Learning to Rank using Language Models and SVMs

Berlin Chen

Department of Computer Science & Information Engineering National Taiwan Normal University

References:

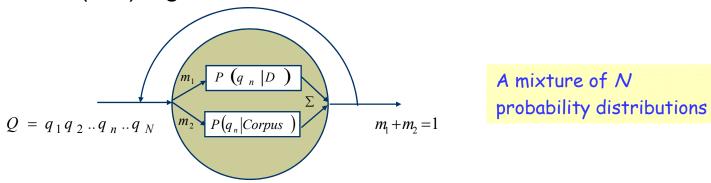
- 1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, *Introduction to Information Retrieval*, Chapte 15 & associated slides, Cambridge University Press
- 2. Raymond J. Mooney's teaching materials
- 3. Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents," ACM Transactions on Asian Language Information Processing 3(2), June 2004.

Discriminatively-Trained Language Models (1/9)

 A simple document-based language model (LM) for information retrieval can be represented by

$$P(Q|D \text{ is } R) = \prod_{n=1}^{N} [m_1 P(q_n|D) + m_2 P(q_n|Corpus)]$$

- The use of general corpus LM $P(q_n|Corpus)$ is for probability smoothing and better retrieval performance
- Conventionally, the mixture weights m_1 , m_2 ($m_1 + m_1 = 1$) are empirically tuned or optimized by using the Expectation-Maximization (EM) algorithm



⁻ D.R.H. Miller et al., "A hidden Markov model information retrieval system, SIGIR 1999.

⁻ Berlin Chen et al., "An HMM/N-gram-based Linguistic Processing Approach for Mandarin Spoken Document Retrieval," Interspeech 2001

Discriminatively-Trained Language Models (2/9)

- For those documents with training queries, m_1 and m_2 can be estimated by using the Minimum Classification Error (MCE) training algorithm
 - The ordering of relevant documents D^* and irrelevant documents D' in the ranked list for a training query exemplar Q is adjusted to preserve the relationships $D^* \prec D'$; i.e., D^* should precede D' on the ranked list
 - A *learning-to-rank* algorithm
 - Documents thus can have different weights

⁻Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents," *ACM Transactions on Asian Language Information Processing* 3(2), June 2004.

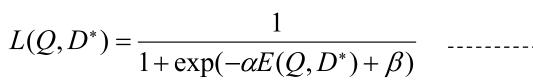
Discriminatively-Trained Language Models (3/9)

- Minimum Classification Error (MCE) Training
 - Given a query Q and a desired relevant doc D^* , define the classification error function as:

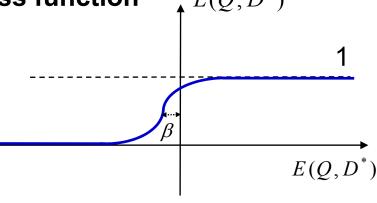
$$E(Q, D^*) = \frac{1}{|Q|} \left[-\log P(Q|D^* \text{ is } R) + \max_{D'} \log P(Q|D^* \text{ is not } R) \right]$$
Also can take all irrelevant doc in the answer set into consideration

">0": means misclassified; "<=0": means a correct decision

Transform the error function to the loss function



- In the range between 0 and 1
 - $-\alpha$: controls the slope
 - β : controls the offset



Discriminatively-Trained Language Models (4/9)

- Minimum Classification Error (MCE) Training
 - Apply the loss function to the MCE procedure for iteratively updating the weighting parameters function
 - Constraints:

$$m_k \geq 0$$
, $\sum_k m_k = 1$

 $m_k \ge 0 \; , \quad \sum_k m_k = 1$ • Parameter Transformation, (e.g.,Type I HMM)

$$m_1 = \frac{e^{\widetilde{m}_1}}{e^{\widetilde{m}_1} + e^{\widetilde{m}_2}}$$
 and $m_2 = \frac{e^{\widetilde{m}_2}}{e^{\widetilde{m}_1} + e^{\widetilde{m}_2}}$

