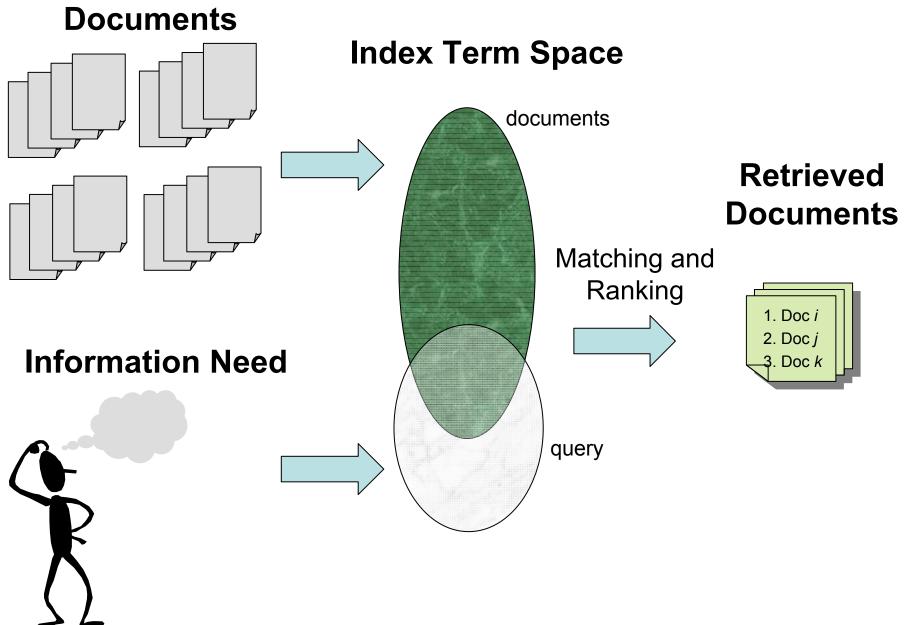
Models for Information Retrieval - Classical IR Models

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

References:

- 1. *Modern Information Retrieval*, Chapter 2
- 2. Language Modeling for Information Retrieval, Chapter 3

Index Terms


- Meanings From Two Perspectives
 - In a restricted sense (keyword-based)
 - An index term is a (predefined) keyword (usually a noun) which has some semantic meaning of its own
 - In a more general sense (word-based)
 - An index term is simply any word which appears in the text of a document in the collection
 - Full-text

Index Terms (cont.)

- The semantics (main themes) of the documents and of the user information need should be expressed through sets of index terms
 - Semantics is often lost when expressed through sets of words (e.g., possible, probable, likely)
 - Match between the documents and user queries is in the (imprecise?) space of index terms

Index Terms (cont.)

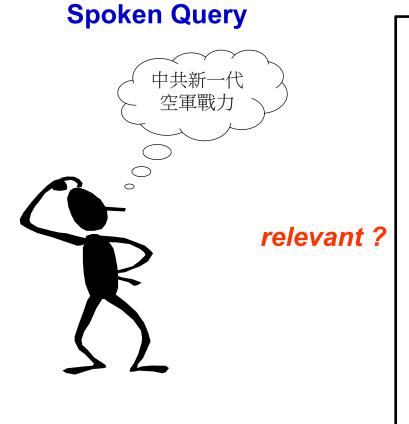
- Documents retrieved are flrequently irrelevant
 - Since most users have no training in query formation, problem is even worst
 - Not familar with the underlying IR process
 - E.g: frequent dissatisfaction of Web users
 - Issue of deciding document relevance, i.e. ranking, is critical for IR systems

Ranking Algorithms

- Also called the "information retrieval models"
- Ranking Algorithms
 - Predict which documents are relevant and which are not
 - Attempt to establish a simple ordering of the document retrieved
 - Documents at the top of the ordering are more likely to be relevant
 - The core of information retrieval systems

Ranking Algorithms (cont.)

- A ranking is based on fundamental premises regarding the notion of relevance, such as:
 - Common sets of index terms
 - Sharing of weighted terms
 - Likelihood of relevance


P(Q|D) or P(Q,D)?

literal-term matching

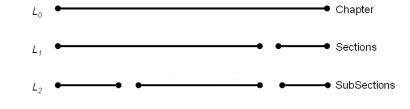
- Sharing of same aspects/concepts Concept/semantic matching
- Distinct sets of premises lead to a distinct IR models

Ranking Algorithms (cont.)

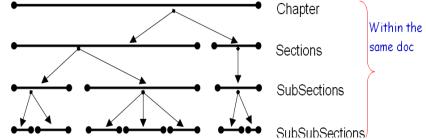
Concept Matching vs. Literal Matching

Transcript of Spoken Document

香港星島日報篇報導引述軍事觀察家的話表 示,到二零零五年台灣將完全喪失空中優 埶, 原因是中國大陸戰機不論是數量或是性 能上都將超越台灣,報導指出中國在 進俄羅斯先進武器的同時也得加快研發自製 武器系統,目前西安飛機製造廠 干胎的改准 型飛豹戰機即將部署尚未與蘇愷三-痈疽抑 對地攻擊住宅飛機,以督促遇到挫折的監控 樂日前冊 已經取得了重大 成果。根據日本媒體報導在台海戰爭| 隨時可 能爆發情況之下北京方面的基本方針 使用 高科技答應局部戰爭。因此,解放軍打 逐零四年前又有包括蘇愷三十二期在內的 兩百架蘇霍伊戰鬥機。

