
Indexing and Searching

Berlin Chen
D t t f C t S i & I f ti E i iDepartment of Computer Science & Information Engineering

National Taiwan Normal University

References:
1. Modern Information Retrieval, chapter 8
2 I f ti R t i l D t St t & Al ith h t 52. Information Retrieval: Data Structures & Algorithms, chapter 5
3. G.H. Gonnet, R.A. Baeza-Yates, T. Snider, Lexicographical Indices for Text:

Inverted files vs. PAT trees

Introduction (1/2)()
• Sequential or online searching

– Find the occurrences of a pattern in a text when the text is not– Find the occurrences of a pattern in a text when the text is not
preprocessed

– Appropriate when:
• The text is small
• Or the text collection is very volatile
• Or the index space overhead cannot be afforded• Or the index space overhead cannot be afforded

• Indexed searchIndexed search
– Build data structures over the text (indices) to speed up the

search
– Appropriate for the larger or semi-static text collection
– The system updated at reasonably regular intervals

IR – Berlin Chen 2

Introduction (2/2)()

• Three data structures for indexing are considered
– Inverted files

• The best choice for most applications

– Signature files
• Popular in the 1980s

Issues:
Search cost,
Space overhead,p

– Suffix arrays

Space overhead,
Building/updating time

• Faster but harder to build and maintain

IR – Berlin Chen 3

Inverted Files (1/4)
• A word-oriented mechanism for indexing a text collection

in order to speed up the searching task p p g
– Two elements:

• A vector containing all the distinct words (called vocabulary)
in the text collectionin the text collection

– The space required for the vocabulary is rather small:
～O(nβ), n: the text size, 0<β<1 (Heaps’ law)

• For each vocabulary word, a list of all docs (identified by doc
number in ascending order) in which that word occurs

space overhead: 30~40% of the text size (for text– space overhead: 30~40% of the text size (for text
position addressing)

• Distinction between inverted file or list
– Inverted file: occurrence points to documents or file names

(identities)

IR – Berlin Chen 4

(identities)
– Inverted list: occurrence points to word positions

Inverted Files (3/4)()

• ExampleExample

1 6 9 11 17 19 24 28 33 40 46 50 55 601 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

Text

letter 60

Vocabulary Occurrences
An inverted list

Text

letter

made

many

60 ...

50 ...

28 ...

Each element in a list
points to a text position

A i t d fil
difference:

indexing granularity
Text

word

11, 19, ...

33, 40, ...

An inverted file
Each element in a list
points to a doc number

indexing granularity

IR – Berlin Chen 5

.... p

Inverted Files: Addressing Granularityg y

• Text (word/character) positions (full inverted indices)Text (word/character) positions (full inverted indices)
• Documents

– All the occurrences of a word inside a document are collapsed toAll the occurrences of a word inside a document are collapsed to
one reference

• (Logical) blocks(g)
– The blocks can be of fixed or different size
– All the occurrences of a word inside a single block are collapsed

t fto one reference
– Space overhead: ~5% of the text size for a large collection

IR – Berlin Chen 6

Inverted Files: Some Statistics
• Size of an inverted file as approximate percentages of

the size of the text collection

Index Small Collection
(1 Mb)

Medium Collection
(200 Mb)

Large Collection
(2 Gb)

Addressing
Words

45% 73% 36% 64% 35% 63%
4 bytes/pointer

Addressing
Documents

19% 26% 18% 32% 26% 47%

Addressing 27% 41% 18% 32% 5% 9%

1,2,3 bytes/pointer

Addressing
64K blocks

27% 41% 18% 32% 5% 9%

Addressing 18% 25% 1.7% 2.4% 0.5% 0.7%

2 bytes/pointer

256 blocks1 byte/pointer

IR – Berlin Chen 7

Stopwords are removed Stopwords are indexed

Inverted Files (3/4)()

• Document addressing
A th t th b l (t l di ti) b k t i– Assume that the vocabulary (control dictionary) can be kept in
main memory. Assign a sequential word number to each word

– Scan the text database and output to a temporary file containing
the record number and its word number …..

d

– Sort the temporary file by word number and use record number
as a minor sorting field

d5 w3

d5 w100

d5 w1050

 g

– Compact the sorted file by removing the word number. During
thi ti b ild th i t d li t f th d i t f