- Iteratively update m_1 (e.g., Type I HMM)

teratively update
$$m_1$$
 (e.g., Type I HMM) Gradient descent $\widetilde{m}_1(i+1) = \widetilde{m}_1(i) - \left[\varepsilon(i) \cdot \frac{\partial L(Q,D^*)}{\partial \widetilde{m}_1}\right]_{D^* = D^*(i)}$
• Where, $\frac{\partial L(Q,D^*)}{\partial \widetilde{m}_1} = \alpha \cdot L(Q,D^*) \cdot [1 - L(Q,D^*)]_{D^*}$

Where,
$$\nabla_{D^*,\widetilde{m}_1} = \varepsilon \left(i \right) \cdot \frac{\partial L\left(Q,D^*\right)}{\partial \widetilde{m}_1} = \alpha \cdot L(Q,D^*) \cdot \left[1 - L(Q,D^*) \right]$$

$$= \varepsilon \left(i \right) \cdot \frac{\partial L\left(Q,D^*\right)}{\partial E\left(Q,D^*\right)} \cdot \frac{\partial E\left(Q,D^*\right)}{\partial \widetilde{m}_1},$$

Discriminatively-Trained Language Models (5/9)

- Minimum Classification Error (MCE) Training
 - Iteratively update m_1 (e.g., Type I HMM)

$$\begin{split} \frac{\partial E(Q,D^*)}{\partial \widetilde{m}_{1}} &= \frac{-1}{|Q|} \frac{\partial \left\{ \sum\limits_{q_{n} \in Q} \log \left[\frac{e^{\widetilde{m}_{1}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n}|D^*) + \frac{e^{\widetilde{m}_{2}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n}|Corpus) \right] \right\}}{\partial \widetilde{m}_{1}} &= \frac{1}{f(x)} f'(x) \\ & [f(x)g(x)] = f'(x)g(x) + f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g(x) + f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)g'(x) - f(x)g'(x) - f(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)$$

Discriminatively-Trained Language Models (6/9)

- Minimum Classification Error (MCE) Training
 - Iteratively update m_{\perp}

$$\begin{split} \nabla_{D^*,\widetilde{m}_1}(i) &= -\varepsilon(i) \cdot \alpha \cdot L(Q,D^*) \cdot \left[1 - L(Q,D^*)\right] \\ &\cdot \left[-m_1(i) + \frac{1}{|Q|} \sum_{q_n \in Q} \frac{m_1(i)P(q_n|D^*)}{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)} \right], \end{split}$$
 the new weight
$$\begin{aligned} &\cdot \left[-m_1(i) + \frac{1}{|Q|} \sum_{q_n \in Q} \frac{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)}{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)} \right], \end{split}$$

$$= \frac{e^{\widetilde{m}_1(i)} e^{-\nabla_{D^*,\widetilde{m}_1}(i)}}{e^{\widetilde{m}_1(i)} + e^{\widetilde{m}_2(i)} e^{-\nabla_{D^*,\widetilde{m}_1}(i)}} \end{aligned}$$

$$= \frac{e^{\widetilde{m}_1(i)} e^{-\nabla_{D^*,\widetilde{m}_1}(i)}}{e^{\widetilde{m}_1(i)} e^{-\nabla_{D^*,\widetilde{m}_1}(i)} + e^{\widetilde{m}_2(i)}} \underbrace{e^{\widetilde{m}_1(i)} - \nabla_{D^*,\widetilde{m}_1}(i)}_{m_1(i)} + e^{\widetilde{m}_2(i)}} \end{aligned}$$
 the old weight
$$= \frac{m_1(i) \cdot e^{-\nabla_{D^*,\widetilde{m}_1}(i)}}{m_1(i) \cdot e^{-\nabla_{D^*,\widetilde{m}_1}(i)}} + m_2(i) \cdot e^{-\nabla_{D^*,\widetilde{m}_2}(i)}},$$

Discriminatively-Trained Language Models (7/9)