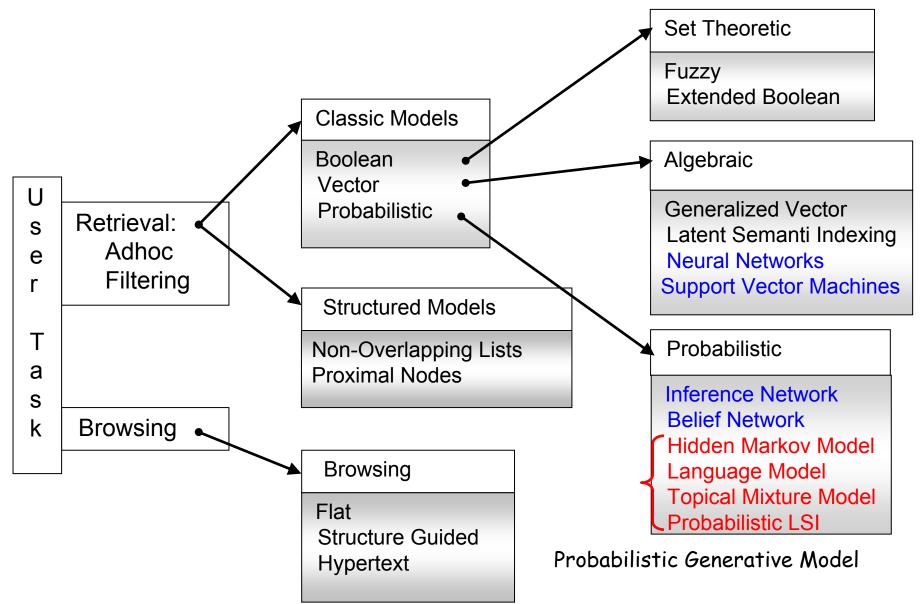

Taxonomy of Classic IR Models

- References to the text content
 - Boolean Model (Set Theoretic)
 - Documents and queries are represented as sets of index terms
 - Vector (Space) Model (Algebraic)
 - Documents and queries are represented as vectors in a *t*dimensional space
 - Probabilistic Model (Probabilistic)
 - Document and query are represented based on probability theory


Alternative modeling paradigms will also be extensively studied !

Taxonomy of Classic IR Models (cont.)

- References to the text structure
 - Non-overlapping list
 - A document divided in non-overlapping text regions and represented as multiple lists for chapters, sections, subsections, etc.



- Proximal Nodes
 - Define a strict hierarchical index over the text which composed of chapters, sections, subsections, paragraphs or lines

SubSubSections

Taxonomy of Classic IR Models (cont.)

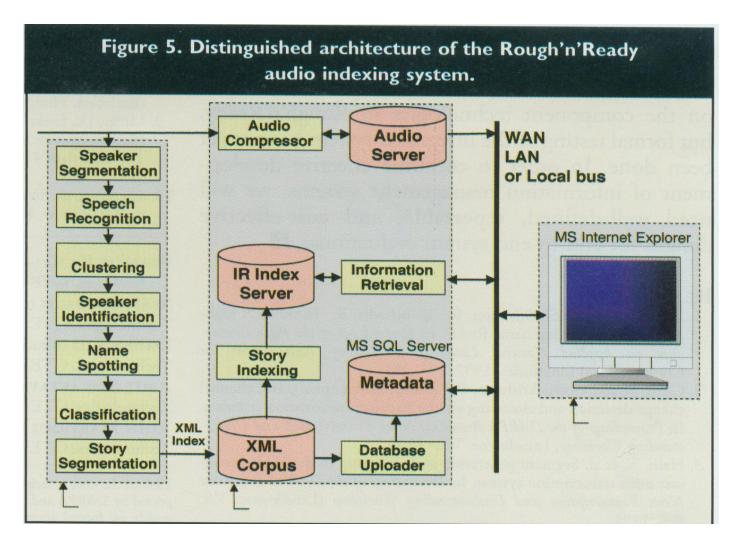
Taxonomy of Classic IR Models (cont.)

• Three-dimensional Representation

U S E R T A S K		Index Terms	Full Text	Full Text + Structure
	Retrieval	Classic Set Theoretic Algebraic Probabilistic	Classic Set Theoretic Algebraic Probabilistic	Structured
	Browsing	Flat	Flat Hypertext	Structure Guided Hypertext

LOGICAL VIEW OF DOCUMENTS

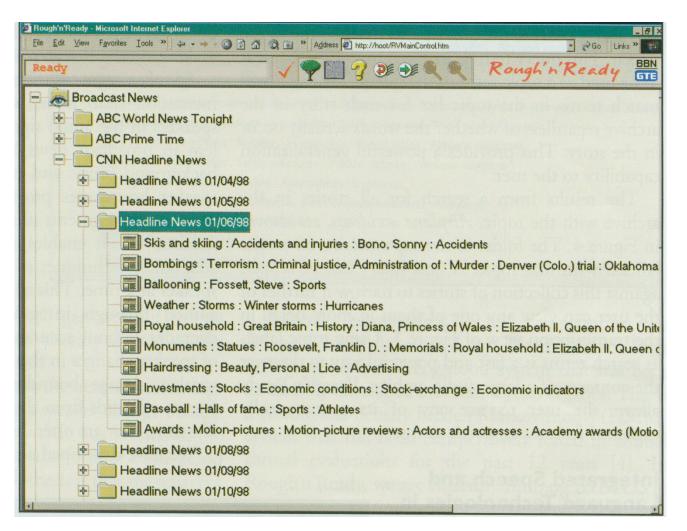
 The same IR models can be used with distinct document logical views


