# Learning to Rank using Language Models and SVMs 

Berlin Chen<br>Department of Computer Science \& Information Engineering<br>National Taiwan Normal University<br>

References:

1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Chapte 15 \& associated slides, Cambridge University Press
2. Raymond J. Mooney's teaching materials
3. Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents," ACM Transactions on Asian Language Information Processing 3(2), June 2004.

## Discriminatively-Trained Language Models (1/9)

- A simple document-based language model (LM) for information retrieval can be represented by

$$
P(Q \mid D \text { is } R)=\prod_{n=1}^{N}\left[m_{1} P\left(q_{n} \mid D\right)+m_{2} P\left(q_{n} \mid \text { Corpus }\right)\right]
$$

- The use of general corpus LM $P\left(q_{n} \mid\right.$ Corpus $)$ is for probability smoothing and better retrieval performance
- Conventionally, the mixture weights $m_{1}, m_{2}\left(m_{1}+m_{1}=1\right)$ are empirically tuned or optimized by using the ExpectationMaximization (EM) algorithm



## Discriminatively-Trained Language Models (2/9)

- For those documents with training queries, $m_{1}$ and $m_{2}$ can be estimated by using the Minimum Classification Error (MCE) training algorithm
- The ordering of relevant documents $D^{*}$ and irrelevant documents $D^{\prime}$ in the ranked list for a training query exemplar $Q$ is adjusted to preserve the relationships $D^{*} \prec D^{\prime}$; i.e., $D^{*}$ should precede $D^{\prime}$ on the ranked list
- A learning-to-rank algorithm
- Documents thus can have different weights

[^0]
## Discriminatively-Trained Language Models (3/9)

- Minimum Classification Error (MCE) Training
- Given a query $Q$ and a desired relevant doc $D^{*}$, define the classification error function as:

$$
E\left(Q, D^{*}\right)=\frac{1}{|Q|}\left[-\log P\left(Q \mid D^{*} \text { is } R\right)+\max ^{D^{\prime}} \log P\left(Q \mid D^{\prime} \text { is not } R\right)\right]
$$

Also can take all irrelevant doc in the answer set into consideration
">0": means misclassified; "<=0": means a correct decision

- Transform the error function to the loss function

$$
L\left(Q, D^{*}\right)=\frac{1}{1+\exp \left(-\alpha E\left(Q, D^{*}\right)+\beta\right)}
$$

- In the range between 0 and 1
$-\alpha$ : controls the slope
$-\quad \beta$ : controls the offset


## Discriminatively-Trained Language Models (4/9)

- Minimum Classification Error (MCE) Training
- Apply the loss function to the MCE procedure for iteratively updating the weighting parameters
- Constraints:

$$
m_{k} \geq 0, \quad \sum_{k} m_{k}=1
$$

- Parameter Transformation, (e.g.,Type I HMM)


$$
m_{1}=\frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}} \quad \text { and } \quad m_{2}=\frac{e^{\tilde{m}_{2}}}{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}}
$$

- Iteratively update $m_{1}$ (e.g., Type I HMM)

Gradient descent

$$
\begin{aligned}
& \quad \widetilde{m}_{1}(i+1)=\tilde{m}_{1}(i)-\varepsilon(i) \cdot \frac{\partial L\left(Q, D^{*}\right)}{\partial \widetilde{m}_{1}} \|_{D^{*}=D^{*}(i)} \\
& \text { - Where, }
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{D^{*}, \tilde{m}_{1}} & \stackrel{\leftarrow}{=}(i) \cdot \frac{\partial L\left(Q, D^{*}\right)}{\partial \widetilde{m}_{1}} \\
& =\varepsilon(i) \cdot \frac{\partial L\left(Q, D^{*}\right)}{\partial E\left(Q, D^{*}\right)} \cdot \frac{\partial E\left(Q, D^{*}\right)}{\partial E\left(Q, D^{*}\right)}=\alpha \cdot L\left(Q, D^{*}\right) \cdot\left[1-L\left(Q, D^{*}\right)\right] \\
&
\end{aligned}
$$