- Minimum Classification Error (MCE) Training
 - Final Equations
 - Iteratively update m

$$\nabla_{D^*,\widetilde{m}_1}(i) = -\varepsilon(i) \cdot \alpha \cdot L(Q, D^*) \cdot \left[1 - L(Q, D^*)\right]$$

$$\cdot \left[-m_1(i) + \frac{1}{|Q|} \sum_{q_n \in Q} \frac{m_1(i)P(q_n|D^*)}{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)} \right]$$

$$m_{1}(i+1) = \frac{m_{1}(i) \cdot e^{-\nabla_{D^{*}, \widetilde{m}_{1}}(i)}}{m_{1}(i) \cdot e^{-\nabla_{D^{*}, \widetilde{m}_{1}}(i)} + m_{2}(i) \cdot e^{-\nabla_{D^{*}, \widetilde{m}_{2}}(i)}}$$

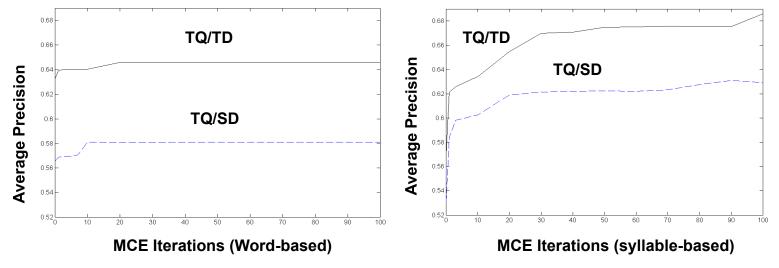
m, can be updated in the similar way

Discriminatively-Trained Language Models (8/9)

Experimental results with MCE training

	Average	Precision	Word-level	Syllable-level	Fusion
			Uni	Uni+Bi*	
5.6		TQ/TD	0.6459	0.6858	0.7329
Before MCE Training	TDT2		··· > (0.6327)	(0.5718)	
WCE Training		TQ/SD	0.5810	0.6300	0.6914
			(0.5658)	(0.5307)	

Iterations=100



The results for the syllable-level indexing features were significantly improved

Discriminatively-Trained Language Models (9/9)

- Similar treatments have been recently applied to Document Topic Models (e.g., PLSA) and Word Topic Models (WTM) with good success
- For example, the ranking formula for PLSA can be represented by

$$P(q|D) = \alpha \cdot \left(\beta \cdot \left[\sum_{T_k} P(q|T_k)P(T_k|D)\right] + (1-\beta) \cdot P(q|Corpus)\right) + (1-\alpha) \cdot P(q|D)$$

$$= \sum_{T_k} \alpha\beta \cdot P(q|T_k)P(T_k|D) + \alpha(1-\beta) \cdot P(q|Corpus) + (1-\alpha) \cdot P(q|D)$$

$$= \sum_{T_k} \left(\left[\alpha\beta \cdot P(q|T_k) + \alpha(1-\beta) \cdot P(q|Corpus) + (1-\alpha) \cdot P(q|D)\right]P(T_k|D)\right)$$

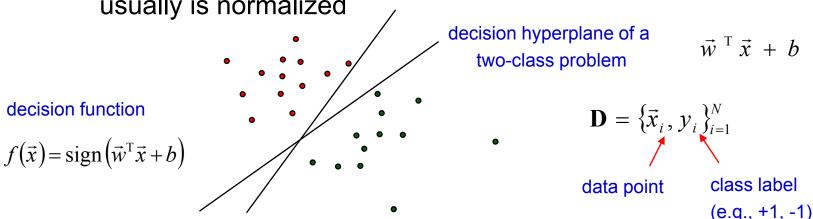
– The weighting parameters α and β document topic distributions $P(T_k|D)$ can be trained by the MCE algorithm

Vector Representations

Data points (e.g., documents) of different classes (e.g., relevant/non-relevant classes) are represented as vectors in a *n*-dimensional vector space

Each dimension has to do with a specific feature, whose value

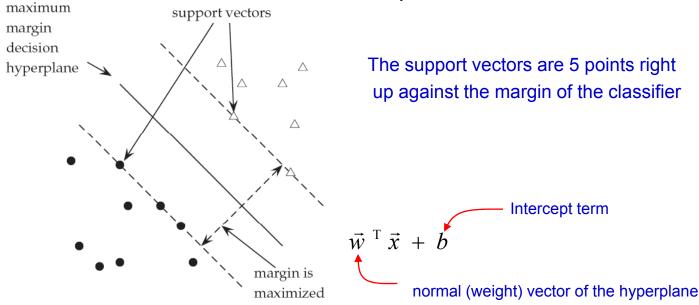
usually is normalized



- Support vector machines (SVM)
 - Look for a decision surface (or hyperplane) that is maximally far away from any data point
 - Margin: the distance from the decision surface to the closest data points on either side (or the support vectors)
 - SVM is a kind of large-margin classifier