Browsing the Text Content

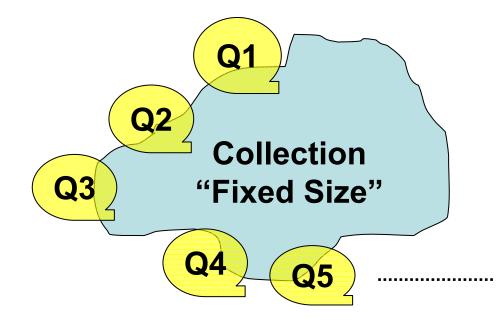
- Flat/Structure Guided/Hypertext
- Example (Spoken Document Retrieval)

Figure 1. Elements of the automatic structural summarization produced by Rough'n'Ready.					
	ady - Microsoft Internet Explorer	-0			
	Gew Favorites Iools » 🕁 - 🗰 - 🔕 🗿 🖾 🖏 🖬 * Address 🛃 http://hoot/RV/MainControl.htm	🕑 🄗 Go 🛛 Links »			
World News Tonight 01/31/98 V The Rough'n'Ready					
female 1	It's a strategy to pressure on council making deals and it's known each day in Southern California latest danger from hell.	Foreign relations with the United States			
male 2	From ABC news World headquarters in New York january thirty	Inspections			
	first nineteen ninety this is world news tonight saturday here's Elizabeth Vargas	United Nations			
	an egen gran and and and magains	Iraq			
Elizabeth Vargas	Good evening and defense secretary William Cohen said today that a military strike against a rock would be quote substantial in size and impact but Cohen stressed that the strike would not be able to remove Saddam Hussein from power or eliminate his deadly arsenal the defense secretary also had strong words today for the United Nations Security Council ABC's John Mcwethy reports.	Politics and government			
male 4	With more american firepower being considered for the Persian Gulf defense secretary Cohen today issued by are the administration's toughest criticism of the UN security council without mentioning Russia or China buying named Cohen took dead aim at their reluctance to get tough with Iraq.				
male 5	Frankly I find it incredibly hard to accept the proposition but in the face of Saddam's actions and that of members of the Security Council cannot bring themselves to to clear that this is a fundamental or material breach of old conduct on his part I think it challenges the credibility of Security Council.				

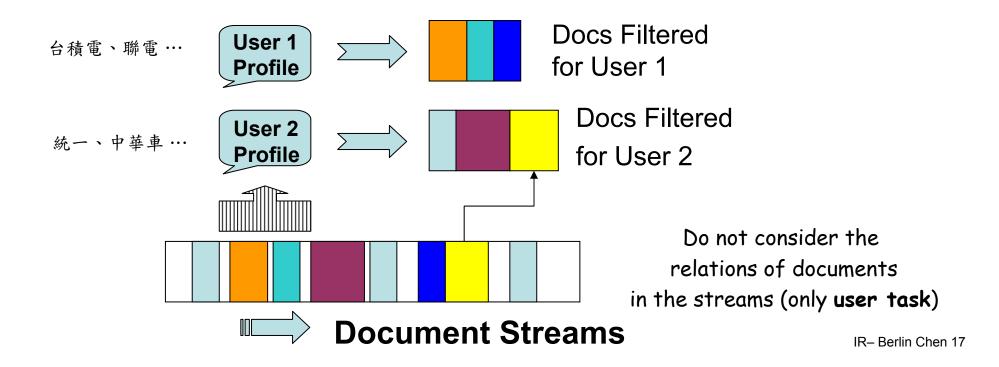
Browsing the Text Content (cont.)


• Example (Spoken Document Retrieval)

IR– Berlin Chen 14


Browsing the Text Content (cont.)

• Example (Spoken Document Retrieval)


Retrieval: Ad Hoc

- Ad hoc retrieval
 - Documents remain relatively static while new queries are submitted the system
 - The statistics for the entire document collection is obtainable
 - The most common form of user task

Retrieval: Filtering

- Filtering
 - Queries remain relatively static while new documents come into the system (and leave)
 - User Profiles: describe the users' preferences
 - E.g. news wiring services in the stock market

Filtering & Routing

- Filtering task indicates to the user which document might be interested to him
 - Determine which ones are really relevant is fully reserved to the user
 - Documents with a ranking about a given threshold is selected
 - But no ranking information of filtered documents is presented to user
- **Routing**: a variation of filtering
 - Ranking information of the filtered documents is presented to the user
 - The user can examine the Top N documents
- The vector model is preferred (simplicity!)
 - For filtering/routing, the crucial step is not ranking but the construction of user profiles

Filtering: User Profile Construction

- Simplistic approach
 - Describe the profile through a set of keywords
 - The user provides the necessary keywords
 - User is not involved too much
 - Drawback: If user not familiar with the service (e.g. the vocabulary of upcoming documents)
- Elaborate approach
 - Collect information from user the about his preferences
 - Initial (primitive) profile description is adjusted by relevance feedback (from relevant/irrelevant information)
 - User intervention
 - Profile is continue changing

A Formal Characterization of IR Models

- The quadruple /**D**, **Q**, *F*, $R(q_i, d_j)$ / definition
 - D: a set composed of logical views (or representations) for the documents in collection
 - Q: a set composed of logical views (or representations) for the user information needs, i.e., "queries"
 - F: a framework for modeling documents representations, queries, and their relationships and operations
 - $R(q_i, d_j)$: a ranking function which associations a real number with $q_i \in \mathbf{Q}$ and $d_j \in \mathbf{D}$

A Formal Characterization of IR Models (cont.)

