Models for Retrieval and Browsing

- Fuzzy Set, Extended Boolean, Generalized Vector Space Models

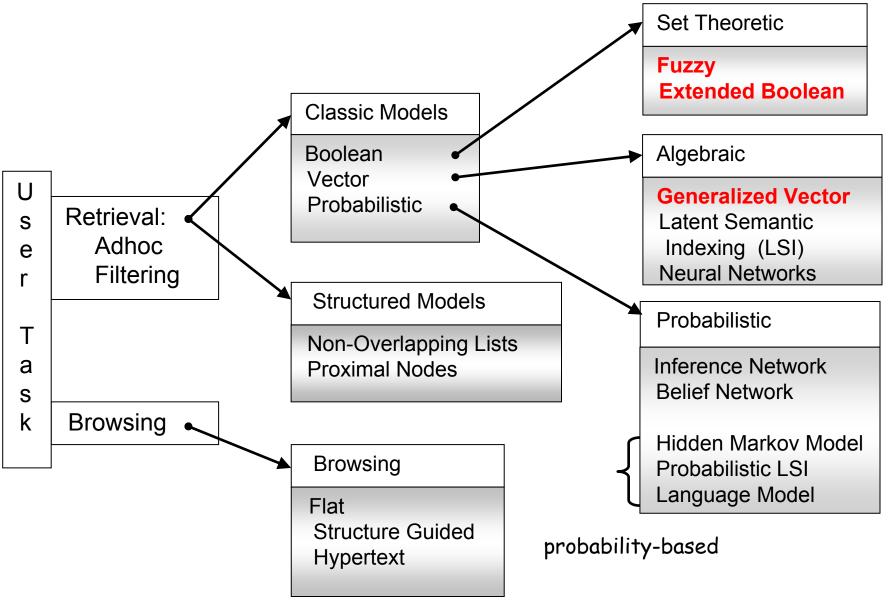
Berlin Chen

Department of Computer Science & Information Engineering National Taiwan Normal University

Reference:

1. Modern Information Retrieval. Chapter 2

Taxonomy of Classic IR Models



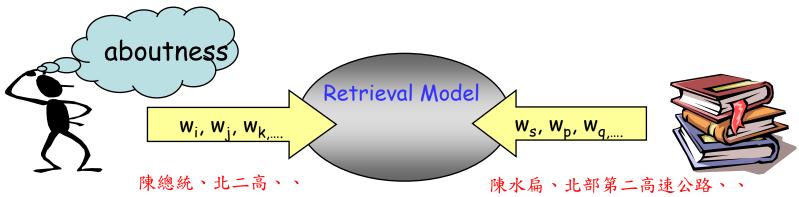
Outline

- Alternative Set Theoretic Models
 - Fuzzy Set Model (Fuzzy Information Retrieval)
 - Extended Boolean Model
- Alternative Algebraic Models
 - Generalized Vector Space Model

Fuzzy Set Model

Premises

- Docs and queries are represented through sets of keywords, therefore the matching between them is vague
 - Keywords cannot completely describe the user's information need and the doc's main theme



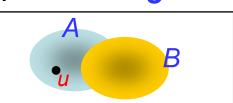
- For each query term (keyword)
 - Define a fuzzy set and that each doc has a degree of membership (0~1) in the set

- Fuzzy Set Theory
 - Framework for representing classes (sets) whose boundaries are not well defined
 - Key idea is to introduce the notion of a degree of membership associated with the elements of a set
 - This degree of membership varies from 0 to 1 and allows modeling the notion of marginal membership
 - 0 → no membership
 - 1 → full membership
 - Thus, membership is now a gradual instead of abrupt
 - Not as conventional Boolean logic

Here we will define a fuzzy set for each query (or index) term, thus each doc has a degree of membership in this set.

