# Learning to Rank using Language Models and SVMs



### Berlin Chen

Department of Computer Science & Information Engineering National Taiwan Normal University



#### References:

- 1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, *Introduction to Information Retrieval*, Chapte 15 & associated slides, Cambridge University Press
- 2. Raymond J. Mooney's teaching materials
- 3. Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents," ACM Transactions on Asian Language Information Processing 3(2), June 2004.

# Discriminatively-Trained Language Models (1/9)

 A simple document-based language model (LM) for information retrieval can be represented by

$$P(Q|D \text{ is } R) = \prod_{n=1}^{N} [m_1 P(q_n|D) + m_2 P(q_n|Corpus)]$$

- The use of general corpus LM  $P(q_n|Corpus)$  is for probability smoothing and better retrieval performance
- Conventionally, the mixture weights  $m_1$ ,  $m_2$  ( $m_1 + m_1 = 1$ ) are empirically tuned or optimized by using the Expectation-Maximization (EM) algorithm



<sup>-</sup> D.R.H. Miller et al., "A hidden Markov model information retrieval system, SIGIR 1999.

<sup>-</sup> Berlin Chen et al., "An HMM/N-gram-based Linguistic Processing Approach for Mandarin Spoken Document Retrieval," Interspeech 2001

## Discriminatively-Trained Language Models (2/9)

- For those documents with training queries,  $m_1$  and  $m_2$  can be estimated by using the Minimum Classification Error (MCE) training algorithm
  - The ordering of relevant documents  $D^*$  and irrelevant documents D' in the ranked list for a training query exemplar Q is adjusted to preserve the relationships  $D^* \prec D'$ ; i.e.,  $D^*$  should precede D' on the ranked list
    - A *learning-to-rank* algorithm
  - Documents thus can have different weights

<sup>-</sup>Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents," *ACM Transactions on Asian Language Information Processing* 3(2), June 2004.

## Discriminatively-Trained Language Models (3/9)

- Minimum Classification Error (MCE) Training
  - Given a query Q and a desired relevant doc  $D^*$ , define the classification error function as:

$$E(Q, D^*) = \frac{1}{|Q|} \left[ -\log P(Q|D^* \text{ is } R) + \max_{D'} \log P(Q|D^* \text{ is not } R) \right]$$
Also can take all irrelevant doc in the answer set into consideration

">0": means misclassified; "<=0": means a correct decision

Transform the error function to the loss function



- In the range between 0 and 1
  - $-\alpha$  : controls the slope
  - $\beta$  : controls the offset



## Discriminatively-Trained Language Models (4/9)

- Minimum Classification Error (MCE) Training
  - Apply the loss function to the MCE procedure for iteratively updating the weighting parameters function
    - Constraints:



$$m_k \geq 0$$
,  $\sum_k m_k = 1$ 

 $m_k \ge 0 \; , \quad \sum_k m_k = 1$  • Parameter Transformation, (e.g.,Type I HMM)

$$m_1 = \frac{e^{\widetilde{m}_1}}{e^{\widetilde{m}_1} + e^{\widetilde{m}_2}}$$
 and  $m_2 = \frac{e^{\widetilde{m}_2}}{e^{\widetilde{m}_1} + e^{\widetilde{m}_2}}$ 

- Iteratively update  $m_1$  (e.g., Type I HMM)

teratively update 
$$m_1$$
 (e.g., Type I HMM) Gradient descent  $\widetilde{m}_1(i+1) = \widetilde{m}_1(i) - \left[\varepsilon(i) \cdot \frac{\partial L(Q,D^*)}{\partial \widetilde{m}_1}\right]_{D^* = D^*(i)}$ 
• Where,  $\frac{\partial L(Q,D^*)}{\partial \widetilde{m}_1} = \alpha \cdot L(Q,D^*) \cdot [1 - L(Q,D^*)]_{D^*}$ 

Where,
$$\nabla_{D^*,\widetilde{m}_1} = \varepsilon \left( i \right) \cdot \frac{\partial L\left(Q,D^*\right)}{\partial \widetilde{m}_1} = \alpha \cdot L(Q,D^*) \cdot \left[ 1 - L(Q,D^*) \right]$$

$$= \varepsilon \left( i \right) \cdot \frac{\partial L\left(Q,D^*\right)}{\partial E\left(Q,D^*\right)} \cdot \frac{\partial E\left(Q,D^*\right)}{\partial \widetilde{m}_1},$$