## Discriminatively-Trained Language Models (5/9)

- Minimum Classification Error (MCE) Training
- Iteratively update $m_{1}$ (e.g., Type I HMM)

$$
\begin{aligned}
& \frac{\partial E\left(Q, D^{*}\right)}{\partial \widetilde{m}_{1}}=\frac{-1}{|Q|} \frac{\partial\left\{\sum_{q_{n} \in Q} \log \left[\frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}} P\left(q_{n} \mid D^{*}\right)+\frac{e^{\tilde{m}_{2}}}{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}} P\left(q_{n} \mid \operatorname{Corpus}\right)\right]\right\} \begin{array}{l}
\text { Note }: \\
\partial \widetilde{m}_{1} \\
{[\log f(x)]=\frac{1}{f(x)} f^{\prime}(x)} \\
{[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)}
\end{array}}{\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}} \\
& =\frac{-1}{|Q|} \sum_{q_{n} \in Q}\left\{\begin{array}{l}
\left\{\begin{array}{l}
1 \\
\vdots \\
\vdots
\end{array} \frac{e^{\tilde{m}_{1}}}{\left(e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}\right)^{2}}\left[e^{\tilde{m}_{1}} P\left(q_{n} \mid D^{*}\right)+e^{\tilde{m}_{2}} P\left(q_{n} \mid \text { Corpus }\right)\right]_{1}^{4} \frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}} P\left(q_{n} \mid D^{*}\right)+\frac{e^{\tilde{m}_{2}}}{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}} P\left(q_{n} \mid \text { Corpus }\right)\right.
\end{array}\right\} \\
& =\frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}}-\frac{1}{|Q|} \sum_{q_{n} \in Q}\left\{\frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}} P\left(q_{n} \mid D^{*}\right) \left\lvert\, \frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{2}}+e^{\tilde{m}_{2}}} P\left(q_{n} \mid D^{*}\right)+\frac{e^{\tilde{m}_{1}}+e^{\tilde{m}_{2}}}{} P\left(q_{n} \mid \text { Corpus }\right)\right.\right\} \\
& =-\left[-m_{1}+\frac{1}{|Q|} \sum_{q_{n} \in Q} \frac{m_{1} P\left(q_{n} \mid D^{*}\right)}{m_{1} P\left(q_{n} \mid D^{*}\right)+m_{2} P\left(q_{n} \mid \text { Corpus }\right)}\right] \text {, }
\end{aligned}
$$

## Discriminatively-Trained Language Models (6/9)

- Minimum Classification Error (MCE) Training
- Iteratively update $m_{1}$

$$
\nabla_{D^{*}, \widetilde{m}_{1}}(i)=-\varepsilon(i) \cdot \alpha \cdot L\left(Q, D^{*}\right) \cdot\left[1-L\left(Q, D^{*}\right)\right]
$$

the new weight

$m_{1}(i+1)=\frac{m_{1}(i) P\left(q_{n} \mid D^{*}\right)}{e^{\tilde{m}_{1}(i+1)}+e^{\tilde{m}_{2}(i+1)}}$
$\widetilde{m}_{1}(i+1)=\widetilde{m}_{1}(i)-\nabla_{D^{*}: \tilde{m}_{1}}(i)$

$$
\begin{aligned}
& =\frac{e^{\tilde{m}_{1}(i)} e^{-\nabla_{D^{*}, \tilde{m}_{1}}^{(i)}}}{e^{\tilde{m}_{1}(i)} e^{-\nabla_{D^{*}, \tilde{m}_{1}}^{(i)}}+e^{\tilde{m}_{2}(i)} e^{-\nabla_{D^{*}, \tilde{m}_{2}}^{(i)}}} \\
& =\frac{e^{\tilde{m}_{1}(i)} e^{-\nabla_{D^{*}, \tilde{m}_{1}}(i)} /\left(e^{\tilde{m}_{1}(i)}+e^{\tilde{m}_{2}(i)}\right)}{\left[e^{\tilde{m}_{1}(i)} e^{-\nabla_{D^{*}, \tilde{m}_{1}}^{(i)}} /\left(e^{\tilde{m}_{1}(i)}+e^{\tilde{m}_{2}(i)}\right)\right]+\left[e^{\tilde{m}_{2}(i)} e^{-\nabla_{D^{*}, \tilde{m}_{2}}^{(i)}} /\left(e^{\tilde{m}_{1}(i)}+e^{\tilde{m}_{2}(i)}\right)\right]}
\end{aligned}
$$

the old weight

$$
=\frac{m_{1}(i) \cdot e^{-\nabla_{D^{*}, \tilde{m}_{1}}(i)}}{m_{1}(i) \cdot e^{-\nabla_{D^{*}, \tilde{i}_{1}}(i)}+m_{2}(i) \cdot e^{-\nabla_{D^{*}, \tilde{m}_{2}}(i)}},
$$

