Models for Information Retrieval

- Fuzzy Set, Extended Boolean, Generalized Vector Space Models

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Taxonomy of Classic IR Models

Outline

- Alternative Set Theoretic Models
- Fuzzy Set Model (Fuzzy Information Retrieval)
- Extended Boolean Model
- Alternative Algebraic Model
- Generalized Vector Space Model

Fuzzy Set Model

- Premises
- Docs and queries are represented through sets of keywords, therefore the matching between them is vague
- Keywords cannot completely describe the user's information need and the doc's main theme

- For each query term (keyword)
- Define a fuzzy set and that each doc has a degree of membership ($0 \sim 1$) in the set

Fuzzy Set Model (cont.)

- Fuzzy Set Theory
- Framework for representing classes (sets) whose boundaries are not well defined
- Key idea is to introduce the notion of a degree of membership associated with the elements of a set
- This degree of membership varies from 0 to 1 and allows modeling the notion of marginal membership
- $0 \rightarrow$ no membership
- $1 \rightarrow$ full membership
- Thus, membership is now a gradual instead of abrupt
- Not as conventional Boolean logic

Here we will define a fuzzy set for each query (or index) term, thus each doc has a degree of membership in this set.

Fuzzy Set Model (cont.)

- Definition

- A fuzzy subset A of a universal of discourse U is characterized by a membership function $\mu_{A}: U \rightarrow[0,1]$
- Which associates with each element u of U a number $\mu_{A}(u)$ in the interval $[0,1]$
- Let A and B be two fuzzy subsets of U. Also, let A be the complement of A. Then,
- Complement $\mu_{\bar{A}}(u)=1-\mu_{A}(u)$
- Union $\quad \mu_{A \cup B}(u)=\max \left(\mu_{A}(u), \mu_{B}(u)\right)$
- Intersection $\quad \mu_{A \cap B}(u)=\min \left(\mu_{A}(u), \mu_{B}(u)\right)$

Fuzzy Set Model (cont.)

- Fuzzy information retrieval
- Fuzzy sets are modeled based on a thesaurus
- This thesaurus can be constructed by a term-term correlation matrix (or called keyword connection matrix)
- $\overrightarrow{\boldsymbol{c}} \quad$: a term-term correlation matrix
- $c_{i, l}$: a normalized correlation factor for terms k_{i} and k_{l}

$$
\left.c_{i, l}=\frac{n_{i, l}}{n_{i}+n_{l}-n_{i, l}} \begin{array}{r}
\text { ranged from } 0 \text { to } 1
\end{array} \quad \begin{array}{|l|}
n_{i}: \text { no of docs that contain } k_{i} \\
n_{i, l}: \text { no of docs that contain both } k_{i} \text { and } k_{l}
\end{array}\right] .
$$

- We now have the notion of proximity among index terms
- The relationship is symmetric!

$$
\mu_{k_{i}}\left(k_{l}\right)=c_{i, l}=c_{l, i}=\mu_{k_{l}}\left(k_{i}\right)
$$

Fuzzy Set Model (cont.)

- The union and intersection operations are modified here

$$
\begin{aligned}
& a b+\bar{a} b+a \bar{b} \\
& =a b+(1-a) b+a(1-b) \\
& =a b+b-a b+a-a b \\
& =1-(1-a-b+a b) \\
& =1-(1-a)(1-b)
\end{aligned}
$$

- Union: algebraic sum (instead of max)

$$
\begin{aligned}
& \mu_{A_{1} \cup A_{2}}(k)=\mu_{A_{1}}(k) \mu_{A_{2}}(k)+\mu_{A_{1}}(k) \mu_{A_{2}}(k)+\mu_{A_{1}}(k) \mu_{\bar{A}_{2}}(k) \mu_{A_{1} \cup A_{2} \cdots \cup A_{n}}(k)=\mu_{j} A_{j}(k) \\
&=1-\prod_{j=1}^{2}\left(1-\mu_{A_{j}}(k)\right) \\
& \text { a negative algebraic product }
\end{aligned}
$$

- Intersection: algebraic product (instead of min)

$$
\mu_{A_{1} \cap A_{2}}(k)=\mu_{A_{1}}(k) \mu_{A_{2}}(k) \quad \Rightarrow \mu_{A_{1} \cap A_{2} \cdots \cap A_{n}}(k)=\prod_{j=1}^{n} \mu_{A_{j}}(k)
$$

Fuzzy Set Model (cont.)