U

Definition



- A fuzzy subset A of a universal of discourse U is characterized by a membership function μ_A : $U \rightarrow [0,1]$
 - Which associates with each element u of U a number $\mu_A(u)$ in the interval [0,1]
- Let A and B be two fuzzy subsets of U. Also,
 let A be the complement of A. Then,

• Complement
$$\mu_{\overline{A}}(u) = 1 - \mu_{A}(u)$$

• Union
$$\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u))$$

• Intersection
$$\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u))$$

Fuzzy information retrieval

Defining term relationship

- Fuzzy sets are modeled based on a thesaurus
- This thesaurus can be constructed by a term-term correlation matrix (or called keyword connection matrix)
 - \vec{c} : a term-term correlation matrix
 - $C_{i,l}$: a normalized correlation factor for terms k_i and k_l

$$c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}}$$

$$n_i : \text{no of docs that contain } k_i$$

$$n_{i,l} : \text{no of docs that contain both } k_i \text{ and } k_l$$

$$\text{docs, paragraphs, sentence}$$

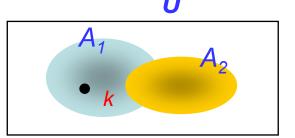
docs, paragraphs, sentences, ...

- We now have the notion of proximity among index terms
- The relationship is symmetric!

$$\mu_{k_i}(k_l) = c_{i,l} = c_{l,i} = \mu_{k_l}(k_i)$$

The union and intersection operations are

modified here



$$ab + \overline{a}b + a\overline{b}$$

$$= ab + (1 - a)b + a(1 - b)$$

$$= ab + b - ab + a - ab$$

$$= 1 - (1 - a - b + ab)$$

$$= 1 - (1 - a)(1 - b)$$

Union: algebraic sum (instead of max)

$$\mu_{A_{1} \cup A_{2}}(k) = \mu_{A_{1}}(k)\mu_{A_{2}}(k) + \mu_{\overline{A_{1}}}(k)\mu_{A_{2}}(k) + \mu_{A_{1}}(k)\mu_{\overline{A_{2}}}(k) \qquad \mu_{A_{1} \cup A_{2} \dots \cup A_{n}}(k) = \mu_{\bigcup A_{j}}(k)$$

$$= 1 - \prod_{j=1}^{2} \left(1 - \mu_{A_{j}}(k) \right) \qquad \qquad = 1 - \prod_{j=1}^{n} \left(1 - \mu_{A_{j}}(k) \right)$$
a negative algebraic product

Intersection: algebraic product (instead of min)

$$\mu_{A_1 \cap A_2}(k) = \mu_{A_1}(k)\mu_{A_2}(k)$$

$$\mu_{A_1 \cap A_2 \dots \cap A_n}(k) = \prod_{j=1}^n \mu_{A_j}(k)$$

- The degree of membership between a doc d_j and an index term k_i algebraic sum (a doc is a union of index terms)

$$\mu_{k_i}(d_j) = \mu_{d_j}(k_i) = \mu_{\bigcup_{k_l \in d_j} k_l}(k_i)$$

$$= 1 - \prod_{k_l \in d_j} (1 - \mu_{k_l}(k_i)) = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

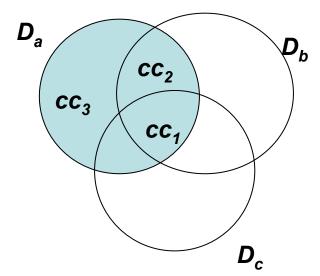
- Computes an algebraic sum over all terms in the doc d_j
 - Implemented as the complement of a negative algebraic product
 - A doc d_j belongs to the fuzzy set associated to the term k_i if its own terms are related to k_i
- If there is at least one index term k_l of d_j which is strongly related to the index k_i ($c_{i,l} \sim 1$) then $\mu_{k_i,d_i} \sim 1$
 - $-k_i$ is a good fuzzy index for doc d_i
 - And vice versa

Example:

- Query
$$q = k_a \land (k_b \lor \neg k_c)$$
 disjunctive normal form
$$\overrightarrow{q}_{dnf} = (k_a \land k_b \land k_c) \lor (k_a \land k_b \land \neg k_c) \lor (k_a \land \neg k_b \land \neg k_c)$$

$$= cc_1 + cc_2 + cc_3$$
 conjunctive component

- $-D_a$ is the fuzzy set of docs associated to the term k_a
- Degree of membership ?