## Discriminatively-Trained Language Models (5/9)

- Minimum Classification Error (MCE) Training
  - Iteratively update  $m_1$  (e.g., Type I HMM)

$$\begin{split} \frac{\partial E(Q,D^*)}{\partial \widetilde{m}_{1}} &= \frac{-1}{|Q|} \frac{\partial \left\{ \sum\limits_{q_{n} \in Q} \log \left[ \frac{e^{\widetilde{m}_{1}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n}|D^*) + \frac{e^{\widetilde{m}_{2}}}{e^{\widetilde{m}_{1}} + e^{\widetilde{m}_{2}}} P(q_{n}|Corpus) \right] \right\}}{\partial \widetilde{m}_{1}} &= \frac{1}{f(x)} f'(x) \\ & [f(x)g(x)] = f'(x)g(x) + f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g(x) + f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)g'(x) - f(x)g'(x) - f(x)g'(x) - f(x)g'(x) \\ & [f(x)g(x)] = f'(x)g'(x) - f(x)g'(x) - f(x)$$

## Discriminatively-Trained Language Models (6/9)

- Minimum Classification Error (MCE) Training
  - Iteratively update  $m_{\perp}$

$$\begin{split} \nabla_{D^*,\widetilde{m}_1}(i) &= -\varepsilon(i) \cdot \alpha \cdot L(Q,D^*) \cdot \left[1 - L(Q,D^*)\right] \\ &\cdot \left[ -m_1(i) + \frac{1}{|Q|} \sum_{q_n \in Q} \frac{m_1(i)P(q_n|D^*)}{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)} \right], \end{split}$$
 the new weight 
$$\begin{aligned} &\cdot \left[ -m_1(i) + \frac{1}{|Q|} \sum_{q_n \in Q} \frac{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)}{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)} \right], \end{split}$$
 
$$= \frac{e^{\widetilde{m}_1(i)} e^{-\nabla_{D^*,\widetilde{m}_1}(i)}}{e^{\widetilde{m}_1(i)} + e^{\widetilde{m}_2(i)} e^{-\nabla_{D^*,\widetilde{m}_1}(i)}} \end{aligned}$$
 
$$= \frac{e^{\widetilde{m}_1(i)} e^{-\nabla_{D^*,\widetilde{m}_1}(i)}}{e^{\widetilde{m}_1(i)} e^{-\nabla_{D^*,\widetilde{m}_1}(i)} + e^{\widetilde{m}_2(i)}} \underbrace{e^{\widetilde{m}_1(i)} - \nabla_{D^*,\widetilde{m}_1}(i)}_{m_1(i)} + e^{\widetilde{m}_2(i)}} \end{aligned}$$
 the old weight 
$$= \frac{m_1(i) \cdot e^{-\nabla_{D^*,\widetilde{m}_1}(i)}}{m_1(i) \cdot e^{-\nabla_{D^*,\widetilde{m}_1}(i)}} + m_2(i) \cdot e^{-\nabla_{D^*,\widetilde{m}_2}(i)}},$$

## Discriminatively-Trained Language Models (7/9)

- Minimum Classification Error (MCE) Training
  - Final Equations
    - Iteratively update m

$$\nabla_{D^*,\widetilde{m}_1}(i) = -\varepsilon(i) \cdot \alpha \cdot L(Q, D^*) \cdot \left[1 - L(Q, D^*)\right]$$

$$\cdot \left[ -m_1(i) + \frac{1}{|Q|} \sum_{q_n \in Q} \frac{m_1(i)P(q_n|D^*)}{m_1(i)P(q_n|D^*) + m_2(i)P(q_n|Corpus)} \right]$$

$$m_{1}(i+1) = \frac{m_{1}(i) \cdot e^{-\nabla_{D^{*}, \widetilde{m}_{1}}(i)}}{m_{1}(i) \cdot e^{-\nabla_{D^{*}, \widetilde{m}_{1}}(i)} + m_{2}(i) \cdot e^{-\nabla_{D^{*}, \widetilde{m}_{2}}(i)}}$$