## Discriminatively-Trained Language Models (7/9)

- Minimum Classification Error (MCE) Training
- Final Equations
- Iteratively update $m_{1}$

$$
\begin{aligned}
\nabla_{D^{*}, \tilde{m}_{1}}(i)= & -\varepsilon(i) \cdot \alpha \cdot L\left(Q, D^{*}\right) \cdot\left[1-L\left(Q, D^{*}\right)\right] \\
& \cdot\left[-m_{1}(i)+\frac{1}{|Q|} \sum_{q_{n} \in Q} \frac{m_{1}(i) P\left(q_{n} \mid D^{*}\right)}{m_{1}(i) P\left(q_{n} \mid D^{*}\right)+m_{2}(i) P\left(q_{n} \mid \operatorname{Corpus}\right)}\right] \\
m_{1}(i+1)= & \frac{m_{1}(i) \cdot e^{-\nabla_{D^{*}, \tilde{m}_{1}}(i)}}{m_{1}(i) \cdot e^{-\nabla_{D^{*}, \tilde{m}_{1}}{ }^{(i)}}+m_{2}(i) \cdot e^{-\nabla_{D^{*}, \tilde{m}_{2}}^{(i)}}}
\end{aligned}
$$

- $m_{2}$ can be updated in the similar way


## Discriminatively-Trained Language Models (8/9)

- Experimental results with MCE training



- The results for the syllable-level indexing features were significantly improved


## Discriminatively-Trained Language Models (9/9)

- Similar treatments have been recently applied to Document Topic Models (e.g., PLSA) and Word Topic Models (WTM) with good success
- For example, the ranking formula for PLSA can be represented by

$$
\begin{aligned}
P(q \mid D) & =\alpha \cdot\left(\beta \cdot\left[\sum_{T_{k}} P\left(q \mid T_{k}\right) P\left(T_{k} \mid D\right)\right]+(1-\beta) \cdot P(q \mid \text { Corpus })\right)+(1-\alpha) \cdot P(q \mid D) \\
& =\sum_{T_{k}} \alpha \beta \cdot P\left(q \mid T_{k}\right) P\left(T_{k} \mid D\right)+\alpha(1-\beta) \cdot P(q \mid \text { Corpus })+(1-\alpha) \cdot P(q \mid D) \\
& =\sum_{T_{k}}\left(\left[\alpha \beta \cdot P\left(q \mid T_{k}\right)+\alpha(1-\beta) \cdot P(q \mid \text { Corpus })+(1-\alpha) \cdot P(q \mid D)\right] P\left(T_{k} \mid D\right)\right)
\end{aligned}
$$

- The weighting parameters $\alpha$ and $\beta$ document topic distributions $P\left(T_{k} \mid D\right)$ can be trained by the MCE algorithm


## Vector Representations

- Data points (e.g., documents) of different classes (e.g., relevant/non-relevant classes) are represented as vectors in a $n$-dimensional vector space
- Each dimension has to do with a specific feature, whose value usually is normalized
decision function
$f(\vec{x})=\operatorname{sign}\left(\vec{w}^{\mathrm{T}} \vec{x}+b\right)$


$\vec{w}^{\mathrm{T}} \vec{x}+b$

- Support vector machines (SVM)
- Look for a decision surface (or hyperplane) that is maximally far away from any data point
- Margin: the distance from the decision surface to the closest data points on either side (or the support vectors)
- SVM is a kind of large-margin classifier


## Support Vectors

- SVM is fully specified by a small subset of the data (i.e., the support vectors) that defines the position of the separator (the decision hyperplane)

- Maximization of the margin
- If there are no points near the decision surface, then there are no very uncertain classification decisions
- Also, a slight error in measurement or a slight document variation will not cause a misclassification


## Formulation of SVM with Algebra (1/2)

- Assume here that data points are linearly separable
- Euclidean distance of a point to the decision boundary

1. The shortest distance between a point $\vec{x}$ to a hyperplane is perpendicular to the plane, i.e., parallel to $\vec{w}$


Assume data points are linear separable!
2. The point on the plane closest to $\vec{x}$ is $\vec{x}^{\prime}$

$$
\begin{aligned}
& \vec{x}^{\prime}=\vec{x}-y r \frac{\vec{w}}{|\vec{w}|} \\
& \Rightarrow \quad \vec{w}^{\mathrm{T}}\left(\vec{x}-y r \frac{\vec{w}}{|\vec{w}|}\right)+b=0 \\
& \Rightarrow \quad r=\frac{y\left(\vec{w}^{\mathrm{T}} \vec{x}+b\right)}{|\vec{w}|} \text { or } \frac{|\vec{w} \mathrm{~T} \vec{x}+b|}{|\vec{w}|}
\end{aligned}
$$

