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Statistical Language Models (1/2)

• A probabilistic mechanism for “generating” a piece of textp g g p
– Defines a distribution over all possible word sequences

LwwwW K21= 

What is LM Used for ?

( ) ?=WP

• What is LM Used for ?
– Speech recognition
– Spelling correctionSpelling correction
– Handwriting recognition
– Optical character recognition
– Machine translation
– Document classification and routing

I f ti t i l
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– Information retrieval …



Statistical Language Models (2/2)

• (Statistical) language models (LM) have been widely ( ) g g ( ) y
used for speech recognition and language (machine) 
translation for more than twenty years

• However, their use for information retrieval started only 
C f S Gin 1998 [Ponte and Croft, SIGIR 1998]

– Basically, a query is considered generated from an “ideal” 
document that satisfies the information needdocument that satisfies the information need

– The system’s job is then to estimate the likelihood of each 
document in the collection being the ideal document and rank 
th di l (i d i d )then accordingly (in decreasing order)
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Ponte and Croft. A language modeling approach to information retrieval. SIGIR 1998



Three Ways of Developing LM Approaches for IR 

(a) Query likelihood
(b) Document likelihood literal term matching 

or concept matching
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(c) Model comparison
p g



Query-Likelihood Language Models

• Criterion: Documents are ranked based on Bayes 
(decision) rule(decision) rule

( ) ( ) ( )
( )QP

DPDQP
QDP = 

– is the same for all documents, and can be ignored 

– might have to do with authority, length, genre, etc.

( )QP
( )DP g y, g , g ,

• There is no general way to estimate it
• Can be treated as uniform across all documents

( )DP

• Documents can therefore be ranked based on
( ) ( )( ) M as denotedor     DQPDQP

document model

– The user has a prototype (ideal) document in mind, and 
generates a query based on words that appear in this document

– A document is treated as a model to predict (generate)

( ) ( )( )

D M
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– A document         is treated as a model          to predict (generate) 
the query

D DM



Another Criterion: Maximum Mutual Information

• Documents can be ranked based their mutual information 
with the query (in decreasing order)

( ) ( )DQPDQMI ,l( ) ( )
( ) ( )
( ) ( )QPDQP

DPQP
QDQMI

loglog

,log, =

( ) ( )QPDQP loglog                −=

being the same for all documents, 

• Document ranking by mutual information (MI) is equivalent 

and hence can be ignored 

g y ( ) q
that by likelihood

( ) ( )rank
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( ) ( )DQPDQMI
DD
maxarg,maxarg =



Yet Another Criterion: Minimum KL Divergence

• Documents are ranked by Kullback-Leibler (KL) 
divergence (in increasing order)

( ) ( ) ( )QwP
∑ D cum ntQu( ) ( ) ( )

( )
( ) ( ) ( ) ( )loglog

log

DwPQwPQwPQwP

DwP
QwP

QwPDQKL
w

=

∑∑

∑ Document
model

Query
model

( ) ( ) ( ) ( )loglog               DwPQwPQwPQwP
ww

−= ∑∑
The same for all document
=> can be disregarded

Cross entropy between the 
language models of a query 

              

 can be disregarded language models of a query 
and a document 

Equivalent to ranking in decreasing order of 

( ) ( )log                DwPQwP
w
∑

Relevant documents deemed to have lower 
cross entropies
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( ) ( ) ( ) log,               
rank

DQPDwPQwc
w

== ∑
cross entropies



Schematic Depiction
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n-grams

• Multiplication (Chain) rule
( ) ( ) ( ) ( ) ( )

– Decompose the probability of a sequence of events into the 
b bilit f h i t diti d li t

( ) ( ) ( ) ( ) ( )12121312121 −= LLL wwwwPwwwPwwPwPw....wwP KL

probability of each successive events conditioned on earlier events

• n-gram assumption
U i– Unigram

• Each word occurs independently of the other words
( ) ( ) ( ) ( ) ( )LL wPwPwPwPw....wwP L32121   =