m, can be updated in the similar way

## Discriminatively-Trained Language Models (8/9)

Experimental results with MCE training

|                     | Average | Precision | Word-level               | Syllable-level | Fusion |
|---------------------|---------|-----------|--------------------------|----------------|--------|
|                     |         |           | Uni                      | Uni+Bi*        |        |
| 5.6                 |         | TQ/TD     | 0.6459                   | 0.6858         | 0.7329 |
| Before MCE Training | TDT2    |           | ··· <b>&gt;</b> (0.6327) | (0.5718)       |        |
| WCE Training        |         | TQ/SD     | 0.5810                   | 0.6300         | 0.6914 |
|                     |         |           | (0.5658)                 | (0.5307)       |        |

Iterations=100



The results for the syllable-level indexing features were significantly improved

## Discriminatively-Trained Language Models (9/9)

- Similar treatments have been recently applied to Document Topic Models (e.g., PLSA) and Word Topic Models (WTM) with good success
- For example, the ranking formula for PLSA can be represented by

$$P(q|D) = \alpha \cdot \left(\beta \cdot \left[\sum_{T_k} P(q|T_k)P(T_k|D)\right] + (1-\beta) \cdot P(q|Corpus)\right) + (1-\alpha) \cdot P(q|D)$$

$$= \sum_{T_k} \alpha\beta \cdot P(q|T_k)P(T_k|D) + \alpha(1-\beta) \cdot P(q|Corpus) + (1-\alpha) \cdot P(q|D)$$

$$= \sum_{T_k} \left(\left[\alpha\beta \cdot P(q|T_k) + \alpha(1-\beta) \cdot P(q|Corpus) + (1-\alpha) \cdot P(q|D)\right]P(T_k|D)\right)$$

– The weighting parameters  $\alpha$  and  $\beta$  document topic distributions  $P(T_k|D)$  can be trained by the MCE algorithm

## Vector Representations

Data points (e.g., documents) of different classes (e.g., relevant/non-relevant classes) are represented as vectors in a *n*-dimensional vector space

Each dimension has to do with a specific feature, whose value

usually is normalized



- Support vector machines (SVM)
  - Look for a decision surface (or hyperplane) that is maximally far away from any data point
  - Margin: the distance from the decision surface to the closest data points on either side (or the support vectors)
  - SVM is a kind of large-margin classifier

## Support Vectors

 SVM is fully specified by a small subset of the data (i.e., the support vectors) that defines the position of the separator (the decision hyperplane)



- Maximization of the margin
  - If there are no points near the decision surface, then there are no very uncertain classification decisions
  - Also, a slight error in measurement or a slight document variation will not cause a misclassification

## Formulation of SVM with Algebra (1/2)

- Assume here that data points are linearly separable
- Euclidean distance of a point to the decision boundary



Assume data points are linear separable!

- 1. The shortest distance between a point  $\vec{x}$  to a hyperplane is perpendicular to the plane, i.e., parallel to  $\vec{w}$
- 2. The point on the plane closest to  $\vec{x}$  is  $\vec{x}$  '

$$\vec{x}' = \vec{x} - yr \frac{\vec{w}}{|\vec{w}|}$$

$$\Rightarrow \vec{w}^{T} \left( \vec{x} - yr \frac{\vec{w}}{|\vec{w}|} \right) + b = 0$$

$$\Rightarrow r = \frac{y \left( \vec{w}^{T} \vec{x} + b \right)}{|\vec{w}|} \text{ or } \frac{|\vec{w}^{T} \vec{x} + b|}{|\vec{w}|}$$

3. We can scale  $y(\vec{w}^T\vec{x} + b)$ , the so-called "functional margin", as we please; for example, to 1

Therefore, the margin defined by the support vectors is expressed by  $\frac{2}{1.7.1}$ 

(i.e., for support vectors 
$$y(\vec{w}^T\vec{x} + b) = 1$$
  
; while for the others  $y(\vec{w}^T\vec{x} + b) \ge 1$ )