…..
d9 w12

…..

this compaction, build the inverted list from the end points of
each word. This compacted file (postings file) becomes the main
index

IR – Berlin Chen 8

Inverted Files (4/4)()

• Document addressing (count)Document addressing (count.)
Vocabulary Occurrences

(posting file)(posting file)

IR – Berlin Chen 9

Inverted Files: Block Addressingg

• Features
T t i di id d i t bl k– Text is divided into blocks

– The occurrences in the invert file point to blocks where the
words appearpp

– Reduce the space requirements for recording occurrences

• Disadvantages
– The occurrences of a word inside a single block are collapsed to

one referenceone reference
– Online search over qualifying blocks is needed if we want to

know the exact occurrence positions

• Because many retrieval units are packed into a single block

IR – Berlin Chen 10

Inverted Files: Block Addressingg

This is a text A text has many words Words are made from letters

Block 1 Block 2 Block 3 Block 4

This is a text. A text has many words. Words are made from letters.

Text

letter

made

4 ...

4

Vocabulary Occurrences

Inverted Index
made

many

Text

4 ...

2 ...

1, 2 ...

word
....

3 ...
....

IR – Berlin Chen 11

Inverted Files: Searchingg

• Three general steps
Vocabulary search– Vocabulary search

• Words and patterns in the query are isolated and searched in
the vocabulary

• Phrase and proximity queries are split into single words

f
“white house” “network of computer” “computer network”

– Retrieval of occurrences
• The lists of the occurrences of all words found are retrieved

– Manipulation of occurrences
• For phrase, proximity or Boolean operations

intersection, distance, etc.

• Directly search the text if block addressing is adopted

IR – Berlin Chen 12

Inverted Files: Searchingg

• Most time-demanding operation on inverted files is the g p
merging or intersection of the lists of occurrences

E f th t t i– E.g., for the context queries
• Each element (word) searched separately and a list

(occurrences for word positions, doc IDs, ..) generated for (p) g
each

• The lists of all elements traversed in synchronization to find

An expansive solution

The lists of all elements traversed in synchronization to find
places where all elements appear in sequence (for a phrase)
or appear close enough (for proximity)

IR – Berlin Chen 13

Inverted Files: Construction
• The trie data structure to store the vocabulary

1 6 9 11 1 19 24 28 33 40 46 0 601 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

Textletters: 60
made: 50

Text

Vocabulary tire

many: 28
text: 11,19

• Trie

,

words: 33, 40
a list of occurrences

– A digital search tree
– A multiway tree that stores set of strings and able to retrieve any

string in time proportional to its length

IR – Berlin Chen 14

string in time proportional to its length
– A special character is added to the end of string to ensure that

no string is a prefix of another (words appear only at leaf nodes)

Inverted Files: Construction
• Merging of the partial indices

– Merge the sorted vocabularies– Merge the sorted vocabularies

– Merge both lists of occurrences if a word appears in both indices

IR – Berlin Chen 15

Inverted Files: Performance

• For a full index built on 250 Mb of text• For a full index built on 250 Mb of text
– Single word: 0.08 sec

Phrase (2 5 words): 0 25 to 0 35 sec– Phrase (2~5 words): 0.25 to 0.35 sec

IR – Berlin Chen 16

Signature Filesg

• Basic IdeasBasic Ideas
– Word-oriented index structures based on hashing

• A hash function (signature) maps words to bit masks of B bits (g)

– Divide the text into blocks of b words each
• A bit mask of B bits is assigned to each block by bitwise

ORing the signatures of all the words in the text block

– A word is presented in a text block if all bits set in its signature
are also set in the bit mask of the text block

IR – Berlin Chen 17

Signature Files

This is a text. A text has many words. Words are made from letters.
Block 1 Block 2 Block 3 Block 4

This is a text. A text has many words. Words are made from letters.