Degree of membership

algebraic sum
$$\mu_q(d_j) = \mu_{cc_1 \cup cc_2 \cup cc_3}(d_j)$$
 for a doc d_j in the fuzzy answer set D_q
$$= 1 - \prod_{i=1}^{3} (1 - \mu_{cc_i}(d_j))$$

$$= 1 - \left(1 - \mu_{a \cap b \cap c}(d_j)\right) (1 - \mu_{a \cap b \cap c}(d_j)) (1 - \mu_{a \cap b \cap c}(d_j))$$
 algebraic product
$$= 1 - (1 - \mu_a(d_j)\mu_b(d_j)\mu_c(d_j))$$

$$\times (1 - \mu_a(d_j)\mu_b(d_j)(1 - \mu_c(d_j))) \times (1 - \mu_a(d_j)(1 - \mu_b(d_j))(1 - \mu_c(d_j)))$$

CC2

Advantages

- The correlations among index terms are considered
- Degree of relevance between queries and docs can be achieved

Disadvantages

- Fuzzy IR models have been discussed mainly in the literature associated with fuzzy theory
- Experiments with standard test collections are not available

Extended Boolean Model

Salton et al., 1983

Motive

- Extend the Boolean model with the functionality of partial matching and term weighting
 - E.g.: in Boolean model, for the qery $q=k_x \wedge k_y$, a doc contains either k_x or k_y is as irrelevant as another doc which contains neither of them
 - How about the disjunctive query $q=k_{\chi}\lor k_{y}$ 陳水扁 或 呂秀蓮
- Combine Boolean query formulations with characteristics of the vector model
 - Term weighting
 - Algebraic distances for similarity measures

a ranking can be obtained

- Term weighting
 - The weight for the term k_x in a doc d_i is

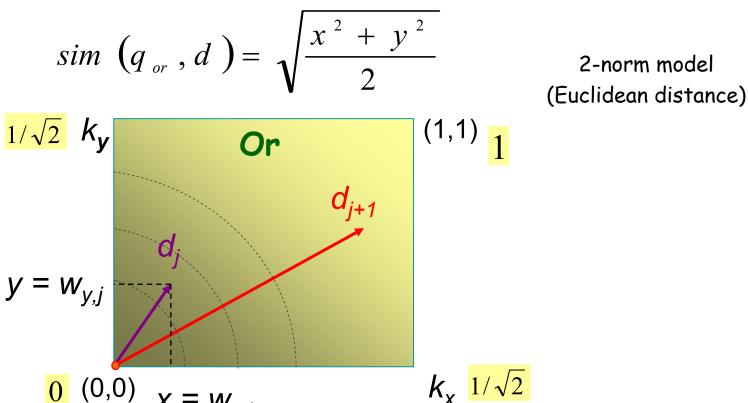
$$w_{x,j} = tf_{x,j} \times \frac{idf_x}{\max_i idf_i}$$
 ranged from 0 to 1 normalized frequency

- $W_{x,j}$ is normalized to lay between 0 and 1
- Assume two index terms k_x and k_y were used
 - Let x denote the weight $w_{x,j}$ of term k_x on doc d_j
 - Let \mathcal{Y} denote the weight $\mathcal{W}_{y,j}$ of term k_y on doc d_j
 - The doc vector $\vec{d}_j = (w_{x,j}, w_{y,j})$ is represented as $d_j = (x, y)$
 - Queries and docs can be plotted in a two-dimensional map

- If the query is $q=k_X \wedge k_V$ (conjunctive query)
 - -The docs near the point (1,1) are preferred
 - -The similarity measure is defined as

2-norm model

- If the query is $q=k_x\vee k_y$ (disjunctive query)
 - -The docs far from the point (0,0) are preferred
 - -The similarity measure is defined as



• The similarity measures $sim\left(q_{or},d\right)$ and $sim\left(q_{and},d\right)$ also lay between 0 and 1