# Formulation of SVM with Algebra (2/2)

- SVM is designed to find  $\vec{w}$  and b that can maximize the geometric margin
  - $-\frac{2}{|\vec{w}|}$  (maximization of  $\frac{2}{|\vec{w}|}$  is equivalent to minimization of  $\frac{1}{2}\vec{w}^{\mathrm{T}}\vec{w}$  )
  - For all  $\{\vec{x}_i, y_i\} \in \mathbf{D}$ ,  $y_i (\vec{w}^T \vec{x}_i + b) \ge 1$

## Mathematical formulation (assume linear separability)

- Primal Problem
  - Minimize  $\mathbf{L}_p$  with respect to  $\vec{w}$  and b

$$\min \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} \text{ subject to } y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) \geq +1, \forall i$$

$$\mathbf{L}_{p} = \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{i=1}^{N} \alpha_{i} [y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) - 1] (\alpha_{i} \geq 0)$$

$$= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{t=1}^{N} \alpha_{i} y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) + \sum_{t=1}^{N} \alpha_{i}$$

$$= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{t=1}^{N} \alpha_{i} y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) + \sum_{t=1}^{N} \alpha_{i}$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{t=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{t=1}^{N} \alpha_{i} y_{i} = 0$$

## Formulation of SVM with Algebra (3/3)

- Dual problem (plug 2 and 3 into 1)
  - Maximize L<sub>d</sub> with respect to  $\alpha_i$

 $\begin{aligned} \mathbf{L}_{d} &= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{i=1}^{N} \alpha_{i} y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) + \sum_{i=1}^{N} \alpha_{i} \\ &= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \vec{w}^{\mathrm{T}} \left[ \sum_{i=1}^{N} \alpha_{i} y_{i} \vec{x}_{i} \right] - b \left[ \sum_{i=1}^{N} \alpha_{i} y_{i} \right] + \sum_{i=1}^{N} \alpha_{i} \\ &= -\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} + \sum_{i=1}^{N} \alpha_{i} \\ &= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}^{\mathrm{T}} \vec{x}_{j} \right] + \sum_{i=1}^{N} \alpha_{i} \end{aligned}$ 

Subject to the constraints that  $\sum_{i=1}^{N} \alpha_i y_i = 0$  and  $\alpha_i \ge 0 \ \forall i$ 

- Most  $\alpha_i$  are 0 and only a small number have  $\alpha_i > 0$  (they are support vectors)
- Have to do with the number of training instances, but not the input dimension

## Dealing with Nonseparability (1/2)

 Datasets that are linearly separable (with some noise) work out great:



But what are we going to do if the dataset is just too hard?



How about mapping data to a higher-dimensional space?



# Dealing with Nonseparability (2/2)

• General idea: The original feature space can always be mapped by a function  $\varphi(\cdot)$  to some higher-dimensional feature space where the training set is separable



## Purposes:

- Make non-separable problem separable
- Map data into better representational space

## Kernel Trick (1/2)

• The SVM decision function for an input  $\vec{x}$  at a high-dimensional (the transformed ) space can be represented as

$$f(\vec{x}) = \operatorname{sign} \left( \vec{w}^{T} \varphi(\vec{x}) + b \right)$$

$$= \operatorname{sign} \left( \sum_{i=1}^{N} \alpha_{i} y_{i} \varphi(\vec{x}_{i})^{T} \varphi(\vec{x}) + b \right)$$

$$= \operatorname{sign} \left( \sum_{i=1}^{N} \alpha_{i} y_{i} K(\vec{x}_{i}, \vec{x}) + b \right)$$

- A kernel function  $K(\vec{x}_i, \vec{x})$  is introduced, defined by the inner (dot) product of points (vectors) in the high-dimensional space
  - $K(\vec{x}_i, \vec{x})$  can be computed simply and efficiently in terms of the original data points
  - We wouldn't have to actually map from  $\vec{x} \to \varphi(\vec{x})$  (however, we still can directly compute  $K(\vec{x}_i, \vec{x}) = \varphi(\vec{x}_i)^T \varphi(\vec{x})$ )