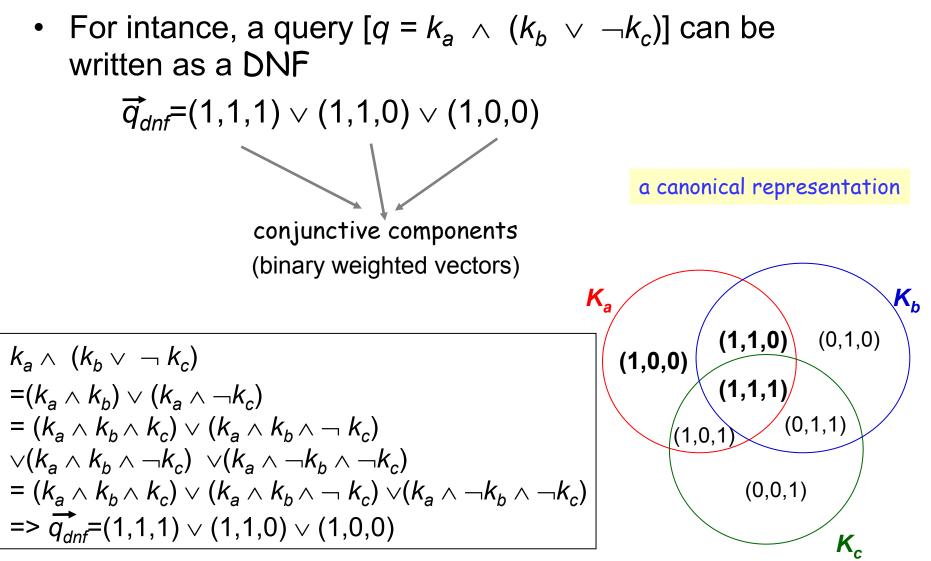
- Classic Boolean model
 - Set of documents
 - Standard operations on sets
- Classic vector model
 - t-dimensional vector space
 - Standard linear algebra operations on vectors
- Classic probabilistic model
 - Sets (relevant/irrelevant document sets)
 - Standard probabilistic operations
 - Mainly the Bayes' theorem

Classic IR Models - Basic Concepts

- Each document represented by a set of representative keywords or index terms
- An index term is a document word useful for remembering the document main themes
- Usually, index terms are nouns because nouns have meaning by themselves
 - Cf. complements: adjectives, adverbs, amd connectives
- However, search engines assume that all words are index terms (full text representation)

Classic IR Models - Basic Concepts (cont.)

- Not all terms are equally useful for representing the document contents
 - less frequent terms allow identifying a narrower set of documents
- The importance of the index terms is represented by weights associated to them
 - Let
 - k_i be an index term
 - d_i be a document
 - w_{ij} be a weight associated with (k_i, d_j)
 - \$\vec{d_j}=(w_{1,j}, w_{2,j}, ..., w_{t,j})\$: an index term vector for the document \$d_j\$
 \$g_i(\vec{d_j})=w_{i,j}\$
 - The weight w_{ij} quantifies the importance of the index term for describing the document semantic contents


Classic IR Models - Basic Concepts (cont.)

- Correlation of index terms
 - E.g.: computer and network
 - Consideration of such correlation information does not consistently improve the final ranking result
 - Complex and slow operations
- Important Assumption/Simplification
 - Index term weights are mutually independent ! (bag-of-words modeling)

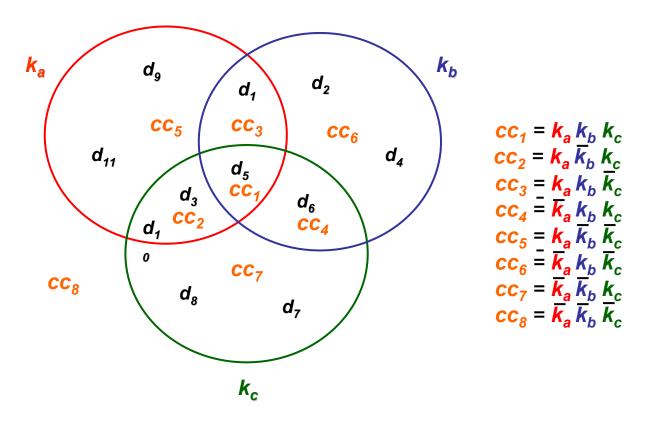
The Boolean Model

- Simple model based on set theory and Boolean algebra
- A query specified as boolean expressions with and, or, not operations
 - Precise semantics, neat formalism and simplicity
 - Terms are either present or absent, i.e., $w_{ii} \in \{0,1\}$
- A query can be expressed as a disjunctive normal form (DNF) composed of conjunctive components
 - $\overrightarrow{q_{dnf}}$: the DNF for a query q
 - $\vec{q_{cc}}$: conjunctive components (binary weighted vectors) of $\vec{q_{dnf}}$

The Boolean Model (cont.)

IR- Berlin Chen 26

The Boolean Model (cont.)