Support Vectors

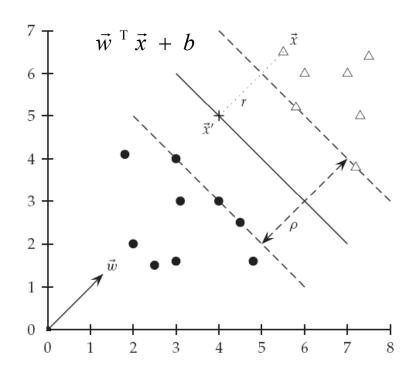
 SVM is fully specified by a small subset of the data (i.e., the support vectors) that defines the position of the separator (the decision hyperplane)



- Maximization of the margin
 - If there are no points near the decision surface, then there are no very uncertain classification decisions
 - Also, a slight error in measurement or a slight document variation will not cause a misclassification

Formulation of SVM with Algebra (1/2)

- Assume here that data points are linearly separable
- Euclidean distance of a point to the decision boundary



Assume data points are linear separable!

- 1. The shortest distance between a point \vec{x} to a hyperplane is perpendicular to the plane, i.e., parallel to \vec{w}
- 2. The point on the plane closest to \vec{x} is \vec{x} '

$$\vec{x}' = \vec{x} - yr \frac{\vec{w}}{|\vec{w}|}$$

$$\Rightarrow \vec{w}^{T} \left(\vec{x} - yr \frac{\vec{w}}{|\vec{w}|} \right) + b = 0$$

$$\Rightarrow r = \frac{y \left(\vec{w}^{T} \vec{x} + b \right)}{|\vec{w}|} \text{ or } \frac{|\vec{w}^{T} \vec{x} + b|}{|\vec{w}|}$$

3. We can scale $y(\vec{w}^T\vec{x} + b)$, the so-called "functional margin", as we please; for example, to 1

Therefore, the margin defined by the support vectors is expressed by $\frac{2}{1.7.1}$

(i.e., for support vectors
$$y(\vec{w}^T\vec{x} + b) = 1$$

; while for the others $y(\vec{w}^T\vec{x} + b) \ge 1$)

Formulation of SVM with Algebra (2/2)

- SVM is designed to find \vec{w} and b that can maximize the geometric margin
 - $-\frac{2}{|\vec{w}|}$ (maximization of $\frac{2}{|\vec{w}|}$ is equivalent to minimization of $\frac{1}{2}\vec{w}^{\mathrm{T}}\vec{w}$)
 - For all $\{\vec{x}_i, y_i\} \in \mathbf{D}$, $y_i (\vec{w}^T \vec{x}_i + b) \ge 1$

Mathematical formulation (assume linear separability)

- Primal Problem
 - Minimize \mathbf{L}_p with respect to \vec{w} and b

$$\min \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} \text{ subject to } y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) \geq +1, \forall i$$

$$\mathbf{L}_{p} = \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{i=1}^{N} \alpha_{i} [y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) - 1] (\alpha_{i} \geq 0)$$

$$= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{t=1}^{N} \alpha_{i} y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) + \sum_{t=1}^{N} \alpha_{i}$$

$$= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{t=1}^{N} \alpha_{i} y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) + \sum_{t=1}^{N} \alpha_{i}$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{t=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{t=1}^{N} \alpha_{i} y_{i} = 0$$

Formulation of SVM with Algebra (3/3)

