{\sum_{j'=1}^{J} \sum_{i'=1}^{N} c(w_{j'}, D_{i'}) P(T_{k} \mid w_{j'}, D_{i'})}$$
where
$$P'(T_{k} \mid w_{j}, D_{i}) = \frac{\sum_{j=1}^{J} c(w_{j}, D_{i}) P(T_{k} \mid w_{j}, D_{i})}{c(D_{i})}$$

Hierarchical Document Organization (3/7)

Criterion for Topic Word Selecting

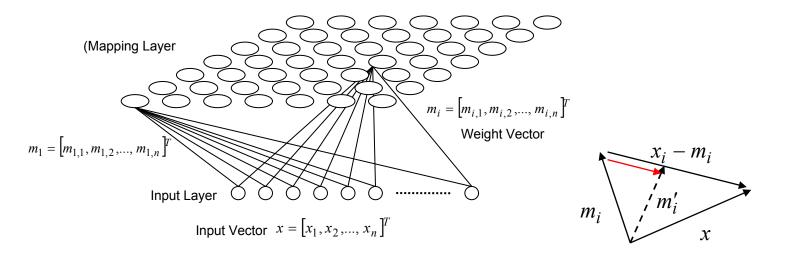
$$S(w_{j}, T_{k}) = \frac{\sum_{i=1}^{N} c(w_{j}, D_{i}) P(T_{k} \mid D_{i})}{\sum_{i'=1}^{N} c(w_{j}, D_{i'}) [1 - P(T_{k} \mid D_{i'})]}$$

Hierarchical Document Organization (4/7)

• Example

4	🚰 Level - 1 - Microsoft Internet Explorer				
	檔案 (E) 編輯 (E) 檢視 (Y) 我的最愛 (A) 工具 (I) 說明 (H) (II)				
1	網址D) 🖉 D/IR/stopic_map/stmm_2_1.html 🔽 🔗 移至 連結 💥				
Title generation system - Microsoft Internet Explorer 檔案(P) 編輯(E) 檢視(Y) 我的最愛(A) 工具(I) 說明(H)	Google - 🔽 🖸 Search - 🚿 💁 1 blocked 👋 Check - 🔨 AutoLink - 😓 AutoFill 🛃 Options 🖉				
			<u> </u>		
網址型 會 http://localhost/ Google - 『 C Search - 初 祭 1 blocked 小 Check ・	<u>聯邦調查局執法 割歸 空對空飛彈</u>	<u>儒界 儒務 台商 會長</u>	法輪鈴木宗男巫統中國共產黨		
	安 <u>安全部 艾希克羅 蓋達組織 接種</u> 等級 民航機 認出 輻射性	<u>僑胞 呼吸 雙十國慶 酒會</u> 立委 舉辦 國慶 聯誼會	<u>李光耀 挪用 書記 交替</u> 班子 馬哈地 一邊 李顯龍		
Title/Summary Generation Demo Sy	劫機主謀重整旗鼓歐瑪	經文 履新 組長 衛生	與作棟 新疆 論說 軍委		
The summary Ceneration Demo Sy	穆勒 國土 黃色 葉門	餐會 春節 渥太華 後援	政治局標題馬來人早報		
National Taiwan University	美國境內中情局天花芮吉	中華僑團華僑鄉親	格局資政接班報章		
Speech Processing Laboratory					
	檢查人員 檢查員 動武 最後通牒	西非 衛隊 巴格達機場 伊拉克部隊	林東源 金大中 漢城 南北		
國外政治 Topic Map	安理會布里克斯決議精密	伊拉克南部 賴比瑞亞 伊北 科威特	多邊正常化長官平壤		
<u> 国内国會 Topic Map</u> 国外社會 Topic Map	<u>武檢 聯合國 授權 沙丹·</u>	<u>步兵 辛格 庫德族 斯拉</u>	<u>分界線 會談 鐵路 南韓統一部</u>		
<u>國外財經</u> Topic Map	銷毀違禁解除武檢人員	法新社 翁山蘇姬 庫克 蒙羅維亞	<u>韓美 燃料 南韓 懸案</u> 金正日 盧武鉉 朝鮮半島 打撈		
國內財經 Topic Map		<u>巴格達 陸戰隊 轟炸 激戰</u> 卡達 克里 市中心 基爾	<u>金正白 盧內茲 朝鮮十島 打捞</u> 黃海 銜接 核子 北韓		
<u>地方政府 Topic Map</u> 國内政治 Topic Map			THE FAIL AND THE		
國內交通 Topic Map					
國內影劇 Topic Map					
<u>國外體育 Topic Map</u> 國內社會 Topic Map	普查支領王太王室	自殺加薩市炸彈巴勒斯坦	中美洲決選薩爾瓦多哥斯大黎加		
大陸社會 Topic Map	<u>登基 會計年度 小泉內閣 瑪格麗特</u>	<u>城鎮約旦河巴勒斯坦人哈瑪斯</u> 喪生耶路撒冷阿拉法特約旦河西岸	<u>中間 兼職 雷朋 宏都拉斯</u> 羅育 馬達加斯加 史瓦濟蘭 翁岳生		
國外醫藥 Topic Map	<u>問卷 靈枢 溫莎堡 英鎊</u> 西敏寺大廳 白金漢宮 社會勞工堂 王太后	送生 那踏擫行 阿拉法特 科旦內四岸	<u>維育 馬達加斯加 史瓦賀蘭 羽田生</u> 王金平 動章 院長 金哥納		
<u>國外影劇 Topic Map</u> 大陸財經 Topic Map		夏隆 墾區 西岸 受傷	馬拉坎南宮游錫方右派雅羅		
<u>國內文教</u> Topic Map	加班女王降至百分點 享年伊麗莎白太后大關	特拉維夫以色列部隊包圍巴士	查維斯 喬斯班 孟代爾 方土		
國內體育 Topic Map					
<u>国内醫藥 Topic Map</u> 大陸政治 Topic Map					
	file:///D:/IR/topic_map/tmm_2_2_7.html		我的電腦		
) ⑥ 正在従網站下載:http://localhost/					