Generalization

- -t index terms are used → t-dimensional space
- *p*-norm model, $1 \le p \le \infty$

$$q_{and} = k_{1} \wedge^{p} k_{2} \wedge^{p} \dots \wedge^{p} k_{m} \implies sim(q_{and}, d) = 1 - \left(\frac{(1 - x_{1})^{p} + (1 - x_{2})^{p} + \dots + (1 - x_{m})^{p}}{m}\right)^{\frac{1}{p}}$$

$$q_{or} = k_{1} \vee^{p} k_{2} \vee^{p} \dots \vee^{p} k_{m} \implies sim(q_{or}, d) = \left(\frac{x_{1}^{p} + x_{2}^{p} + \dots + x_{m}^{p}}{m}\right)^{\frac{1}{p}}$$

Some interesting properties

•
$$p=1 \implies sim(q_{and}, d) = sim(q_{or}, d) = \frac{x_1 + x_2 + ... + x_m}{m}$$

• $p=\infty \implies sim(q_{and}, d) \approx min(x_i)$ just like the $sim(q_{or}, d) \approx max(x_i)$ formula of fuzzy logic

• Example query 1: $q = (k_1 \wedge^p k_2) \vee^p k_3$

Processed by grouping the operators in a predefined

order

order
$$sim (q, d) = \frac{\left(1 - \left(\frac{(1 - x_1)^p + (1 - x_2)^p}{2}\right)^{\frac{1}{p}}\right)^p + x_3^p}{2}$$

- Example query 2: $q = (k_1 \lor^2 k_2) \land^\infty k_3$
 - Combination of different algebraic distances

$$sim (q, d) = min \left(\frac{x_1^2 + x_2^2}{2} \right)^{\frac{1}{2}}, x_3$$

Advantages

- A hybrid model including properties of both the set theoretic models and the algebraic models
 - Relax the Boolean algebra by interpreting Boolean operations in terms of algebraic distances

Disadvantages

Distributive operation does not hold for ranking

• E.g.:
$$q_1 = (k_1 \wedge^2 k_2) \vee^2 k_3, q_2 = (k_1 \vee^2 k_3) \wedge^2 (k_2 \vee^2 k_3)$$

computation
$$\bullet \text{ E.g.:} q_1 = \left(k_1 \wedge^2 k_2\right) \vee^2 k_3, q_2 = \left(k_1 \vee^2 k_3\right) \wedge^2 \left(k_2 \vee^2 k_3\right)$$

$$\left[\frac{\left(1 - \left(\frac{(1-x_1)^2 + (1-x_2)^2}{2}\right)^{\frac{1}{2}}\right)^2 + x_3^2}{2}\right]^{\frac{1}{2}} \quad sim \quad \left(q_1, d\right) \neq sim \quad \left(q_2, d\right)$$

$$- \text{ Assumes mutual independence of index terms}$$

Assumes mutual independence of index terms

Generalized Vector Model

Wong et al., 1985

Premise

- Classic models enforce independence of index terms
- For the Vector model
 - Set of term vectors $\{\overrightarrow{k_1}, \overrightarrow{k_1}, ..., \overrightarrow{k_t}\}$ are linearly independent and form a basis for the subspace of interest
 - Frequently, it means pairwise orthogonality $\forall i,j \Rightarrow \overrightarrow{k_i} \bullet \overrightarrow{k_j} = \overrightarrow{0}$ (in a more restrictive sense)
- Wong et al. proposed an interpretation
 - The index term vectors are linearly independent, but not pairwise orthogonal
 - Generalized Vector Model

· Key idea

 Index term vectors form the basis of the space are not orthogonal and are represented in terms of smaller components (minterms)

Notations

- $-\{k_1, k_2, ..., k_t\}$: the set of all terms
- $w_{i,j}$: the weight associated with $[k_i, d_j]$
- Minterms: binary indicators (0 or 1) of all patterns of occurrence of terms within documents
 - Each represent one kind of co-occurrence of index terms in a specific document

Representations of minterms

$$m_1 = (0,0,...,0)$$

$$m_2$$
=(1,0,...,0)

$$m_3$$
=(0,1,...,0)

$$m_{4}$$
=(1,1,...,0)

$$m_5$$
=(0,0,1,..,0)

. . .

$$m_{2}t$$
=(1,1,1,..,1)