3. We can scale $y\left(\vec{w}^{\mathrm{T}} \vec{x}+b\right)$, the so-called "functional margin", as we please; for example, to 1

Therefore, the margin defined by the support vectors is expressed by $\frac{2}{|\vec{w}|}$
(i.e., for support vectors $y\left(\vec{w}^{\mathrm{T}} \vec{x}+b\right)=1$

$$
\text { ; while for the others } \left.y\left(\vec{w}^{\mathrm{T}} \vec{x}+b\right) \geq 1_{\mathrm{R}-}\right)
$$

## Formulation of SVM with Algebra (2/2)

- SVM is designed to find $\vec{w}$ and $b$ that can maximize the geometric margin
$-\frac{2}{|\vec{w}|}$ (maximization of $\frac{2}{|\vec{w}|}$ is equivalent to minimization of $\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}$ )
- For all $\left\{\vec{x}_{i}, y_{i}\right\} \in \mathbf{D}, y_{i}\left(\vec{w}^{\mathrm{T}} \vec{x}_{i}+b\right) \geq 1$

Mathematical formulation (assume linear separability)

- Primal Problem
- Minimize $\mathbf{L}_{p}$ with respect to $\vec{w}$ and $b$ $\min \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}$ subject to $\quad y_{i}\left(\vec{w}^{\mathrm{T}} \vec{x}_{i}+b\right) \geq+1, \forall i$
$\mathbf{L}_{p}=\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}^{N}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\vec{w}^{\mathrm{T}} \vec{x}_{i}+b\right)-1\right]\left(\alpha_{i} \geq 0\right)$
$=\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}-\sum_{t=1}^{N} \alpha_{i} y_{i}\left(\vec{w}^{\mathrm{T}} \vec{x}_{i}+b\right)+\sum_{t=1}^{N} \alpha_{i}$

$$
\begin{align*}
& \frac{\partial \mathbf{L}_{p}}{\partial \vec{w}}=0 \Rightarrow \vec{w}=\sum_{t=1}^{N} \alpha_{i} y_{i} \vec{x}_{i}  \tag{2}\\
& \frac{\partial \mathbf{L}_{p}}{\partial b}=0 \Rightarrow \sum_{t=1}^{N} \alpha_{i} y_{i}=0 \tag{3}
\end{align*}
$$

## Formulation of SVM with Algebra (3/3)

- Dual problem (plug (2) and (3) into (1) )
- Maximize $\mathbf{L}_{d}$ with respect to $\alpha_{i}$

$$
\begin{aligned}
& \mathbf{L}_{d}=\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}-\sum_{i=1}^{N} \alpha_{i} y_{i}\left(\vec{w}^{\mathrm{T}} \vec{x}_{i}+b\right)+\sum_{i=1}^{N} \alpha_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}+\sum_{i=1}^{N} \alpha_{i}
\end{aligned}
$$

Subject to the constraints that $\sum_{i=1}^{N} \alpha_{i} y_{i}=0$ and $\alpha_{i} \geq 0 \forall i$

- Most $\alpha_{i}$ are 0 and only a small number have $\alpha_{i}>0$ (they are support vectors)
- Have to do with the number of training instances, but not the input dimension


## Dealing with Nonseparability (1/2)

- Datasets that are linearly separable (with some noise) work out great:

- But what are we going to do if the dataset is just too hard?

- How about mapping data to a higher-dimensional space?



## Dealing with Nonseparability (2/2)

- General idea: The original feature space can always be mapped by a function $\varphi(\cdot)$ to some higher-dimensional feature space where the training set is separable kernel trick



## Kernel Trick (1/2)

- The SVM decision function for an input $\vec{x}$ at a highdimensional (the transformed) space can be represented as

$$
\begin{aligned}
f(\vec{x}) & =\operatorname{sign}\left(\vec{w}^{\mathrm{T}} \varphi(\vec{x})+b\right) \\
& =\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} \varphi\left(\vec{x}_{i}\right)^{T} \varphi(\vec{x})+b\right) \\
& =\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} K\left(\vec{x}_{i}, \vec{x}\right)+b\right)
\end{aligned}
$$