• Each word occurs independently of the other words
• The so-called “bag-of-words” model (e.g., how to distinguish 

“street market” from “market street)
– Bigram

( ) ( ) ( ) ( ) ( )12312121 −= LLL wwPwwPwwPwPw....wwP L  
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– Most language-modeling work in IR has used unigram models
• IR does not directly depend on the structure of sentences



Unigram Model (1/4)

• The likelihood of a query                        given a 
document

Lw....wwQ 21= 
Ddocument

( ) ( ) ( ) ( )
( )∏

=
L

DLDDD

P

wPwPwPQP 21

M

MM MM L

D

– Words are conditionally independent of each other given the 
document

( )∏= =
L
i DiwP1 M                  

document
– How to estimate the probability of a (query) word given the 

document                     ?( ) M DwP

• Assume that words follow a multinomial distribution
given the document

( )( )
permutation is considered here
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Unigram Model (2/4)

• Use each document itself a sample for estimating its p g
corresponding unigram (multinomial) model
– If Maximum Likelihood Estimation (MLE) is adopted

w w

Doc D

w

( ) ( )
D
D,wc

wP̂ i
Di =M 

wa

wa

wa

w

wa

wb
wb

wc

wc

wd
( )

( ) DDwcD:D
Dw:D,wc

i i

ii
=∑,oflength

in  occurs   timesofnumber  
where

wa wb

P(wb|MD)=0.3

( ) DD,wcD:D i i∑,oflength 

The zero-probability problem
If we and wf do not occur in D

P(wc |MD)=0.2
P(wd |MD)=0.1

If we and wf do not occur in D
then P(we |MD)= P(wf |MD)=0

This will cause a problem in predicting 
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P(we |MD)=0.0
P(wf |MD)=0.0

p p g
the query likelihood (See the equation for 
the query likelihood in the preceding slide)



Unigram Model (3/4) ( )DiwP M

A document model

Queryg ( )

• Smooth the document-specific unigram model with a 
( )CiwP M

Lw....wwQ 21= 

collection model (two states, or a mixture of two multinomials)

( ) ( ) ( ) ( )[ ]∏ ⋅−+⋅= =
L
i CiDiD wPλwPλQP 1 1 MMM 

• The role of the collection unigram model
Help to solve zero probability problem

( )CiwP M

– Help to solve zero-probability problem
– Help to differentiate the contributions of different missing terms in 

a document (global information like IDF ? )  
N

( ) ( )
( ) ∑∑

= i

l

i
Ci N

n
N

Collection,wc
Collection,wcwP or      M ii wn

N
 containing collection in the doc ofnumber  :

collection in the doc ofnumber  :

• The collection unigram model can be estimated in a 
similar way as what we do for the document-specific

( ) ∑
l

l w l
w

l
n Normalized doc freq
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similar way as what we do for the document specific 
unigram model 



Unigram Model (4/4)

• An evaluation on the Topic Detection and Tracking (TDT) 
corpora
– Language Model

( )DUnigram MQP
mAP Unigram Unigram+Bigram 

TQ/TD 0.6327 0.5427  

TDT2 TQ/SD 0 5658 0 4803

( )
( )[ ( ) ( )]

                                              
 Ci

L
i Di

DUnigram

MwPλMwPλ

MQP

⋅−∏ +⋅= = 11

( )MQPTDT2 TQ/SD 0.5658 0.4803

TQ/TD 0.6569 0.6141  

TDT3 TQ/SD 0.6308 0.5808 

( )
( ) ( )[
( )Dii

L
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DBigramUnigram

M,wwPλ
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MQP

13
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– Vector Space Model 

mAP Unigram Unigram+Bigram

( )
( ) ( )]Cii M,wwPλλλ 13211 −⋅−−−                

• Consideration of contextual information
TQ/TD 0.5548 0.5623  

TDT2 TQ/SD 0.5122 0.5225 

TQ/TD 0 6505 0 6531

• Consideration of contextual information 
(Higher-order language models, e.g., bigrams)
will not always lead to improved performance
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TQ/TD 0.6505 0.6531
TDT3 TQ/SD 0.6216 0.6233 