- The degree of membership between a doc d_{j} and an index term k_{i}
algebraic sum (a doc is a union of index terms)

$$
\mu_{k_{i}}\left(d_{j}\right)=\mu_{d_{j}}\left(k_{i}\right)=\mu_{k_{k \in d_{j}} k_{i}}\left(k_{i}\right)
$$

$$
=1-\prod_{k_{l} \in d_{j}}\left(1-\mu_{k_{l}}\left(k_{i}\right)\right)=1-\prod_{k_{l} \in d_{j}}\left(1-c_{i, l}\right)
$$

- Computes an algebraic sum over all terms in the doc d_{j}
- Implemented as the complement of a negative algebraic product
- A doc d_{j} belongs to the fuzzy set associated to the term k_{i} if its own terms are related to k_{i}
- If there is at least one index term k_{l} of d_{j} which is strongly related to the index $k_{i}\left(c_{i, l} \sim 1\right)$ then $\mu_{k_{i}, d_{j}} \sim 1$
$-k_{i}$ is a good fuzzy index for doc d_{j}
- And vice versa

Fuzzy Set Model (cont.)

- Example:
- Query $q=k_{a} \wedge\left(k_{b} \vee \neg k_{c}\right)$ disjunctive normal form $\vec{q}_{d n f}=\left(k_{a} \wedge k_{b} \wedge k_{c}\right) \vee\left(k_{a} \wedge k_{b} \wedge \neg k_{c}\right) \vee\left(k_{a} \wedge \neg k_{b} \wedge \neg k_{c}\right)$ $=C C_{1}+C C_{2}+C C_{3} \quad$ conjunctive component
- D_{a} is the fuzzy set of docs associated to the term k_{a}
- Degree of membership ?

Fuzzy Set Model (cont.)

- Degree of membership

algebraic sum

\[

\]

More on Fuzzy Set Model

- Advantages
- The correlations among index terms are considered
- Degree of relevance between queries and docs can be achieved
- Disadvantages
- Fuzzy IR models have been discussed mainly in the literature associated with fuzzy theory
- Experiments with standard test collections are not available
- Do not consider the frequecny (or counts) of a term in a document or a query

Extended Boolean Model

Salton et al．， 1983
－Motive
－Extend the Boolean model with the functionality of partial matching and term weighting

```
陳水扁及呂秀莲
```

－E．g．：in Boolean model，for the qery $q=k_{x} \wedge k_{y}$ ，a doc contains either k_{x} or k_{y} is as irrelevant as another doc which contains neither of them
－How about the disjunctive query $q=k_{x} \vee k_{y}$ 陳水扁或呂秀蓮
－Combine Boolean query formulations with characteristics of the vector model
－Term weighting
a ranking can
－Algebraic distances for similarity measures be obtained

Extended Boolean Model (cont.)

- Term weighting
- The weight for the term k_{x} in a doc d_{j} is

- $w_{x, j}$ is normalized to lie between 0 and 1
- Assume two index terms k_{x} and k_{y} were used
- Let x denote the weight $w_{x, j}$ of term k_{x} on doc d_{j}
- Let y denote the weight $w_{y, j}$ of term k_{y} on doc d_{j}
- The doc vector $\vec{d}_{j}=\left(w_{x, j}, w_{y, j}\right)$ is represented as $d_{j}=(x, y)$
- Queries and docs can be plotted in a two-dimensional map

Extended Boolean Model (cont.)

- If the query is $q=k_{x} \wedge k_{y}$ (conjunctive query)
-The docs near the point $(1,1)$ are preferred
-The similarity measure is defined as

$$
\operatorname{sim}\left(q_{\text {and }}, d\right)=1-\sqrt{\frac{(1-x)^{2}+(1-y)^{2}}{2}} \quad \begin{gathered}
\text { 2-norm model } \\
\text { (Euclidean distance) }
\end{gathered}
$$

Extended Boolean Model (cont.)