- Dual problem (plug 2 and 3 into 1)
 - Maximize L_d with respect to α_i

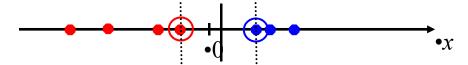
 $\begin{aligned} \mathbf{L}_{d} &= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{i=1}^{N} \alpha_{i} y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) + \sum_{i=1}^{N} \alpha_{i} \\ &= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \vec{w}^{\mathrm{T}} \left[\sum_{i=1}^{N} \alpha_{i} y_{i} \vec{x}_{i} \right] - b \left[\sum_{i=1}^{N} \alpha_{i} y_{i} \right] + \sum_{i=1}^{N} \alpha_{i} \\ &= -\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} + \sum_{i=1}^{N} \alpha_{i} \\ &= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}^{\mathrm{T}} \vec{x}_{j} \right] + \sum_{i=1}^{N} \alpha_{i} \end{aligned}$

Subject to the constraints that $\sum_{i=1}^{N} \alpha_i y_i = 0$ and $\alpha_i \ge 0 \ \forall i$

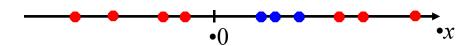
- Most α_i are 0 and only a small number have $\alpha_i > 0$ (they are support vectors)
- Have to do with the number of training instances, but not the input dimension

Dealing with Nonseparability (1/2)

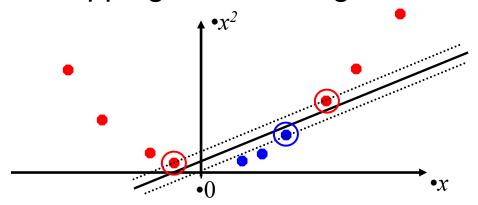
 Datasets that are linearly separable (with some noise) work out great:



But what are we going to do if the dataset is just too hard?

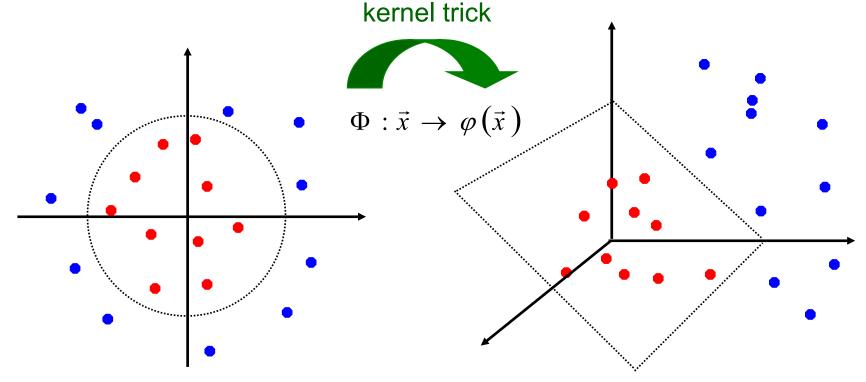


How about mapping data to a higher-dimensional space?



Dealing with Nonseparability (2/2)

• General idea: The original feature space can always be mapped by a function $\varphi(\cdot)$ to some higher-dimensional feature space where the training set is separable



Purposes:

- Make non-separable problem separable
- Map data into better representational space

Kernel Trick (1/2)

• The SVM decision function for an input \vec{x} at a high-dimensional (the transformed) space can be represented as

$$f(\vec{x}) = \operatorname{sign} \left(\vec{w}^{T} \varphi(\vec{x}) + b \right)$$

$$= \operatorname{sign} \left(\sum_{i=1}^{N} \alpha_{i} y_{i} \varphi(\vec{x}_{i})^{T} \varphi(\vec{x}) + b \right)$$

$$= \operatorname{sign} \left(\sum_{i=1}^{N} \alpha_{i} y_{i} K(\vec{x}_{i}, \vec{x}) + b \right)$$

- A kernel function $K(\vec{x}_i, \vec{x})$ is introduced, defined by the inner (dot) product of points (vectors) in the high-dimensional space
 - $K(\vec{x}_i, \vec{x})$ can be computed simply and efficiently in terms of the original data points
 - We wouldn't have to actually map from $\vec{x} \to \varphi(\vec{x})$ (however, we still can directly compute $K(\vec{x}_i, \vec{x}) = \varphi(\vec{x}_i)^T \varphi(\vec{x})$)

Kernel Trick (2/2)