 



Statistical Translation Model (1/2)

• A query     is viewed as a translation or distillation from a 

Berger & Lafferty (1999)

Qq y
document
– That is, the similarity measure is computed by estimating the 

b bilit th t th ld h b t d

D

probability that the query would have been generated as a 
translation of that document

( ) ( ) ( ) ( ) ( )[ ] ( )QQ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )∏ ∑∏
∈ ∈∈

===
Qq

Qqc

DwQq

Qqc DwPwqPDqPDQPDQsim ,,
Trans,

word-to-word translation

• Assumption of context-independence (the ability to handle 
the ambiguity of word senses is limited)

f f• However, it the capability of handling the issues of synonymy 
(multiple terms having similar meaning) and polysemy (the 
same term having multiple meanings)

IR – Berlin Chen 15A. Berger and J. Lafferty. Information retrieval as statistical translation. SIGIR 1999 

( ) ( ) ( )( )[ ] ( )∏
∈

−+=
Qq

Qqc
CqDqPDQP ,

Trans M1ˆ λλ



Statistical Translation Model (2/2)

• Weakness of the statistical translation model
The need of a large collection of training data for estimating– The need of a large collection of training data for estimating 
translation probabilities, and inefficiency for ranking documents

• Jin et al (2002) proposed a “Title Language Model”Jin et al. (2002) proposed a Title Language Model  
approach to capture the intrinsic document to query 
translation patterns
– Queries are more like titles than documents (queries and titles 

both tend to be very short and concise descriptions of 
information and created through a similar generation process)information, and created through a similar generation process)

– Train the statistical translation model based on the document-
title pairs in the whole collection

NN ( ) ( )

( ) ( )[ ] ( )

∏ ∏∏
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Probabilistic Latent Semantic Analysis (PLSA)

• Also called The Aspect Model, Probabilistic Latent 
Semantic Indexing (PLSI)

Hofmann (1999)

Semantic Indexing (PLSI)
– Graphical Model Representation (a kind of Bayesian Networks)

( ) ( ) ( ) ( )DPDQP
QDPDQsimLanguage (unigram) model ( ) ( ) ( )
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∝
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The latent variables

IR – Berlin Chen 17T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 2001

The latent variables
=>The unobservable class variables Tk
(topics or domains)



PLSA: Formulation

• Definition
– : the prob. when selecting a doc

: the prob when pick a latent class for the doc

( )DP D

D( )DTP T– : the prob. when pick a latent class         for the doc   

– : the prob. when generating a word        from the class

D( )DTP k kT

( )kTwP kTw
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PLSA: Assumptions

• Bag-of-words: treat docs as memoryless source, words 
are generated independentlyare generated independently

( ) ( ) ( ) ( )
∏==
w

Q,wcDwPDQPD,Qsim

• Conditional independent: the doc      and word       are 
f

D w

w

independent conditioned on the state of the associated 
latent variable  kT

( ) ( ) ( )( ) ( ) ( )kkk TDPTwPTDwP ≈,

( ) ( ) ( )
( )

( ) ( )
( )∑=∑=∑=

K kkK kK
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,,,( ) ( ) ( ) ( )
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PLSA: Training (1/2)

• Probabilities are estimated by maximizing the collectionProbabilities are estimated by maximizing the collection 
likelihood using the Expectation-Maximization (EM) 
algorithmg

( ) ( )