## Kernel Trick (2/2)

- Common Kernel Functions
  - Polynomials of degree  $q: K(\vec{u}, \vec{v}) = (\vec{u}^T \vec{v} + 1)^q$ 
    - Polynomial of degree two (quadratic kernel)

$$K(\vec{u}, \vec{v}) = (\vec{u}^{\mathrm{T}} \vec{v} + 1)^{2}$$
 two-dimensional points 
$$= (u_{1}v_{1} + u_{2}v_{2} + 1)^{2} \text{ (where } \vec{u}^{\mathrm{T}} = [u_{1}, u_{2}], \vec{u}^{\mathrm{T}} = [v_{1}, v_{2}])$$
$$= 1 + 2u_{1}v_{1} + 2u_{2}v_{2} + 2u_{1}u_{2}v_{1}v_{2} + u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2}$$
$$\phi(\vec{u}) = \left[1, \sqrt{2}u_{1}, \sqrt{2}u_{2}, \sqrt{2}u_{1}u_{2}, u_{1}^{2}, u_{2}^{2}\right]^{T}$$

- Radial-basis function (Gaussian distribution):  $K(\vec{u}, \vec{v}) = e^{-(\vec{u}-\vec{v})^2/(2\sigma^2)}$
- Sigmoidal function:  $K(\vec{u}, \vec{v}) = \tanh(2\vec{u}^T\vec{v} + 1)$

The above kernels are not always very useful in text classification!

## Soft-Margin Hyperplane (1/2)

- Even for very high-dimensional problems, data points could be linearly inseparable
- We can instead look for the hyperplane that incurs the least error
  - Define slack variables  $\xi_i \ge 0$  that store the variation from the margin for each data points



- Reformulation the optimization criterion with slack variables
  - Find  $\vec{x}$ ,  $\vec{b}$ , and  $\xi_i \ge 0$  such that  $\vec{z} = \frac{1}{2} \vec{w}^T \vec{w} + C \sum_{i=1}^N \xi_i$  is minimum

$$rightharpoonup$$
 For all  $\{\vec{x}_i, y_i\} \in \mathbf{D}$ ,  $y_i (\vec{w}^T \vec{x}_i + b) \ge 1 - \zeta_i$ 

$$\hat{\mathbf{L}}_{p} = \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} + C \sum_{i=1}^{N} \zeta_{i} - \sum_{i=1}^{N} \alpha_{i} \left[ y_{i} \left( \vec{w}^{\mathrm{T}} \vec{x}_{i} + b \right) - 1 + \zeta_{i} \right] + \sum_{i=1}^{N} \mu_{i} \zeta_{i}$$
IR - Berlin Chen 20

## Soft-Margin Hyperplane (2/2)

## Dual Problem

$$\hat{\mathbf{L}}_{d} = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}^{\mathsf{T}} \vec{x}_{j}$$
subject to 
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \text{ and } 0 \le \alpha_{i} \le C \quad \forall i$$

- Neither slack variables  $\xi_i$  nor their Lagrange multipliers  $\mu_i$  appear in the dual problem!
- Again,  $\vec{\chi}$  with non-zero  $\alpha_i$  will be support vectors
- Solution to the dual problem is:

$$\vec{w} = \sum_{i=1}^{N} \alpha_i y_i \vec{x}_i$$

$$b = y_k (1 - \xi_k) - \vec{w}^T \vec{x}_k \text{ for } k = \text{arg max }_k \alpha_k$$

- Parameter C can be viewed as a way to control overfitting a regularization term
  - ullet The larger the value C , the more we should pay attention to each individual data point
  - The smaller the value C , the more we can model the bulk of the data

## Using SVM for Ad-Hoc Retrieval (1/2)

• For example, documents are simply represented by twodimensional vectors  $\psi(d_i,q)$  consisting of cosine score and term proximity



► **Figure 15.7** A collection of training examples. Each R denotes a training example labeled *relevant*, while each N is a training example labeled *nonrelevant*.