2^t minterms

Points to the docs where only index terms k_1 and k_2 co-occur and the other index terms disappear

Point to the docs containing all the index terms

$$\overrightarrow{m}_1$$
=(1,0,0,0,0,....,0)

$$\overrightarrow{m_2}$$
=(0,1,0,0,0,....,0)

$$\overrightarrow{m}_3$$
=(0,0,1,0,0,...,0)

$$\overrightarrow{m}_{4}$$
=(0,0,0,1,0,...,0)

$$\overrightarrow{m}_5 = (0,0,0,0,1,\ldots,0)$$

. . .

$$\overrightarrow{m}_{2}t = (0,0,0,0,0,\dots,1)$$

2^t minterm vectors

Pairwise orthogonal vectors $\overrightarrow{m_i}$ associated with minterms m_i as the basis for the generalized vector space

- Minterm vectors are pairwise orthogonal. But, this does not mean that the index terms are independent
 - Each minterm specifies a kind of dependence among index terms
 - That is, the co-occurrence of index terms inside docs in the collection induces dependencies among these index terms

 The vector associated with the term k_i is represented by summing up all minterms containing it and normalizing

$$\vec{k}_{i} = \frac{\sum_{\forall r, g_{i}(m_{r})=1} c_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r, g_{i}(m_{r})=1} c_{i,r}^{2}}} = \sum_{\forall r, g_{i}(m_{r})=1} \hat{c}_{i,r} \vec{m}_{r}$$

where
$$\hat{c}_{i,r} = \frac{c_{i,r}}{\sqrt{\sum_{\forall r,g_i(m_r)=1} c_{i,r}^2}}$$

$$c_{i,r} = \sum_{\substack{d_j \mid g_l(\vec{d}_j) = g_l(m_r), \text{ for all } l}} w_{i,j}$$

All the docs whose term co-occurrence relation (pattern) can be represented as (exactly coincide with that of) minterm m_r

- where $\hat{c}_{i,r} = \frac{c_{i,r}}{\sqrt{\sum_{\forall r,g_i}(m_r)=1}c_{i,r}^2}$ The weight associated with the pair $[k_i, m_r]$ sums up the weights of the term k_i in all the docs which have a term occurrence pattern given by m_r .
 - Notice that for a collection of size *N*, only N minterms affect the ranking (and not 2^N)

 $g_{i}(m_{r})$ Indicates the index term k_{i} is in the minterm m,

 The similarity between the query and doc is calculated in the space of minterm vectors

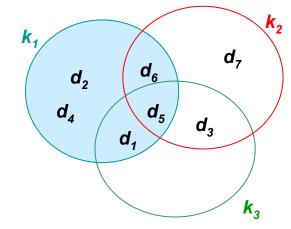
$$\vec{d}_{j} = \sum_{i} w_{i,j} \vec{k}_{i}$$
 \Rightarrow $= \sum_{r} s_{j,r} \vec{m}_{r}$ $\vec{q}_{j} = \sum_{i} w_{i,q} \vec{k}_{i}$ \Rightarrow $= \sum_{r} s_{q,r} \vec{m}_{r}$ 2t-dimensional

$$sim \left(\vec{q}_{j}, \vec{d}_{j}\right) = \frac{\sum_{i} w_{i,q} \cdot w_{i,j}}{\sqrt{\sum_{i} w_{i,q}} \sqrt{\sum_{i} w_{i,q}}}$$

$$sim \left(\vec{q}_{j}, \vec{d}_{j}\right) = \frac{\sum_{r} s_{q,r} \cdot s_{d,r}}{\sqrt{\sum_{r} s_{q,r}} \sqrt{\sum_{r} s_{d,r}}}$$

• **Example** (a system with three index terms)

minterm	k_1	k_2	k_3
m_1	0	0	0
m_2	1	0	0
m_3	0	1	0
m_4	1	1	0
m_5	0	0	1
m_6	1	0	1
<i>m</i> ₇	0	1	1
m_8	1	1	1