⎤⎡

∑ ∑=
D w

C DwPlogD,wcL

( ) ( ) ( )∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
∑=

D w T
kk

k

DTPTwPlogD,wc      

EM tutorial:
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EM tutorial:
- Jeff A. Bilmes  "A Gentle Tutorial of the EM Algorithm and its Application 

to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," U.C. Berkeley TR-97-021



PLSA: Training (2/2)

• E (expectation) step

( ) ( ) ( )
( ) ( )∑

=
T kk

kk
k DTPTwP

DTPTwP
DwTP ,

• M (Maximization) step

( ) ( )∑
kT kk

( ) ( ) ( )
( ) ( )∑ ∑

∑
=

w D k

D k
k D,wTPD,wc

D,wTPD,wc
TwP̂ ( ) ( )∑ ∑w D k ,,

( ) ( ) ( )∑ kw
DwTPDwc

DTP
,,ˆ ( ) ( )

( )∑
∑

′
′

=
w

w
k Dwc
DTP

,
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PLSA: Latent Probability Space (1/2)

Dimensionality K=128 (latent classes)

image sequence
analysis 

medical imaging
context of contour
boundary detection

phonetic 
segmentation

( ) ( ) ( ) ( )∑∑( ) ( ) ( ) ( )

( ) ( ) ( )
ik

T
ikj

T
ikjij DTPDTwPDTwPDwP

kk

∑

∑∑ == ,,,,,

( ) ( ) ( )kik
T

kj TDPTPTwP
k

∑=              

( )( ) ( )( )( )
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PLSA: Latent Probability Space (2/2)

D1 D2 Di Dn
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PLSA: One more example on TDT1 dataset

i ti  i i f mil  l Hollywood loveaviation space missions family love Hollywood love
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PLSA: Experiment Results (1/4)

• Experimental Results 
T t th i i l di t ib ti ith PLSA– Two ways to smoothen empirical distribution with PLSA

• Combine the cosine score with that of the vector space 
model (so does LSA)( )
PLSA-U* (See next slide)

• Combine the multinomials individually ( ) ( ) ( )∑=
K

kkPLSA DTPTwPDwP
PLSA-Q*

)|()1()|()|(* DwPDwPDwP PLSAEmpiricalQPLSA ⋅−+⋅=− λλ

=k 1

( )
( )Dc
DwcDwPEmpirical

,)|( =

( ) ( )

Both provide almost identical performance

( ) ( )Dwc
Qw

PLSAEmpiricalQPLSA DwPDwPDQP ,
* )|()1()|()|( ∏ ⋅−+⋅=

∈
− λλ
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Both provide almost identical performance
– It’s not known if PLSA  (                    ) was used alone( )D|wPPLSA



PLSA: Experiment Results (2/4)

PLSA-U*
• Use the low-dimensional representation                and  

(be viewed in a k-dimensional latent space) to evaluate 
relevance by means of cosine measure

)|( QTP k )|( DTP k

relevance by means of cosine measure
• Combine the cosine score with that of the vector space 

model
• Use the ad hoc approach to re-weight the different model 

components (dimensions) by
( ) ( )∑ k QwTPQwc

( ) ( )

( ) ( )∑∑

∑
=−

kk

k
kk

UPLSA
DTPQTP
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DQR

22* ),(
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∑ ′
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∈′
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QTP

li  f ld d i( ) ( )∑∑
k

k
k

k DTPQTP online folded-in
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PLSA: Experiment Results (3/4)

• Why                                             ?
( ) ( )

( ) ( )

∑
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k
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iQPLSI
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22* ),(y

– Reminder that in LSA,  the relations between any two docs can 
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PLSA: Experiment Results (4/4)
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PLSA vs. LSA

• Decomposition/Approximationp pp
– LSA: least-squares criterion measured on the L2- or Frobenius 

norms of the word-doc matrices
PLSA i i ti f th lik lih d f ti b d th– PLSA: maximization of the likelihoods functions based on the 
cross entropy or Kullback-Leibler divergence between the 
empirical distribution and the model

• Computational complexity
– LSA: SVD decompositionS S deco pos o
– PLSA: EM training, is time-consuming for iterations ?