• The similarity of a document d_i to the query q

$$sim(d_{j},q) = \begin{cases} 1: \text{ if } \exists \overrightarrow{q_{cc}} \mid (\overrightarrow{q_{cc}} \in \overrightarrow{q_{dnf}} \land (\forall k_{i}, g_{i}(\overrightarrow{d_{j}}) = g_{i}(\overrightarrow{q_{cc}})) \\ 0: \text{ otherwise} \end{cases}$$

A document is represented as a conjunctive normal form

- $sim(d_j,q)=1$ means that the document d_j is relevant to the query q
- Each document d_j can be represented as a conjunctive component (vector)

Advantages of the Boolean Model

- Simple queries are easy to understand relatively easy to implement (simplicity and clean model formulation)
- Dominant language in commercial (bibliographic) systems until the WWW

Drawbacks of the Boolean Model

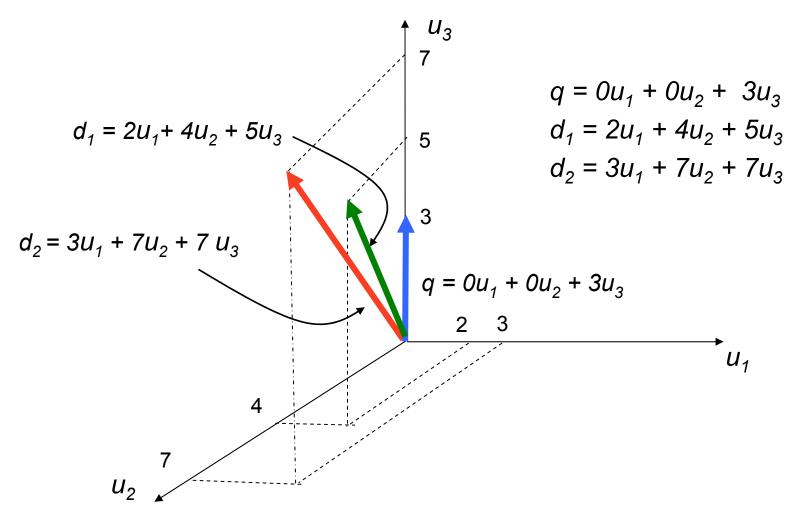
- Retrieval based on binary decision criteria with no notion of partial matching (no term weighting)
 - No notation of a partial match to the query condition
 - No ranking (ordering) of the documents is provided (absence of a grading scale)
 - Term freqency counts in documents not considered
 - Much more like a data retrieval model

Drawbacks of the Boolean Model (cont.)

- Information need has to be translated into a Boolean expression which most users find awkward
 - The Boolean queries formulated by the users are most often too simplistic (difficult to specify what is wanted)
- As a consequence, the Boolean model frequently returns either too few or too many documents in response to a user query

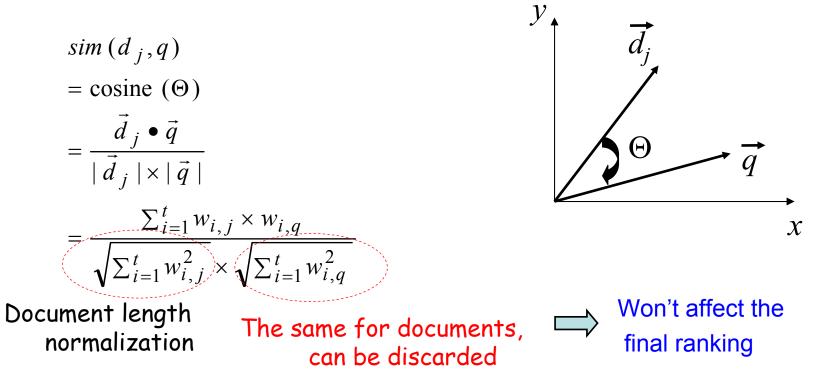
The Vector Model

SMART system Cornell U., 1968


- Also called Vector Space Model (VSM)
- Some perspectives
 - Use of binary weights is too limiting
 - Non-binary weights provide consideration for partial matches
 - These term weights are used to compute a degree of similarity between a query and each document
 - Ranked set of documents provides better matching for user information need

- Definition:
 - $w_{ij} > = 0$ whenever $k_i \in d_j$
 - $w_{iq} \ge 0$ whenever $k_i \in q$

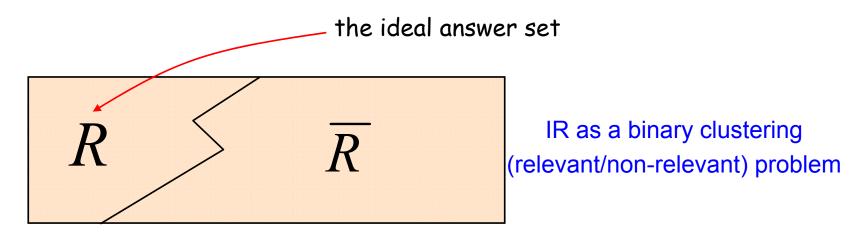
totally *t* terms in the vocabulary


- document vector $\overrightarrow{d_j} = (w_{1j}, w_{2j}, ..., w_{tj})$
- query vector $\overrightarrow{q} = (w_{1q}, w_{2q}, ..., w_{tq})$
- To each term k_i is associated a unitary (basis) vector \vec{u}_i
- The unitary vectors $\vec{u_i}$ and $\vec{u_s}$ are assumed to be **orthonormal** (i.e., index terms are assumed to occur independently within the documents)
- The *t* unitary vectors $\vec{u_i}$ form an orthonormal basis for a *t*-dimensional space
 - Queries and documents are represented as weighted vectors

- How to measure the degree of similarity
 - Distance, angle or projection?