000101 110101 100100 101101 Text Signature

Text
size b

000101 110101 100100 101101 Text Signature

Signature functions
thi
Stop word list

h(text) = 000101

h(many) = 110000

h(words) = 100100

this
is
a
hash(words) 100100

h(made) = 001100

h(letters) = 100001

has
are
from
……

size B
• The text signature contains

S f bit k

IR – Berlin Chen 18

– Sequences of bit masks

– Pointers to blocks

Signature Filesg

• False Drops or False Alarms• False Drops or False Alarms
– All the corresponding bits are set in the bit mask of a text block,

but the query word is not therey

– E.g., a false drop for the index “letters” in block 2

• Goals of the design of signature files
– Ensure the probability of a false drop is low enough
– Keep the signature file as short as possible

tradeoff

IR – Berlin Chen 19

Signature Files: Searchingg g

• Single word queriesg q
– Hash each word to a bit mask W
– Compare the bit mask Bi of all text block (linear search) if they

t i th d (W & B W ?)contain the word (W & Bi ==W ?)
• Overhead: online traverse candidate blocks to verify if the

word is actually therey

• Phrase or Proximity queriesPhrase or Proximity queries
– The bitwise OR of all the query (word) masks is searched
– The candidate blocks should have the same bits presented “1”

as that in the composite query mask
– Block boundaries should be taken care of

F h / i iti t bl k

IR – Berlin Chen 20

• For phrases/proximities across two blocks

Signature Files: Searchingg g

• Overlapping blocks

j words j words j words j words

• Other types of patterns (e.g., prefix/suffix strings,...) are
not supported for searching in this scheme

• Construction
T t i t i bl k d f h bl k t f th i t– Text is cut in blocks, and for each block an entry of the signature
file is generated

• Bitwise OR of the signatures of all the words in it

IR – Berlin Chen 21

g

– Adding text and deleting text are easy

Signature Files: Searchingg g

• ProsPros
– Pose a low overhead (10-20% text size) for the construction of text

signature
– Efficient to search phrases and reasonable proximity queries (the

only scheme improving the phrase search)

• Cons
Only applicable to index words– Only applicable to index words

– Only suitable for not very large texts
• Sequential search (check) in the text blocks to avoid false dropsq () p
• Inverted files outperform signature files for most applications

IR – Berlin Chen 22

Signature Files: Performanceg

• For a signature file built on 250 Mb of text• For a signature file built on 250 Mb of text
– Single word (or phrase?): 12 sec

IR – Berlin Chen 23

Suffix Trees
• Premise

– Inverted files or signature files treat the text as a sequence of– Inverted files or signature files treat the text as a sequence of
words

• For collections that the concept of word does not exit, they
would be not feasible (like genetic databases)

• Basic Ideas• Basic Ideas
– Each position (character or bit) in the text considered as a text

suffix
• A string going from that text position to the end of the text

(arbitrarily far to the right)
Each suffix (or called semi infinite string sistring) uniquely– Each suffix (or called semi-infinite string, sistring) uniquely
identified by its position

• Two suffixes at different A special null character
 dd d h ’ d

IR – Berlin Chen 24

positions are lexicographical different is added to the strings’ ends

Suffix Trees

• Basic Ideas (cont.)
I d i t t ll t t iti i d d– Index points: not all text positions indexed

• Word beginnings
• Or beginnings of retrievable text positionsOr, beginnings of retrievable text positions

– Queries are based on prefixes of sistrings, i.e., on any substring
of the text

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

sistring 11: text. A text has many words. Words are made from letters.
sistring 19: text has many words. Words are made from letters.
sistring 28: many words. Words are made from letters.g y
sistring 33: words. Words are made from letters.
sistring 40: Words are made from letters.
sistring 50: made from letters.

IR – Berlin Chen 25

g
sistring 60: letters.

Suffix Trees

• Structure
– The suffix tree is a trie structure built over all the suffixes of the

text
• Points to text are stored at the leaf nodes• Points to text are stored at the leaf nodes

– The suffix tree is implemented as a Patricia tree (or PAT tree),
i e a c mpact suffix treei.e., a compact suffix tree

• Unary paths (where each node has just one child) are
compressed

• An indication of next character (or bit) position to
consider/check are stored at the internal nodes

Each node takes 12 to 24 bytes– Each node takes 12 to 24 bytes
– A space overhead of 120%~240% over the text size

IR – Berlin Chen 26

Suffix Trees

• PAT tree over a sequence of characters

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.This is a text. A text has many words. Words are made from letters.