- A kernel function $K\left(\vec{x}_{i}, \vec{x}\right)$ is introduced, defined by the inner (dot) product of points (vectors) in the high-dimensional space
- $K\left(\vec{x}_{i}, \vec{x}\right)$ can be computed simply and efficiently in terms of the original data points
- We wouldn't have to actually map from $\vec{x} \rightarrow \varphi(\vec{x})$ (however, we still can directly compute $K\left(\vec{x}_{i}, \vec{x}\right)=\varphi\left(\vec{x}_{i}\right)^{T} \varphi(\vec{x})$ )


## Kernel Trick (2/2)

- Common Kernel Functions
- Polynomials of degree $q$ : $K(\vec{u}, \vec{v})=\left(\vec{u}^{\mathrm{T}} \vec{v}+1\right)^{q}$
- Polynomial of degree two (quadratic kernel)

$$
\begin{aligned}
K(\vec{u}, \vec{v}) & =\left(\vec{u}^{\mathrm{T}} \vec{v}+1\right)^{2} \quad \text { two-dimensional points } \\
& =\left(u_{1} v_{1}+u_{2} v_{2}+1\right)^{2} \quad\left(\text { where } \vec{u}^{\mathrm{T}}=\left[u_{1}, u_{2}\right], \vec{u}^{\mathrm{T}}=\left[v_{1}, v_{2}\right]\right) \\
& =1+2 u_{1} v_{1}+2 u_{2} v_{2}+2 u_{1} u_{2} v_{1} v_{2}+u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2} \\
\phi(\vec{u}) & =\left[1, \sqrt{2} u_{1}, \sqrt{2} u_{2}, \sqrt{2} u_{1} u_{2}, u_{1}^{2}, u_{2}^{2}\right]^{T}
\end{aligned}
$$

- Radial-basis function (Gaussian distribution): $K(\vec{u}, \vec{v})=e^{-(\vec{u}-\vec{v})^{2} /\left(2 \sigma^{2}\right)}$
- Sigmoidal function: $K(\vec{u}, \vec{v})=\tanh \left(2 \vec{u}^{\mathrm{T}} \vec{v}+1\right)$

The above kernels are not always very useful in text classification!

## Soft-Margin Hyperplane (1/2)

- Even for very high-dimensional problems, data points could be linearly inseparable
- We can instead look for the hyperplane that incurs the least error
- Define slack variables $\xi_{i} \geq 0$ that store the variation from the margin for each data points



## Soft-Margin Hyperplane (2/2)

- Dual Problem

$$
\begin{aligned}
\hat{\mathbf{L}}_{d}= & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}{ }^{\mathrm{T}} \vec{x}_{j} \\
& \text { subject to } \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \text { and } 0 \leq \alpha_{i} \leq C \quad \forall i
\end{aligned}
$$

- Neither slack variables $\xi_{i}$ nor their Lagrange multipliers $\mu_{i}$ appear in the dual problem!
- Again, $\vec{x}$ with non-zero $\alpha_{i}$ will be support vectors
- Solution to the dual problem is:

$$
\begin{aligned}
& \vec{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \vec{x}_{i} \\
& b=y_{k}\left(1-\xi_{k}\right)-\vec{w}^{\mathrm{T}} \vec{x}_{k} \text { for } k=\arg \max _{k} \alpha_{k}
\end{aligned}
$$

- Parameter $C$ can be viewed as a way to control overfitting - a regularization term
- The larger the value $C$, the more we should pay attention to each individual data point
- The smaller the value $C$, the more we can model the bulk of the data


## Using SVM for Ad-Hoc Retrieval (1/2)

- For example, documents are simply represented by twodimensional vectors $\psi\left(d_{i}, q\right)$ consisting of cosine score and term proximity

- Figure 15.7 A collection of training examples. Each R denotes a training example
labeled relevant, while each N is a training example labeled nonrelevant.


## Using SVM for Ad-Hoc Retrieval (2/2)

- Examples: Nallapati, Discriminative Models for Information Retrieval, SIGIR 2004
- Basic Features used in SVM

|  | Feature |  | Feature |
| :--- | :--- | :--- | :--- |
| 1 | $\sum_{q_{i} \in Q \cap D} \log \left(c\left(q_{i}, D\right)\right)$ | 4 | $\sum_{q_{i} \in Q \cap D}\left(\log \left(\frac{\|C\|}{c\left(q_{i}, C\right)}\right)\right)$ |
| 2 | $\sum_{i=1}^{n} \log \left(1+\frac{c\left(q_{i}, D\right)}{\|D\|}\right)$ | 5 | $\sum_{i=1}^{n} \log \left(1+\frac{c\left(q_{i}, D\right)}{\|D\|} i d f\left(q_{i}\right)\right)$ |
| 3 | $\sum_{q_{i} \in Q \cap D} \log \left(i d f\left(q_{i}\right)\right)$ | 6 | $\sum_{i=1}^{n} \log \left(1+\frac{c\left(q_{i}, D\right)}{\|D\|} \frac{\|C\|}{c\left(q_{i}, C\right)}\right)$ |