- Common Kernel Functions
 - Polynomials of degree $q: K(\vec{u}, \vec{v}) = (\vec{u}^T \vec{v} + 1)^q$
 - Polynomial of degree two (quadratic kernel)

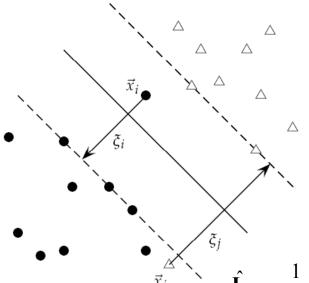
$$K(\vec{u}, \vec{v}) = (\vec{u}^{\mathrm{T}} \vec{v} + 1)^{2}$$
 two-dimensional points
$$= (u_{1}v_{1} + u_{2}v_{2} + 1)^{2} \text{ (where } \vec{u}^{\mathrm{T}} = [u_{1}, u_{2}], \vec{u}^{\mathrm{T}} = [v_{1}, v_{2}])$$
$$= 1 + 2u_{1}v_{1} + 2u_{2}v_{2} + 2u_{1}u_{2}v_{1}v_{2} + u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2}$$
$$\phi(\vec{u}) = \left[1, \sqrt{2}u_{1}, \sqrt{2}u_{2}, \sqrt{2}u_{1}u_{2}, u_{1}^{2}, u_{2}^{2}\right]^{T}$$

- Radial-basis function (Gaussian distribution): $K(\vec{u}, \vec{v}) = e^{-(\vec{u}-\vec{v})^2/(2\sigma^2)}$
- Sigmoidal function: $K(\vec{u}, \vec{v}) = \tanh(2\vec{u}^T\vec{v} + 1)$

The above kernels are not always very useful in text classification!

Soft-Margin Hyperplane (1/2)

- Even for very high-dimensional problems, data points could be linearly inseparable
- We can instead look for the hyperplane that incurs the least error
 - Define slack variables $\xi_i \ge 0$ that store the variation from the margin for each data points



- Reformulation the optimization criterion with slack variables
 - Find \vec{x} , \vec{b} , and $\xi_i \ge 0$ such that $\vec{z} = \frac{1}{2} \vec{w}^T \vec{w} + C \sum_{i=1}^N \xi_i$ is minimum

$$rightharpoonup$$
 For all $\{\vec{x}_i, y_i\} \in \mathbf{D}$, $y_i (\vec{w}^T \vec{x}_i + b) \ge 1 - \zeta_i$

$$\hat{\mathbf{L}}_{p} = \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} + C \sum_{i=1}^{N} \zeta_{i} - \sum_{i=1}^{N} \alpha_{i} \left[y_{i} \left(\vec{w}^{\mathrm{T}} \vec{x}_{i} + b \right) - 1 + \zeta_{i} \right] + \sum_{i=1}^{N} \mu_{i} \zeta_{i}$$
IR - Berlin Chen 20

Soft-Margin Hyperplane (2/2)

Dual Problem

$$\hat{\mathbf{L}}_{d} = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}^{\mathsf{T}} \vec{x}_{j}$$
subject to
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \text{ and } 0 \le \alpha_{i} \le C \quad \forall i$$

- Neither slack variables ξ_i nor their Lagrange multipliers μ_i appear in the dual problem!
- Again, $\vec{\chi}$ with non-zero α_i will be support vectors
- Solution to the dual problem is:

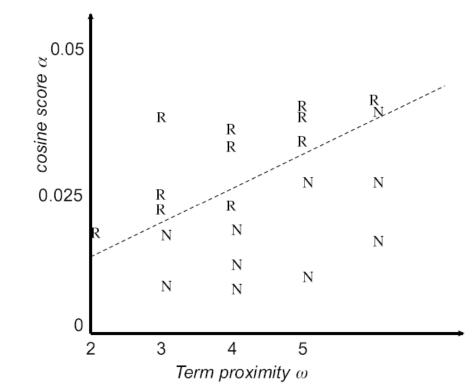
$$\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \vec{x}_i$$

$$b = y_k (1 - \xi_k) - \vec{w}^T \vec{x}_k \text{ for } k = \text{arg max }_k \alpha_k$$

- Parameter C can be viewed as a way to control overfitting a regularization term
 - ullet The larger the value C , the more we should pay attention to each individual data point
 - The smaller the value C , the more we can model the bulk of the data

Using SVM for Ad-Hoc Retrieval (1/2)

• For example, documents are simply represented by twodimensional vectors $\psi(d_i,q)$ consisting of cosine score and term proximity



► **Figure 15.7** A collection of training examples. Each R denotes a training example labeled *relevant*, while each N is a training example labeled *nonrelevant*.