- If the query is $q=k_{x} \vee k_{y}$ (disjunctive query)
-The docs far from the point $(0,0)$ are preferred
-The similarity measure is defined as

Extended Boolean Model (cont.)

- The similarity measures $\operatorname{sim}\left(q_{o r}, d\right)$ and $\operatorname{sim}\left(q_{\text {and }}, d\right)$ also lie between 0 and 1

Extended Boolean Model (cont.)

- Generalization
- t index terms are used $\rightarrow t$-dimensional space
- p-norm model, $1 \leq p \leq \infty$
$q_{a n d}=k_{1} \wedge^{p} k_{2} \wedge^{p} \ldots \wedge^{p} k_{m} \Rightarrow \operatorname{sim}\left(q_{a n d}, d\right)=1-\left(\frac{\left(1-x_{1}\right)^{p}+\left(1-x_{2}\right)^{p}+\ldots+\left(1-x_{m}\right)^{p}}{m}\right)^{\frac{1}{p}}$
$q_{o r}=k_{1} \vee^{p} k_{2} \vee^{p} \ldots v^{p} k_{m} \quad \Rightarrow \operatorname{sim}\left(q_{o r}, d\right)=\left(\frac{x_{1}{ }^{p}+x_{2}{ }^{p}+\ldots+x_{m}{ }^{p}}{m}\right)^{\frac{1}{p}}$
- Some interesting properties

Similar to vector space model

- $p=1 \Rightarrow \operatorname{sim}\left(q_{a n d}, d\right)=\operatorname{sim}\left(q_{o r}, d\right)=\frac{x_{1}+x_{2}+\ldots+x_{m}}{m}$
$\left.\cdot p=\infty \longmapsto \operatorname{sim}\left(q_{\text {and }}, d\right) \approx \min \left(x_{i}\right) \quad \begin{array}{c}\text { just like the } \\ \operatorname{sim}\left(q_{o r}, d\right) \approx \max \left(x_{i}\right)\end{array}\right\}$ formula of fuzzy logic

Extended Boolean Model (cont.)

- Example query 1: $q=\left(k_{1} \wedge^{p} k_{2}\right) \vee^{p} k_{3}$
- Processed by grouping the operators in a predefined

$$
\operatorname{sim}(q, d)=\left(\frac{\left(1-\left(\frac{\left(1-x_{1}\right)^{p}+\left(1-x_{2}\right)^{p}}{2}\right)^{\frac{1}{p}}\right)^{p}+x_{3}^{p}}{2}\right)^{\frac{1}{p}}
$$

- Example query 2: $q=\left(k_{1} \vee^{2} k_{2}\right) \wedge^{\infty} k_{3}$
- Combination of different algebraic distances

$$
\operatorname{sim}(q, d)=\min \left(\left(\frac{x_{1}{ }^{2}+x_{2}{ }^{2}}{2}\right)^{\frac{1}{2}}, x_{3}\right)
$$

More on Extended Boolean Model

- Advantages
- A hybrid model including properties of both the set theoretic models and the algebraic models
- That is, relax the Boolean algebra by interpreting Boolean operations in terms of algebraic distances
- By varying the parameter p between 1 and infinity, we can vary the p-norm ranking behavior from that of a vector-like ranking to that of a fuzzy logic-like ranking
- Have the possibility of using combinations of different values of the parameter p in the same query request

More on Extended Boolean Model (cont.)

- Disadvantages
- Distributive operation does not hold for ranking computation
- E.g.:

$$
\begin{aligned}
& q_{1}=\left(k_{1} \wedge^{2} k_{2}\right) \vee^{2} k_{3}, q_{2}=\left(k_{1} \vee^{2} k_{3}\right) \wedge^{2}\left(k_{2} \vee^{2} k_{3}\right) \\
& \quad \operatorname{sim}\left(q_{1}, d\right) \neq \operatorname{sim}\left(q_{2}, d\right) \quad,-\left(\frac{\left(1-\left(-\frac{k_{1}+k^{2}}{2}\right)\right)^{2}+\left(1-\left(\frac{k_{2}+k^{2}}{2}\right)\right)^{2}}{2}\right)
\end{aligned}
$$