– The model complexity of Both LSA and PLSA grows linearly withThe model complexity of Both LSA and PLSA grows linearly with 
the number of training documents

• There is no general way to estimate or predict the vector 
t ti ( f LSA) th d l t ( f PLSA)
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representation (of LSA) or the model parameters (of PLSA) 
for a newly observed document



Latent Dirichlet Allocation (LDA) (1/2)

• The basic generative process of LDA closely resembles 

Blei et al. (2003)

g p y
PLSA; however,
– In PLSA, the topic mixture             is conditioned on each 

d t ( i fi d k )( )
( )DTP k

document (            is fixed, unknown)
– While in LDA, the topic mixture               is drawn from a Dirichlet 

distribution, so-called the conjugate prior, (               is unknown 

( )DTP k

( )DTP k

( )DTP kj g p (
and follows a probability distribution)

LDAwithcorpusageneratingofProcess

( )k

D

T

Dθ
β

Tφ

afrom docu each for on distributilmultinomiaaPick 
parameter with on distributiDirichlet    

 afrom   each topicfor  on distributi lmultinomia aPick  
LDAwith corpusageneratingofProcess

)2

)1

{ }
D

D

θ
KT

α

parameter    
with  on distributi lmultinomia afrom    topicaPick  3)

  parameter with on distributiDirichlet    
,,2,1

)

L∈
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T

D

φw parameter with on distributi lmultinomia afrom ord  aPick  4)
p

Blei et al.  Latent Dirichlet allocation. Journal of Machine Learning Research, 2003



Latent Dirichlet Allocation (2/2)

word 3

Z (P(w3))

X+Y+Z 1

X (P(w1))
Y (P(w2))

X+Y+Z=1

Y (P(w2))

word 1

word 2
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Word Topical Mixture Models (WTMM)

• Each word of language are treated as a word topical g g p
mixture model for predicting the occurrences of other 
words

( ) ( ) ( )∑=
=

K

k
wkkiwi jj

TPTwPwP
1

WTMM M||M|

• WTMM also can be viewed as a nonnegative factorizationWTMM also can be viewed as a nonnegative factorization 
of a “word-word” matrix consisting probability entries 
– Each column encodes the vicinity information of all occurrences of 

a distinct word 
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Comparison of WTMM and PLSA/LDA 

• A schematic comparison for the matrix factorizations of 
PLSA/LDA and WTMMPLSA/LDA and WTMM

documents documentstopics

Ts

w
or

ds A ≈

w
or

ds

mixture weights

G THPLSA/LDA to
pi

c

normalized “word-document”
co-occurrence matrix

mixture components

( ) ( ) ( )∑=
=

K

k
DkkiDi TPTwPwP

1
PLSA M||M|

ds

vicinities of words topics vicinities of words

ds Q TQ′cs

=k 1

w
or

d B ≈
w

or
d

mixture weights

Q TQ′WTMM

to
pi

c
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normalized “word-word”
co-occurrence matrix

mixture components
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WTMM: Information Retrieval (1/2)

• The relevance measure between a query and a 
document can be expressed bydocument can be expressed by

( ) ( ) ( )
( )Q,wc

Qw Dw
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i j
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TPTwPαDQP ∏
⎥
⎥
⎦

⎤
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⎢
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⎡
∑ ∑=

∈ ∈ =1
MWTMM

• Unsupervised training
– The WTMM of each word can be trained by concatenating those

Qw Dw ki j ⎥⎦⎢⎣∈ ∈ 1

The WTMM of each word can be trained by concatenating those 
words occurring within a context window of size around each 
occurrence of the word, which are postulated to be relevant to 
the wordthe word
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WTMM: Information Retrieval (2/2)