TextSuffix Trie Suffix Tree
60

50

28
19

‘l’
‘m’ ‘a’

‘d’

‘n’‘t’

60
50

28 19

‘l’
‘m’

‘d’

‘n’
‘t’

1 3

position of the next
character to check

Top

19

11
40

t
‘e’ ‘x’ ‘t’ ‘ ’

‘.’‘w’
‘o’ ‘d’‘r’ ‘s’ ‘ ’

11

40

‘t’ ‘ ’

‘.’‘w’
‘ ’

5

6
33

‘.’ 33‘.’

6

Down

Wh t if th i “ ” ?

IR – Berlin Chen 27

What if the query is “mo” ?

Suffix Trees
• Another representation

PAT tree over a sequence of bits– PAT tree over a sequence of bits

The bit position of query
0 1

The bit position of query
used for comparison
- Absolute bit position (used here)

O th t f bit ki d
0 1 10

- Or the count of bits skipped
(skip counter)

0 1 0 1 0 1

0 1

Internal nodes with

The key
(text position)

IR – Berlin Chen 28

Internal nodes with
single descendants are
eliminated !

(p)

Example query: 00101

Suffix Trees: Search

• Prefix searching
Search the prefix in the tree up to– Search the prefix in the tree up to
the point where the prefix is
exhausted or an external node
reached

– Verification is needed

O(m), m is the length in bits of the search pattern

• A single comparison of any of
the sistrings in the subtree 1

0
– If the comparison is successful, then

all the sistrings in the substree
are the answer earth

1

0

depth m

O(klogk)

– The results may be further
sorted by text order

Answer

earth
depth k

O(klogk)

IR – Berlin Chen 29

y

Suffix Trees: Search

• Range searchingRange searching
• Longest repetition searching
• Most significant or most frequent searching

– Key-pattern/-word extraction

IR – Berlin Chen 30

Suffix Trees: Performance

• For a suffix tree built on 250 Mb of text• For a suffix tree built on 250 Mb of text
– Single word or phrase (without supra-indices): 1 sec

Single word or phrase (with supra indices): 0 3 sec– Single word or phrase (with supra-indices): 0.3 sec

IR – Berlin Chen 31

Suffix Arraysy

• Basic Ideas
– Provide the same functionality as suffix trees with much less

space requirements
– The leaves of the suffix tree are traversed in left-to-right (or top-The leaves of the suffix tree are traversed in left to right (or top

to-down here) order, i.e. lexicographical order, to put the points
to the suffixes in the array

The space req irements the same as in erted files• The space requirements the same as inverted files
– Binary search performed on the array

• Slow when array is largeSlow when array is large

1 6 9 11 17 19 24 28 33 40 46 50 55 60

O(n), n is the size of indices

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

one pointer stored for each

IR – Berlin Chen 32

60 50 28 19 11 40 33Suffix array
one pointer stored for each

indexed suffix

(~40% overhead over the text size)

Suffix Arrays: Supra indicesy p

• Divide the array into blocks (may with variable length) and
make a sampling of each blockmake a sampling of each block
– Use the first k suffix characters
– Use the first word of suffix changes (e.g., “text ” (19) in the nextUse the first word of suffix changes (e.g., text (19) in the next

example for nonuniformly sampling)

• Act as a first step of search to reduce external accesses
(supra indices kept in memory!)

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

lett text word first k suffix characters

Supra-Index
The first 4 suffix characters

are indexed

IR – Berlin Chen 33

60 50 28 19 11 40 33
Suffix Array

b suffix array indices

Suffixes sampled at
fixed intervals

Suffix Arrays: Supra indicesy
• Compare word (vocabulary) supra-index with inverted list

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

letter made word Vocabulary
Supra-Index

many text

60 50 28 19 11 40 33 Suffix Array
Suffixes sampled at

fixed intervals

60 50 28 11 19 33 40 Inverted List

– Word occurrences in suffix array are sorted lexicographically
major

difference

IR – Berlin Chen 34

Word occurrences in suffix array are sorted lexicographically
– Word occurrences in inverted list are sorted by text positions

Suffix Trees and Suffix Arraysy

• ProsPros
– Efficient to search more complex queries (phrases)

• The query can be any substring of the texty y g

• ConsCons
– Costly construction process
– Not suitable for approximate text search
– Results are not delivered in text position order, but in a

lexicographical order

IR – Berlin Chen 35