# Using SVM for Ad-Hoc Retrieval (2/2)

- Examples: Nallapati, Discriminative Models for Information Retrieval, SIGIR 2004
  - Basic Features used in SVM

|   | Feature                                         |   | Feature                                                               |
|---|-------------------------------------------------|---|-----------------------------------------------------------------------|
| 1 | $\sum_{q_i \in Q \cap D} log(c(q_i, D))$        | 4 | $\sum_{q_i \in Q \cap D} (log(\frac{ C }{c(q_i, C)}))$                |
| 2 | $\sum_{i=1}^{n} log(1 + \frac{c(q_i, D)}{ D })$ | 5 | $\sum_{i=1}^{n} log(1 + \frac{c(q_i, D)}{ D } idf(q_i))$              |
| 3 | $\sum_{q_i \in Q \cap D} log(idf(q_i))$         | 6 | $\sum_{i=1}^{n} log(1 + \frac{c(q_i, D)}{ D } \frac{ C }{c(q_i, C)})$ |

Compared with LM and ME (maximum entropy) models

| <b>Train</b> $\downarrow$ <b>Test</b> $\rightarrow$ |                                     | Disks 1-2        | Disk 3          | Disks 4-5         | WT2G           |
|-----------------------------------------------------|-------------------------------------|------------------|-----------------|-------------------|----------------|
|                                                     |                                     | (151-200)        | (101-150)       | (401-450)         | (426-450)      |
| Disks 1-2                                           | LM ( $\mu^* = 1900$ )               | 0.2561 (6.75e-3) | 0.1842          | 0.2377 (0.80)     | 0.2665 (0.61)  |
| (101-150)                                           | SVM                                 | 0.2145           | 0.1877 (0.3)    | 0.2356            | 0.2598         |
|                                                     | ME                                  | 0.1513           | 0.1240          | 0.1803            | 0.1815         |
| Disk 3                                              | $LM (\mu^* = 500)$ 0.2605 (1.08e-4) |                  | 0.1785 (0.11)   | 0.2503 (0.21)     | 0.2666         |
| (51-100)                                            | SVM                                 | 0.2064           | 0.1728          | 0.2432            | 0.2750 (0.55)  |
|                                                     | ME                                  | 0.1599           | 0.1221          | 0.1719            | 0.1706         |
| Disks 4-5                                           | LM ( $\mu^* = 450$ )                | 0.2592 (1.75e-4) | 0.1773 (7.9e-3) | 0.2516 (0.036)    | 0.2656         |
| (301-350)                                           | SVM                                 | 0.2078           | 0.1646          | 0.2355            | 0.2675 (0.89)  |
|                                                     | ME                                  | 0.1413           | 0.0978          | 0.1403            | 0.1355         |
| WT2G                                                | LM ( $\mu^* = 2400$ )               | 0.2524 (4.6e-3)  | 0.1838 (0.08)   | 0.2335            | 0.2639         |
| (401-425)                                           | (401-425) SVM 0.2199                |                  | 0.1744          | 0.2487 (0.046)    | 0.2798 (0.037) |
|                                                     | ME                                  | 0.1353           | 0.0969          | 0.1441            | 0.1432         |
| Best TREC runs                                      |                                     | 0.4226           | N/A             | 0.3207            | N/A            |
| (Site)                                              |                                     | (UMass)          |                 | (Queen's College) |                |

Tested on 4
TREC collections

## Ranking SVM (1/2)

- Construct an SVM that not only considers the relevance of documents to the a training query but also the order of each document pair on the ideal ranked list
  - First, construct a vector of features  $\psi\left(d_{i},q\right)$  for each document-query pair
  - Second, capture the relationship between each document pair by introducing a new vector representation  $\phi(d_i, d_j, q)$  for each document pair

$$\phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$$

- Third, if  $d_i$  is more relevant than  $d_j$  given q (denoted  $d_i \prec d_j$ , i.e.,  $d_i$  should precede  $d_j$  on the ranked list), then associate they with the label  $y_{ijq} = +1$ ; otherwise,  $y_{iiq} = -1$ 

# Ranking SVM (2/2)

- Therefore, the above ranking task is formulated as:
  - Find  $\vec{x}$  , b , and  $\xi_{ijq} \ge 0$  such that
    - $\frac{1}{2}\vec{w}^T\vec{w} + C\sum_{i,j,q}\xi_{i,j,q}$  is minimized
    - For all  $\{\phi(d_i, d_j, q): d_i \prec d_j\}$ ,  $\vec{w}^T \phi(d_i, d_j, q) + b \ge 1 \xi_{i,j,q}$ (Note that  $y_{ijq}$  are left out here. Why?)