- Assumes mutual independence of index terms

Generalized Vector Model

```
Wong et al., 1985
```

- Premise
- Classic models enforce independence of index terms
- For the Vector model
- Set of term vectors $\left\{\vec{k}_{1}, \vec{k}_{1}, \ldots, \vec{k}_{t}\right\}$ are linearly independent and form a basis for the subspace of interest
- Frequently, it means pairwise orthogonality

$$
\forall i, j \Rightarrow \vec{k}_{i} \cdot \vec{k}_{j}=\overrightarrow{0} \text { (in a more restrictive sense) }
$$

- Wong et al. proposed an interpretation
- An alternative intepretation: The index term vectors are linearly independent, but not pairwise orthogonal
- Generalized Vector Model

Generalized Vector Model (cont.)

- Key idea
- Index term vectors form the basis of the space are not orthogonal and are represented in terms of smaller components (minterms)
- Notations
- $\left\{k_{l}, k_{2}, \ldots, k_{t}\right\}$: the set of all terms
- $w_{i, j}$: the weight associated with $\left[k_{i}, d_{j}\right]$
- Minterms:binary indicators (0 or 1) of all patterns of occurrence of terms within documents
- Each represent one kind of co-occurrence of index terms in a specific document

Generalized Vector Model (cont.)

- Representations of minterms

$$
\begin{aligned}
& m_{1}=(0,0, \ldots, 0) \\
& m_{2}=(1,0, \ldots, 0) \\
& m_{3}=(0,1, \ldots, 0) \\
& m_{4}=(1,1, \ldots, 0) \\
& m_{5}=(0,0,1, . ., 0) \\
& \ldots \\
& m_{2 t}=(1,1,1, . ., 1) \\
& 2^{t} \text { minterms }
\end{aligned}
$$

Points to the docs where only
index terms k_{1} and k_{2} co-occur and the other index terms disappear

Point to the docs containing all the index terms

$$
\begin{aligned}
& \overrightarrow{m_{1}}=(1,0,0,0,0, \ldots, 0) \\
& \overrightarrow{m_{2}}=(0,1,0,0,0, \ldots, 0) \\
& \overrightarrow{m_{3}}=(0,0,1,0,0, \ldots, 0) \\
& \overrightarrow{m_{4}}=(0,0,0,1,0, \ldots, 0) \\
& \overrightarrow{m_{5}}=(0,0,0,0,1, \ldots, 0) \\
& \ldots \\
& \overrightarrow{m_{2}}=(0,0,0,0,0, \ldots, 1)
\end{aligned}
$$

$$
2^{t} \text { minterm vectors }
$$

Pairwise orthogonal vectors $\overrightarrow{m_{i}}$ associated with minterms m_{i} as the basis for the generalized vector space

Generalized Vector Model (cont.)

- Minterm vectors are pairwise orthogonal. But, this does not mean that the index terms are independent
- Each minterm specifies a kind of dependence among index terms
- That is, the co-occurrence of index terms inside docs in the collection induces dependencies among these index terms

Generalized Vector Model (cont.)

- The vector associated with the term k_{i} is represented by summing up all minterms containing it and normalizing

$$
\vec{k}_{i}=\frac{\sum_{\forall r, g_{i}\left(m_{r}\right)=1} c_{i, r} \vec{m}_{r}}{\sqrt{\sum_{\forall r, g_{i}\left(m_{r}\right)=1} c_{i, r}^{2}}}=\sum_{\forall r, g_{i}\left(m_{r}\right)=1} \hat{c}_{i, r} \vec{m}_{r}
$$

where $\hat{c}_{i, r}=\frac{c_{i, r}}{\sqrt{\sum_{\forall r, g_{i}\left(m_{r}\right)=1} c_{i, r}^{2}}}$

$$
c_{i, r}=\quad \sum_{\substack{d_{j} \\ g_{l} \\ \vec{d}_{j}}}=g_{l}\left(m_{r}\right) \text { foralll }
$$

All the docs whose term co-occurrence relation (pattern) can be represented as (exactly coincide with that of) minterm m_{r}

- The weight associated with the pair $\left[k_{i}, m_{r}\right]$ sums up the weights of the term k_{i} in all the docs which have a term occurrence pattern given by m_{r}.
- Notice that for a collection of size N, only N minterms affect the ranking (and not 2^{N})
$g_{i}\left(m_{r}\right)$ Indicates the index term k_{i} is in the minterm m_{r}

Generalized Vector Model (cont.)