Using SVM for Ad-Hoc Retrieval (2/2)

- Examples: Nallapati, Discriminative Models for Information Retrieval, SIGIR 2004
 - Basic Features used in SVM

	Feature		Feature
1	$\sum_{q_i \in Q \cap D} log(c(q_i, D))$	4	$\sum_{q_i \in Q \cap D} (log(\frac{ C }{c(q_i, C)}))$
2	$\sum_{i=1}^{n} log(1 + \frac{c(q_i, D)}{ D })$	5	$\sum_{i=1}^{n} log(1 + \frac{c(q_i, D)}{ D } idf(q_i))$
3	$\sum_{q_i \in Q \cap D} log(idf(q_i))$	6	$\sum_{i=1}^{n} log(1 + \frac{c(q_i, D)}{ D } \frac{ C }{c(q_i, C)})$

Compared with LM and ME (maximum entropy) models

Train \downarrow Test \rightarrow		Disks 1-2	Disk 3	Disks 4-5	WT2G
		(151-200)	(101-150)	(401-450)	(426-450)
Disks 1-2	LM ($\mu^* = 1900$)	0.2561 (6.75e-3)	0.1842	0.2377 (0.80)	0.2665 (0.61)
(101-150)	SVM	0.2145	0.1877 (0.3)	0.2356	0.2598
	ME	0.1513	0.1240	0.1803	0.1815
Disk 3	$LM (\mu^* = 500)$ 0.2605 (1.08e-4)		0.1785 (0.11)	0.2503 (0.21)	0.2666
(51-100)	SVM	0.2064	0.1728	0.2432	0.2750 (0.55)
	ME	0.1599	0.1221	0.1719	0.1706
Disks 4-5	LM ($\mu^* = 450$)	0.2592 (1.75e-4)	0.1773 (7.9e-3)	0.2516 (0.036)	0.2656
(301-350)	SVM	0.2078	0.1646	0.2355	0.2675 (0.89)
	ME	0.1413	0.0978	0.1403	0.1355
WT2G	LM ($\mu^* = 2400$)	0.2524 (4.6e-3)	0.1838 (0.08)	0.2335	0.2639
(401-425)	(401-425) SVM 0.2199		0.1744	0.2487 (0.046)	0.2798 (0.037)
	ME	0.1353	0.0969	0.1441	0.1432
Best TREC runs		0.4226	N/A	0.3207	N/A
(Site)		(UMass)		(Queen's College)	

Tested on 4
TREC collections

Ranking SVM (1/2)

- Construct an SVM that not only considers the relevance of documents to the a training query but also the order of each document pair on the ideal ranked list
 - First, construct a vector of features $\psi\left(d_{i},q\right)$ for each document-query pair
 - Second, capture the relationship between each document pair by introducing a new vector representation $\phi(d_i, d_j, q)$ for each document pair

$$\phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$$

- Third, if d_i is more relevant than d_j given q (denoted $d_i \prec d_j$, i.e., d_i should precede d_j on the ranked list), then associate they with the label $y_{ijq} = +1$; otherwise, $y_{iiq} = -1$

Ranking SVM (2/2)

- Therefore, the above ranking task is formulated as:
 - Find \vec{x} , b , and $\xi_{ijq} \ge 0$ such that
 - $\frac{1}{2}\vec{w}^T\vec{w} + C\sum_{i,j,q}\xi_{i,j,q}$ is minimized
 - For all $\{\phi(d_i, d_j, q): d_i \prec d_j\}$, $\vec{w}^T \phi(d_i, d_j, q) + b \ge 1 \xi_{i,j,q}$ (Note that y_{ijq} are left out here. Why?)