- Compared with LM and ME (maximum entropy) models

| Train $\downarrow$ Test $\rightarrow$ |  | Disks 1-2 | Disk 3 | Disks 4-5 | WT2G | Tested on 4 TREC collections |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \hline \text { Disks 1-2 } \\ & (101-150) \end{aligned}$ | LM ( $\mu^{*}=1900$ ) | 0.2561 (6.75e-3) | 0.1842 | 0.2377 (0.80) | 0.2665 (0.61) |  |
|  | SVM | 0.2145 | 0.1877 (0.3) | 0.2356 | 0.2598 |  |
|  | ME | 0.1513 | 0.1240 | 0.1803 | 0.1815 |  |
| $\begin{aligned} & \hline \text { Disk 3 } \\ & (51-100) \end{aligned}$ | LM ( $\mu^{*}=500$ ) | 0.2605 (1.08e-4) | 0.1785 (0.11) | 0.2503 (0.21) | 0.2666 |  |
|  | SVM | 0.2064 | 0.1728 | 0.2432 | 0.2750 (0.55) |  |
|  | ME | 0.1599 | 0.1221 | 0.1719 | 0.1706 |  |
| $\begin{aligned} & \hline \hline \text { Disks 4-5 } \\ & (301-350) \end{aligned}$ | LM ( $\mu^{*}=450$ ) | 0.2592 (1.75e-4) | 0.1773 (7.9e-3) | 0.2516 (0.036) | 0.2656 |  |
|  | SVM | 0.2078 | 0.1646 | 0.2355 | 0.2675 (0.89) |  |
|  | ME | 0.1413 | 0.0978 | 0.1403 | 0.1355 |  |
| $\begin{aligned} & \hline \text { WT2G } \\ & (401-425) \end{aligned}$ | LM ( $\mu^{*}=2400$ ) | 0.2524 (4.6e-3) | 0.1838 (0.08) | 0.2335 | 0.2639 |  |
|  | SVM | 0.2199 | 0.1744 | 0.2487 (0.046) | 0.2798 (0.037) |  |
|  | ME | 0.1353 | 0.0969 | 0.1441 | 0.1432 |  |
| Best TREC runs (Site) |  | $\begin{aligned} & \hline \hline 0.4226 \\ & \text { (UMass) } \end{aligned}$ | N/A | $0.3207$ <br> (Queen's College) | N/A | IR - Berlin Chen 23 |

## Ranking SVM (1/2)

- Construct an SVM that not only considers the relevance of documents to the a training query but also the order of each document pair on the ideal ranked list
- First, construct a vector of features $\psi\left(d_{i}, q\right)$ for each documentquery pair
- Second, capture the relationship between each document pair by introducing a new vector representation $\phi\left(d_{i}, d_{j}, q\right)$ for each document pair

$$
\phi\left(d_{i}, d_{j}, q\right)=\psi\left(d_{i}, q\right)-\psi\left(d_{j}, q\right)
$$

- Third, if $d_{i}$ is more relevant than $d_{j}$ given $q$ (denoted $d_{i} \prec d_{j}$, i.e., $d_{i}$ should precede $d_{j}$ on the ranked list), then associate they with the label $y_{i j q}=+1$; otherwise, $y_{i j q}=-1$


## Ranking SVM (2/2)

- Therefore, the above ranking task is formulated as:
- Find $\vec{x}, b$, and $\xi_{i j q} \geq 0$ such that
- $\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}+C \sum_{i, j, q} \xi_{i, j, q}$ is minimized
- For all $\left\{\phi\left(d_{i}, d_{j}, q\right): d_{i} \prec d_{j}\right\}, \vec{w}^{\mathrm{T}} \phi\left(d_{i}, d_{j}, q\right)+b \geq 1-\xi_{i, j, q}$ (Note that $y_{i g q}$ are left out here. Why?)


[^0]:    -Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents," ACM Transactions on Asian Language Information Processing 3(2), June 2004