- The similarity between the query and doc is calculated in the space of minterm vectors

$$
\begin{array}{lll}
\vec{d}_{j}=\sum_{i} w_{i, j} \vec{k}_{i} & \Rightarrow & =\sum_{r} s_{j, r} \vec{m}_{r} \\
\vec{q}_{j}=\sum_{i} w_{i, q} \vec{k}_{i} \quad \Rightarrow & =\sum_{r} s_{q, r} \vec{m}_{r}
\end{array}
$$

2^{t}-dimensional

Generalized Vector Model (cont.)

- Example (a system with three index terms)

minterm	$\boldsymbol{k}_{\boldsymbol{1}}$	$\boldsymbol{k}_{\boldsymbol{2}}$	$\boldsymbol{k}_{\boldsymbol{3}}$
$\boldsymbol{m}_{\boldsymbol{1}}$	0	0	0
$\boldsymbol{m}_{\boldsymbol{2}}$	1	0	0
$\boldsymbol{m}_{\boldsymbol{3}}$	0	1	0
$\boldsymbol{m}_{\boldsymbol{4}}$	1	1	0
$\boldsymbol{m}_{\boldsymbol{5}}$	0	0	1
$\boldsymbol{m}_{\boldsymbol{6}}$	1	0	1
$\boldsymbol{m}_{\boldsymbol{7}}$	0	1	1
$\boldsymbol{m}_{\boldsymbol{8}}$	1	1	1

$$
\begin{aligned}
& \vec{k}_{1}=\frac{c_{1,2} \vec{m}_{2}+c_{1,4} \vec{m}_{4}+c_{1,6} \vec{m}_{6}+c_{1,8} \vec{m}_{8}}{\sqrt{c_{1,2}{ }^{2}+c_{1,4}{ }^{2}+c_{1,6}{ }^{2}+c_{1,8}{ }^{2}}} \\
& \vec{k}_{2}=\frac{c_{2,3} \vec{m}_{3}+c_{2,4} \vec{m}_{4}+c_{2,7} \vec{m}_{7}+c_{2,8} \vec{m}_{8}}{\sqrt{{c_{2,3}{ }^{2}+c_{2,4}{ }^{2}+c_{2,7}{ }^{2}+c_{2,8}{ }^{2}}^{2}}} \\
& \vec{k}_{3}=\frac{c_{3,5} \vec{m}_{5}+c_{3,6} \vec{b}_{6}+c_{3,7} \vec{m}_{7}+c_{3,8} \vec{m}_{8}}{\sqrt{{c_{3,5}{ }^{2}+c_{3,6}{ }^{2}+c_{3,7}{ }^{2}+c_{3,8}{ }^{2}}^{2}}}
\end{aligned}
$$

	$\boldsymbol{k}_{\boldsymbol{1}}$	$\boldsymbol{k}_{\mathbf{2}}$	$\boldsymbol{k}_{\boldsymbol{3}}$	minterm
$\boldsymbol{d}_{\boldsymbol{1}}$	2	0	1	$\boldsymbol{m}_{\boldsymbol{6}}$
$\boldsymbol{d}_{\mathbf{2}}$	1	0	0	$\boldsymbol{m}_{\boldsymbol{2}}$
$\boldsymbol{d}_{\mathbf{3}}$	0	1	3	\boldsymbol{m}_{7}
\boldsymbol{d}_{4}	2	0	0	$\boldsymbol{m}_{\boldsymbol{2}}$
$\boldsymbol{d}_{\boldsymbol{5}}$	1	2	4	$\boldsymbol{m}_{\boldsymbol{8}}$
$\boldsymbol{d}_{\boldsymbol{6}}$	1	2	0	\boldsymbol{m}_{4}
\boldsymbol{d}_{7}	0	5	0	$\boldsymbol{m}_{\boldsymbol{3}}$
\boldsymbol{q}	1	2	3	