$\vec{k} - \frac{c_{1,2}\vec{m}_2 + c_{1,4}\vec{m}_4 + c_{1,6}\vec{m}_6 + c_{1,8}\vec{m}_8}{c_{1,8}\vec{m}_8}$
$\sqrt{c_{1,2}^2 + c_{1,4}^2 + c_{1,6}^2 + c_{1,8}^2}$
$\vec{k} = \frac{c_{2,3}\vec{m}_3 + c_{2,4}\vec{m}_4 + c_{2,7}\vec{m}_7 + c_{2,8}\vec{m}_8}{\vec{m}_8}$
$\sqrt{{c_{2,3}}^2 + {c_{2,4}}^2 + {c_{2,7}}^2 + {c_{2,8}}^2}$
$\vec{k} = \frac{c_{3,5}\vec{m}_5 + c_{3,6}\vec{m}_6 + c_{3,7}\vec{m}_7 + c_{3,8}\vec{m}_8}{\vec{m}_8}$
$n_3 - \sqrt{c^2 + c^2 + c^2 + c^2}$

	k_1	k_2	k_3	minterm
d_1	2	0	1	m_6
d_2	1	0	0	m_2
d_3	0	1	3	m_7
d_4	2	0	0	m_2
d_5	1	2	4	m_8
d_6	1	2	0	m_4
d_7	0	5	0	m_3
q	1	2	3	

$$c_{2,3} = w_{2,7} = 5$$

$$c_{2,4} = w_{2,6} = 2$$

$$c_{2,7} = w_{2,3} = 1$$

$$c_{2,8} = w_{2,5} = 2$$

$$\vec{k}_{2} = \frac{5\vec{m}_{3} + 2\vec{m}_{4} + 1\vec{m}_{7} + 2\vec{m}_{8}}{\sqrt{5^{2} + 2^{2} + 1^{2} + 2^{2}}}$$

$$c_{3,5} = 0$$

$$c_{3,6} = w_{3,1} = 1$$

$$c_{3,7} = w_{3,3} = 3$$

$$c_{3,8} = w_{3,5} = 4$$

$$\sqrt{c_{3,5}^{2} + c_{3,6}^{2} + c_{3,7}^{2} + c_{3,8}^{2}}$$

$$c_{1,2} = w_{1,2} + w_{1,4} = 1 + 2 = 3 \quad \vec{k}_{1} = \frac{3\vec{m}_{2} + 1\vec{m}_{4} + 2\vec{m}_{6} + 1\vec{m}_{8}}{\sqrt{3^{2} + 1^{2} + 2^{2} + 1^{2}}}$$

$$c_{1,4} = w_{1,6} = 1$$

$$c_{1,6} = w_{1,1} = 2$$

$$c_{1,8} = w_{1,5} = 1$$

$$c_{3,5} = 0$$

$$c_{3,6} = w_{3,1} = 1$$

$$c_{3,7} = w_{3,3} = 3$$

$$c_{3,8} = w_{3,5} = 4$$

$$\vec{k}_3 = \frac{0\vec{m}_5 + 1\vec{m}_6 + 3\vec{m}_7 + 4\vec{m}_8}{\sqrt{0^2 + 1^2 + 3^2 + 4^2}}$$
IR - Berlin Chen 27

• Example: Ranking

$$\vec{k}_1 = \frac{3\vec{m}_2 + 1\vec{m}_4 + 2\vec{m}_6 + 1\vec{m}_8}{\sqrt{3^2 + 1^2 + 2^2 + 1^2}} = \frac{3\vec{m}_2 + 1\vec{m}_4 + 2\vec{m}_6 + 1\vec{m}_8}{\sqrt{15}}$$

$$\vec{k}_{2} = \frac{5\vec{m}_{3} + 2\vec{m}_{4} + 1\vec{m}_{7} + 2\vec{m}_{8}}{\sqrt{5^{2} + 2^{2} + 1^{2} + 2^{2}}} = \frac{5\vec{m}_{3} + 2\vec{m}_{4} + 1\vec{m}_{7} + 2\vec{m}_{8}}{\sqrt{34}} \qquad \vec{k}_{3} = \frac{0\vec{m}_{5} + 1\vec{m}_{6} + 3\vec{m}_{7} + 4\vec{m}_{8}}{\sqrt{0^{2} + 1^{2} + 3^{2} + 4^{2}}} = \frac{1\vec{m}_{6} + 3\vec{m}_{7} + 4\vec{m}_{8}}{\sqrt{26}}$$