IR-Berlin Chen 33

• The similarity of a document d_i to the query q



(if discarded, equivalent to the projection of the query on the document vector)

- Establish a threshold on $sim(d_j,q)$ and retrieve documents with a degree of similarity above the threshold

- Degree of similarity \implies Relevance
 - Usually, $w_{ij} > = 0 \& w_{iq} > = 0$
 - Cosine measure ranges between 0 and 1
 - $sim(d_j,q) \approx 1 \implies highly relevant !$
 - $sim(d_j, q) \approx 0 \implies almost irrelevant !$

• The role of index terms

Document collection

- Which index terms (features) better describe the relevant class
 - Intra-cluster similarity (*tf*-factor)
 - Inter-cluster dissimilarity (*idf*-factor)

balance between these two factors

- How to compute the weights w_{ij} and w_{iq} ?
- A good weight must take into account two effects:
 - Quantification of **intra-document** contents (similarity)
 - *tf* factor, the **term frequency** within a document
 - High term frequency is needed
 - Quantification of **inter-documents** separation (dissimilarity)
 - Low **document frequency** is preferred
 - *idf* (*IDF*) factor, the **inverse document frequency**

$$- w_{i,j} = tf_{i,j} * idf_i$$

- Let,
 - N be the total number of docs in the collection
 - n_i be the number of docs which contain k_i
 - *freq*_{*i*,*j*} raw frequency of k_i within d_j
- A normalized *tf* factor is given by

$$tf_{i,j} = \frac{freq_{i,j}}{\max_{l} freq_{l,j}}$$

- Where the maximum is computed over all terms which occur within the document d_i
- $tf_{i,j}$ will be in the range of 0 to 1

• The *idf* factor is computed as

$$n_i = \log_i n_i$$
 of term $k_i = \frac{n_i}{N}$

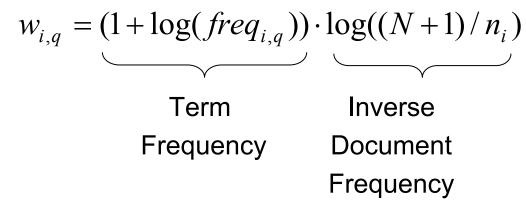
 $idf = \log \frac{N}{N}$ Document frequency

- The *log* is used to make the values of *tf* and *idf* comparable. It can also be interpreted as the amount of information associated with the term k_i
- The best term-weighting schemes use weights which are give by (for a term k_i in a document d_i)

$$w_{i,j} = tf_{i,j} \times \log \frac{N}{n_i}$$

- The strategy is called a *tf-idf* weighting scheme

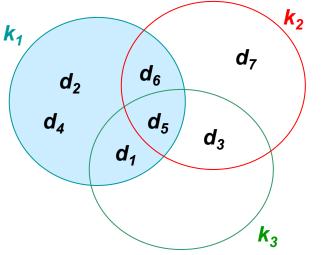
• For the query term weights, a suggestion is


 $w_{i,q} = (0.5 + \frac{0.5 \text{ freq}_{i,q}}{\max_{l} \text{ freq}_{i,q}}) \times \log \frac{N}{n_{i}}$

Salton & Buckley

- The vector model with *tf-idf* weights is a good ranking strategy with general collections
- The vector model is usually as good as the known ranking alternatives. It is also simple and fast to compute

- Advantages
 - Term-weighting improves quality of the answer set
 - Partial matching allows retrieval of docs that approximate the query conditions
 - Cosine ranking formula sorts documents according to degree of similarity to the query
- Disadvantages
 - Assumes mutual independence of index terms
 - Not clear that this is bad though (??)


- Another *tf-idf* term weighting scheme
 - For query q

- For document d_i

$$w_{i,j} = (1 + \log(freq_{i,j}))$$

• Example

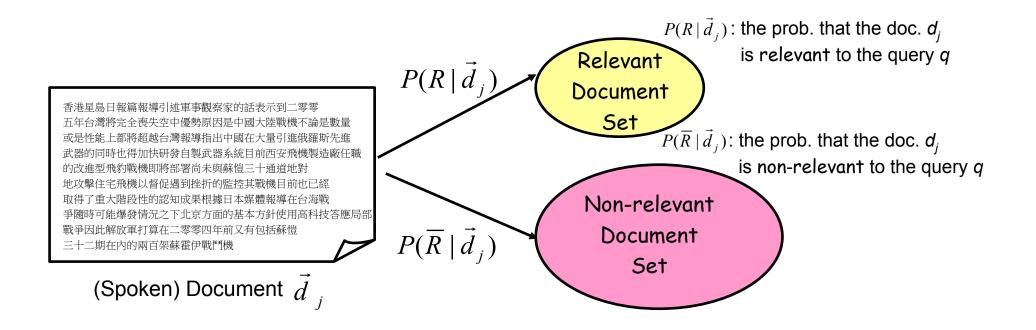
	k ₁	k ₂	k ₃	<i>q</i> ∙ <i>d</i> _i	$q \bullet d_i/d$
<i>d</i> ₁	1	0	1	2	2/√2
<i>d</i> ₂	1	0	0	1	1/√1
<i>d</i> ₃	0	1	1	2	2/√2
d ₄	1	0	0	1	1/√1
<i>d</i> ₅	1	1	1	3	3/√3
d ₆	1	1	0	2	2/√2
<i>d</i> ₇	0	1	0	1	1/√1
q	1	1	1		