Hierarchical Document Organization (5/7)


😂 News List - Microsoft Internet Explore:

• Example (cont.)

			⇔上一頁 → → → 🥝	3 🖸 🖄 🔇 搜尋 📾 我的最爱 ③ 媒體 🍏 💁 - 🛃 🖸 - 📃 🔯
			網址(D) 🙋 D:\IR\topic_)	
			Google -	💽 🛛 💽 Search 👻 🔊 🏝 1 blocked 🛛 🌱 Check 🔹 🔍 AutoLink 👻 🗐 Aut
			N00000E021000	
🌌 Level - 2 - Microsoft Internet Explorer			N200205051200-	-19:阿拉法特原則接受歐盟所提中東和平計劃 [summary] -25:美英就解除阿拉法特所受包圍與巴方展開談判 [summary]
			N200209201200-	-14:阿拉法特反對以色列保所提結束包圍條件 [summary] -22:阿拉法特宣布新內閣引發巴勒斯坦國會激辯 [summary]
〜上一頁 • → - ◎ 図 凸 ◎ 浅理尋 画我的最爱 ◎ 媒體 ③ ■ - → ◎ ○ • 目 ◎		N200210301200- N200211011200-	-22:阿拉法得宣佈新內閣包留巴動斯坦國曾激莊[summary] -24:阿拉伯人支持阿拉法特及巴勒斯坦人正當抵抗[summary]	
網址D) 🛃 D.'UR'topic_map'tmm_2_2_7.html				
Google - 💽 Search - 🧭 🍄 I blocked 🛛 🍄 Check - 🔨 AutoEink - 😓 AutoEil 🏧 Options 🖉				
			41	
印度瓦巴依	新加坡澳洲	墜毀科威特		
巴基斯坦新德里 南亚巴國	<u>峇里島 印尼峇里島</u> 印尼 伯爾	<u>北韓 阿富汗</u> 挾持 人質		
		1/1寸 / 頁		
			41	
出任柯瑞	受傷炸彈	協議摩洛哥		
<u>阿巴斯 阿拉法特</u> 雪馬拉 任命	<u>巴格達 自殺</u> 巴士 至少	<u>内戰 斯里蘭卡</u> 象牙海岸 蘇丹		
			ē	
<u>城鎭 約旦河</u> 坦克 決議案	<u>和平 中東</u> 鮑爾 約旦	<u>群眾 示威</u> 遊行 抗議		
民營西岸	<u>埃及路線</u>	委内瑞拉巴拉圭		
file:///D:/IR/topic_map/tmm_2_66.html				
				IR – Berlin Chen 6

Hierarchical Document Organization (6/7)

- Self-Organization Map (SOM)
 - A recursive regression process

$$m_{i}(t+1) = m_{i}(t) + h_{c(x),i}(t)[x(t) - m_{i}(t)]$$
where
$$\|x - m_{i'}\| = \sqrt{\sum_{n} (x_{n} - m_{i',n})^{2}}$$
$$m_{i'} \| x - m_{i'} \|$$
$$h_{c(x),i}(t) = \alpha(t) \exp\left(-\frac{\|r_{i} - r_{i'}\|}{2\alpha}\right)$$

IR - Berlin Chen 61

 $r_{c(x)}$

Hierarchical Document Organization (7/7)

Results

Model	Iterations	dist _{Between} /dist _{Within}
ТММ	10	1.9165
	20	2.0650
	30	1.9477
	40	1.9175
SOM	100	2.0604

$$R_{Dist} = \frac{dist_{Between}}{dist_{Within}} = \frac{\sum_{i=1}^{|D|} \sum_{j=i+1}^{|D|} f_{Between}(i,j)}{\sum_{i=1}^{|D|} \sum_{j=i+1}^{|D|} C_{Between}(i,j)} \qquad f_{Between}(i,j) = \begin{cases} dist_{Map}(i,j) & T_{r,i} \neq T_{r,j} \\ 0 & otherwise \end{cases}$$

$$dist_{Between}(i,j) = \begin{cases} 1 & T_{r,i} \neq T_{r,j} \\ 0 & otherwise \end{cases}$$

$$C_{Between}(i,j) = \begin{cases} 1 & T_{r,i} \neq T_{r,j} \\ 0 & otherwise \end{cases}$$

$$dist_{Within} = \sum_{i=1}^{|D|} \sum_{j=i+1}^{|D|} f_{Within}(i,j) \\ \sum_{i=1}^{|D|} \sum_{j=i+1}^{|D|} C_{Within}(i,j) \\ \sum_{i=1}^{|D|} C_{Within}(i,j$$

IR – Berlin Chen 62