$$\vec{k}_3 = \frac{0\vec{m}_5 + 1\vec{m}_6 + 3\vec{m}_7 + 4\vec{m}_8}{\sqrt{0^2 + 1^2 + 3^2 + 4^2}} = \frac{1\vec{m}_6 + 3\vec{m}_7 + 4\vec{m}_8}{\sqrt{26}}$$

$$\vec{d}_{1} = 2\vec{k}_{1} + 1\vec{k}_{3}$$

$$= \frac{2 \cdot 3}{\sqrt{15}} \frac{s_{d_{1},2}}{\vec{m}_{2}} + \frac{2 \cdot 1}{\sqrt{15}} \vec{m}_{4} + \left(\frac{2 \cdot 2}{\sqrt{15}} + \frac{1 \cdot 1}{\sqrt{26}}\right) \vec{m}_{6} + \frac{1 \cdot 3}{\sqrt{26}} \vec{m}_{7} + \left(\frac{2 \cdot 1}{\sqrt{15}} + \frac{1 \cdot 4}{\sqrt{26}}\right) \vec{m}_{8}$$

$$\vec{q} = 1\vec{k_1} + 2\vec{k_2} + 3\vec{k_3}$$

$$= \frac{1 \cdot 3}{\sqrt{15}} \vec{m}_2 + \frac{2 \cdot 5}{\sqrt{34}} \vec{m}_3 + \left(\frac{1 \cdot 1}{\sqrt{15}} + \frac{2 \cdot 2}{\sqrt{34}}\right) \vec{m}_4 + \left(\frac{1 \cdot 2}{\sqrt{15}} + \frac{3 \cdot 1}{\sqrt{26}}\right) \vec{m}_6 + \left(\frac{2 \cdot 1}{\sqrt{34}} + \frac{3 \cdot 3}{\sqrt{26}}\right) \vec{m}_7 + \left(\frac{1 \cdot 1}{\sqrt{15}} + \frac{2 \cdot 2}{\sqrt{34}} + \frac{3 \cdot 4}{\sqrt{26}}\right) \vec{m}_8$$

$$sim(q,d) = consine(q,d) = \frac{\sum_{r|s_{q,r} \neq 0 \land s_{d,r} \neq 0}^{S_{q,s}} S_{q,r} \cdot S_{d,r}}{\sqrt{\sum_{r|s_{q,r} \neq 0 \land s_{d,r} \neq 0}^{S_{q,s}} \sqrt{\sum_{r|s_{q,r} \neq 0 \land s_{d,r} \neq 0}^{S_{q,s}} S_{d,r}^{2}}}$$
The similarity between the query and doc is calculated in the space of minterm vectors

$$sim(q,d_{1}) = \frac{s_{q,2}s_{d_{1},2} + s_{q,4}s_{d_{1},4} + s_{q,6}s_{d_{1},6} + s_{q,7}s_{d_{1},7} + s_{q,8}s_{d_{1},8}}{\sqrt{s_{q,2}^{2} + s_{q,3}^{2} + s_{q,4}^{2} + s_{q,6}^{2} + s_{q,7}^{2} + s_{q,8}^{2}} \sqrt{s_{d_{1},2}^{2} + s_{d_{1},4}^{2} + s_{d_{1},6}^{2} + s_{d_{1},7}^{2} + s_{d_{1},8}^{2}}}$$

- Term Correlation
 - The degree of correlation between the terms k_i and k_j can now be computed as

$$\vec{k}_i \bullet \vec{k}_j = \sum_{\substack{\forall r \mid g_i(m_r) = 1 \land g_j(m_r) = 1}} \hat{c}_{i,r} \times \hat{c}_{j,r}$$

 Do not need to be normalized? (because we have done it before! See p25)

Advantages

- Model considers correlations among index terms
- Model does introduce interesting new ideas

Disadvantages

- Not clear in which situations it is superior to the standard vector model
- Computation costs are higher