• Supervised training: The model parameters are trained 
i t i i t f l d thusing a training set of query exemplars and the 

associated query-document relevance information
Maximize the log-likelihood of the training set of query– Maximize the log-likelihood of the training set of query 
exemplars generated by their relevant documents

( )∑ ∑=
∈ ∈TrainSet QR

TrainSet Q D
DQPlogLlog

Q D
Q

  to
WTMM
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Applying Relevance Feedback to LM Framework (1/2)

• There is still no formal mechanism to incorporateThere is still no formal mechanism to incorporate 
relevance feedback (judgments) into the language 
modeling frameworkg
– The query is a fixed sample while focusing on estimating 

accurate estimation of document language models ( )DwP

• Ponte (1998) proposed a limited way to incorporate blind 
reference feedback into the LM framework 
– Think of example relevant documents            as examples of 

what the query might have been, and re-sample (or expand) the 
query by adding k highly descriptive words from the these

RD ~∈

query by adding k highly descriptive words from the these 
documents (blind reference feedback)

( )
∑ DwP

*
M

l
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J. M. Ponte,   A language modeling approach to information retrieval, Ph.D. dissertation, UMass, 1998 



Applying Relevance Feedback to LM Framework (2/2)y g ( )

• Miller et al. (1999) propose two relevance feedback ( ) p p
approach 
– Query expansion: add those words to the initial query that 

i t f th t t i d d tappear in two or more of the top m retrieved documents
– Document model re-estimation: use a set of outside training 

query exemplars to train the transition probabilities of the q y p p
document models

( )DiwP M

A document model
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∑ ∑ ∑ ⎥
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the new weight 819 queries ≦2265 docs

( )Di

( )CiwP M

Q y

Lw....wwQ 21= 

( ) ( ) ( )[ ][ ]

[ ]
[ ]
∑ ⋅

⎦⎣ −+
=

∈

∈ ∈ ∈

Q

Q QR n

TrainSetQ
QR

TrainSetQ DocD Qq CnDn

DocQ
qPλqPλ

λ
  to

  to MM 1ˆ

( ) ( ) ( ) ( )[ ]∏ ⋅−+⋅= =
L
i CiDiD wPλwPλQP 1 1 MMM

• Where                     is the set of training query exemplars,       
is the set of docs that are relevant to a specific training query 

exemplar      ,        is the length of the query , and                       is the total number 
f d l t t th

( ) ( ) ( ) ( )[ ]i CiDiD 1

[ ]QTrainSet
[ ] QRDoc   to

Q Q [ ] QRDoc to
Q
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of docs relevant to the query
Q

Q

Miller et al. , A hidden Markov model information retrieval system, SIGIR 1999



Incorporating Prior Knowledge into LM Framework

• Several efforts have been paid to using prior knowledgeSeveral efforts have been paid to using prior knowledge 
for the LM framework, especially modeling the document 
prior ( )DP
– Document length
– Document source
– Average word-length 
– Aging (time information/period)
– URL– URL
– Page links

( ) ( )( ) ( ) ( )
( )QP

DPDQP
QDP = 
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Implementation Notes 

• For language modeling approaches to IR, many conditional g g g pp , y
probabilities are usually multiplied. This can result in a 
“floating point underflow”

( ) ( ) ( ) ( )[ ]∏ ⋅−+⋅= =
L
i CiDiD wPλwPλQP 1 1 MMM 

• It is better to perform the computation by “adding” 
logarithms of probabilities instead

Th l i h f i i i ( d i )– The logarithm function is monotonic (order-preserving) 

( ) ( ) ( ) ( )[ ]CiDi
l

iD wPwPQP M1MlogMlog 
1

⋅−+⋅= ∑ =
λλ

• We also should avoid the problem of “zero probabilities (or 
estimates)” owing to sparse data by using appropriate
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estimates)  owing to sparse data, by using appropriate 
probability smoothing techniques