- Experimental Results on TDT Chinese collections
 - Mandarin Chinese broadcast news
 - Measured in *mean* Average Precision (*m*AP)
 - ACM TALIP (2004)

Retrieval Results for the Vector Space Model

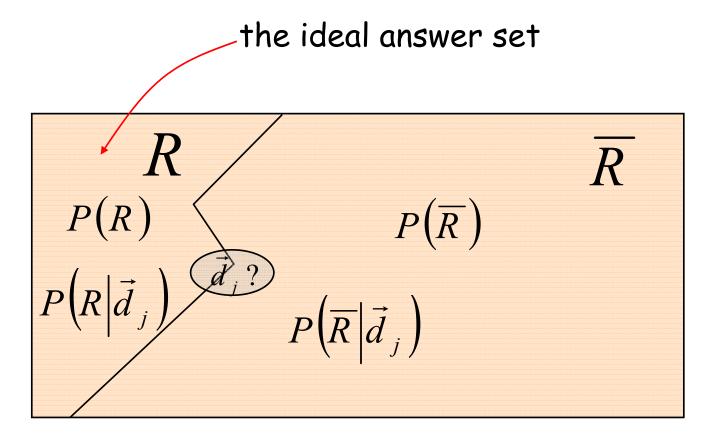
		Word-level		Syllable-level	
Average Precision		S(N), N=1	<i>S(N)</i> , <i>N</i> =1~2	S(N), N=1	<i>S(N)</i> , <i>N</i> =1∼2
TDT-2	TD	0.5548	0.5623	0.3412	0.5254
(Dev.)	SD	0.5122	0.5225	0.3306	0.5077
TDT-3	TD	0.6505	0.6531	0.3963	0.6502
(Eval.)	SD	0.6216	0.6233	0.3708	0.6353

$$R(q,d) = \sum_{j} w_j \cdot R_j(\vec{q}_j, \vec{d}_j),$$


types of index terms

The Probabilistic Model

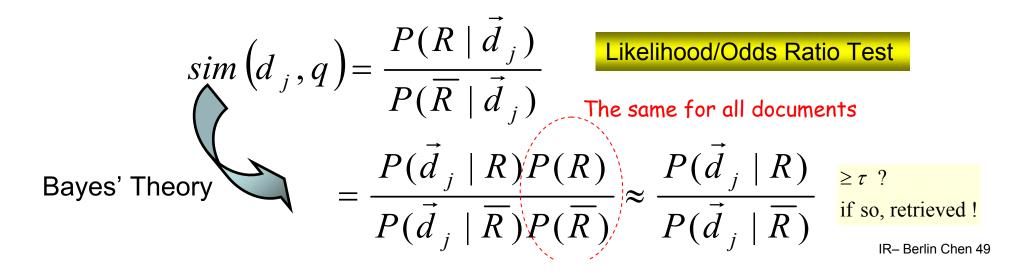
Roberston & Sparck Jones 1976


- Known as the Binary Independence Retrieval (BIR) model
 - "Binary": all weights of index terms are binary (0 or 1)
 - "Independence": index terms are independent !
- Capture the IR problem using a probabilistic framework
 - Bayes' decision rule

- Retrieval is modeled as a classification process
 - Two classes for each query: the relevant or non-relevant documents

- Given a user query, there is an ideal answer set
 - The querying process as a specification of the properties of this ideal answer set
- Problem: what are these properties?
 - Only the semantics of index terms can be used to characterize these properties
- Guess at the beginning what they could be
 - I.e., an initial guess for the preliminary probabilistis description of ideal answer set
- Improve/Refine the probabilistic description of the answer set by iterations/interations
 - Without (or with) the assistance from a human subject

 How to improve the probabilistic description of the ideal answer set ?


Document Collection

 Given a particular document d_j, calculate the probability of belonging to the relevant class, retrieve if greater than probability of belonging to non-relevant class

$$P(R \mid \vec{d}_j) > P(\overline{R} \mid \vec{d}_j)$$

Bayes' Decision Rule

• The similarity of a document d_i to the query q

- Explanation
 - P(R) : the prob. that a doc randomly selected form the entire collection is relevant
 - $P(\overline{d}_j | R)$: the prob. that the doc d_j is relevant to the query q (selected from the relevant doc set R)
- Further assume independence of index terms

$$sim \left(d_{j}, q\right) \approx \frac{P\left(\vec{d}_{j} \mid R\right)}{P\left(\vec{d}_{j} \mid \overline{R}\right)} \qquad \begin{bmatrix} P(k_{i} \mid R) : \text{ prob. that } k_{i} \text{ is present in a doc} \\ randomly \text{ selected form the set } R \\ P(\overline{k_{i}} \mid R) : \text{ prob. that } k_{i} \text{ is not present in a doc} \\ randomly \text{ selected form the set } R \\ P(k_{i} \mid R) : \text{ prob. that } k_{i} \text{ is not present in a doc} \\ randomly \text{ selected form the set } R \\ P(k_{i} \mid R) = 1 \end{bmatrix}$$

$$\approx \frac{\left[\prod_{g_{i}\left(\overline{d}_{j}\right)=1} P\left(k_{i} \mid R\right)\right] \left[\prod_{g_{i}\left(\overline{d}_{j}\right)=0} P\left(\overline{k_{i}} \mid R\right)\right]}{\left[\prod_{g_{i}\left(\overline{d}_{j}\right)=1} P\left(k_{i} \mid \overline{R}\right)\right] \left[\prod_{g_{i}\left(\overline{d}_{j}\right)=0} P\left(\overline{k_{i}} \mid \overline{R}\right)\right]} \end{bmatrix}}$$

$$R-Berlin Chen 50$$

- Further assume independence of index terms
 - Another representation

$$sim \left(d_{j}, q\right) \approx \frac{\prod_{i=1}^{t} \left[P\left(k_{i} \mid R\right)^{g_{i}\left(\overline{d}_{j}\right)} P\left(\overline{k_{i}} \mid R\right)^{1-g_{i}\left(\overline{d}_{j}\right)}\right]}{\prod_{i=1}^{t} \left[P\left(k_{i} \mid \overline{R}\right)^{g_{i}\left(\overline{d}_{j}\right)} P\left(\overline{k_{i}} \mid \overline{R}\right)^{1-g_{i}\left(\overline{d}_{j}\right)}\right]}$$

- Take logarithms

$$sim\left(d_{j},q\right) \approx \log \frac{\prod_{i=1}^{t} \left[P\left(k_{i} \mid R\right)^{g_{i}\left(\overline{d}_{j}\right)}P\left(\overline{k_{i}} \mid R\right)^{1-g_{i}\left(\overline{d}_{j}\right)}\right]}{\prod_{i=1}^{t} \left[P\left(k_{i} \mid \overline{R}\right)^{g_{i}\left(\overline{d}_{j}\right)}\left(P\left(\overline{k_{i}} \mid \overline{R}\right)\right)^{1-g_{i}\left(\overline{d}_{j}\right)}\right]} \text{ The same for all documents!}}$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{j}\right)\log \frac{P\left(k_{i} \mid R\right)P\left(\overline{k_{i}} \mid \overline{R}\right)}{P\left(k_{i} \mid \overline{R}\right)P\left(\overline{k_{i}} \mid \overline{R}\right)} + \sum_{i=1}^{t} \log \frac{P\left(\overline{k_{i}} \mid R\right)}{P\left(\overline{k_{i}} \mid \overline{R}\right)}$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{j}\right)\left[\log \frac{P\left(k_{i} \mid R\right)}{1-P\left(k_{i} \mid R\right)} + \log \frac{1-P\left(k_{i} \mid \overline{R}\right)}{P\left(k_{i} \mid \overline{R}\right)}\right]$$

$$= Definition for all documents$$

IR- Berlin Chen 51

- Further assume independence of index terms
 - Use term weighting $w_{i,q} \times w_{i,j}$ to replace $g_i(\vec{d_j})$

$$sim(d_{j},q) \approx \sum_{i=1}^{t} g_{i}(\overline{d}_{j}) \left[\log \frac{P(k_{i} \mid R)}{1 - P(k_{i} \mid R)} + \log \frac{1 - P(k_{i} \mid \overline{R})}{P(k_{i} \mid \overline{R})} \right]$$
$$\approx \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \left[\log \frac{P(k_{i} \mid R)}{1 - P(k_{i} \mid R)} + \log \frac{1 - P(k_{i} \mid \overline{R})}{P(k_{i} \mid \overline{R})} \right]$$

Binary weights (0 or 1) are used here

R is not known at the beginning \implies How to compute $P(k_i | R)$ and $P(k_i | \overline{R})$

- Initial Assumptions
 - $P(k_i | R) = 0.5$: is constant for all indexing terms
 - P(k_i | R̄) = n_i/N :approx. by distribution of index terms among all doc in the collection, i.e. the document frequency of indexing term k_i (Suppose that |R̄|>>|R|, N ≈ |R̄|))
 (n_i: no. of doc that contain k_i. N : the total doc no.)
- Re-estimate the probability distributions
 - Use the initially retrieved and ranked Top V documents

$$P(k_i \mid R) = \frac{V_i}{V}$$
$$P(k_i \mid \overline{R}) = \frac{n_i - V_i}{N - V}$$

- Handle the problem of "zero" probabilities
 - Add constants as the adjust constant

$$P(k_i | R) = \frac{V_i + 0.5}{V + 1}$$
$$P(k_i | \overline{R}) = \frac{n_i - V_i + 0.5}{N - V + 1}$$

- Or use the information of document frequency

$$P(k_i \mid R) = \frac{\frac{V_i + \frac{n_i}{N}}{V + 1}}{P(k_i \mid \overline{R})} = \frac{n_i - V_i + \frac{n_i}{N}}{N - V + 1}$$

- Advantages
 - Documents are ranked in decreasing order of probability of relevance
- Disadvantages
 - Need to guess initial estimates for $P(k_i | R)$
 - Estimate the characteristics of the relevant class/set R through user-identified examples of relevant docs (without true training data)
 - All weights are binary: the method does not take into account *tf* and *idf* factors
 - Independence assumption of index terms

Brief Comparisons of Classic Models

- Boolean model does not provide for partial matches and is considered to be the weakest classic model
- Salton and Buckley did a series of experiments that indicated that, in general, the vector model outperforms the probabilistic model with general collections