$$
\begin{aligned}
& c_{1,2}=w_{1.2}+w_{1.4}=1+2=3 \quad \vec{k}_{1}=\frac{3 \vec{m}_{2}+1 \vec{m}_{4}+2 \vec{m}_{6}+1 \vec{m}_{8}}{\sqrt{3^{2}+1^{2}+2^{2}+1^{2}}} \\
& c_{1,4}=w_{1.6}=1 \\
& c_{1,6}=w_{1,1}=2 \\
& c_{1,8}=w_{1,5}=1
\end{aligned}
$$

$c_{2,3}=w_{2,7}=5$
$\begin{aligned} & c_{2,4}=w_{2,6}=2 \\ & c_{2,7}=w_{2,3}=1\end{aligned} \quad \vec{k}_{2}=\frac{5 \vec{m}_{3}+2 \vec{m}_{4}+1 \vec{m}_{7}+2 \vec{m}_{8}}{\sqrt{5^{2}+2^{2}+1^{2}+2^{2}}}$
$c_{3,5}=0$
$c_{3,6}=w_{3,1}=1$
$c_{2,8}=w_{2,5}=2$
$c_{3,7}=w_{3,3}=3$
$\vec{k}_{3}=\frac{0 \vec{m}_{5}+1 \vec{m}_{6}+3 \vec{m}_{7}+4 \vec{m}_{8}}{\sqrt{0^{2}+1^{2}+3^{2}+4^{2}}}$
$c_{3,8}=w_{3,5}=4$

Generalized Vector Model (cont.)

- Example: Ranking

$$
\vec{k}_{1}=\frac{3 \vec{m}_{2}+1 \vec{m}_{4}+2 \vec{m}_{6}+1 \vec{m}_{8}}{\sqrt{3^{2}+1^{2}+2^{2}+1^{2}}}=\frac{3 \vec{m}_{2}+1 \vec{m}_{4}+2 \vec{m}_{6}+1 \vec{m}_{8}}{\sqrt{15}}
$$

$$
\operatorname{sim}\left(q, d_{1}\right)=\frac{s_{q, 2} s_{d_{1}, 2}+s_{q, 4} s_{d_{1}, 4}+s_{q, 6} s_{d_{1}, 6}+s_{q, 7} s_{d_{1}, 7}+s_{q, 8} s_{d_{1}, 8}}{\sqrt{s_{q, 2}^{2}+s_{q, 3}^{2}+s_{q, 4}^{2}+s_{q, 6}^{2}+s_{q, 7}^{2}+s_{q, 8}^{2}} \sqrt{s_{d_{1,2}}^{2}+s_{d_{1}, 4}^{2}+s_{d 1,6}^{2}+s_{d_{1,7}}^{2}+s_{d 1,8}^{2}}}
$$

$$
\begin{aligned}
& \begin{array}{c}
\vec{k}_{2}=\frac{5 \vec{m}_{3}+2 \vec{m}_{4}+1 \vec{m}_{7}+2 \vec{m}_{8}}{\sqrt{5^{2}+2^{2}+1^{2}+2^{2}}}=\frac{5 \vec{m}_{3}+2 \vec{m}_{4}+1 \vec{m}_{7}+2 \vec{m}_{8}}{\sqrt{34}} \quad \vec{k}_{3}=\frac{0 \vec{m}_{5}+1 \vec{m}_{6}+3 \vec{m}_{7}+4 \vec{m}_{8}}{\sqrt{0^{2}+1^{2}+3^{2}+4^{2}}}=\frac{1 \vec{m}_{6}+3 \vec{m}_{7}+4 \vec{m}_{8}}{\sqrt{26}} \\
\vec{d}_{1}=2 \vec{k}_{1}+1 \vec{k}_{3} \\
=\frac{2 \cdot 3}{\sqrt{15}} \vec{m}_{2}+\frac{s_{d 1,2}}{\sqrt{15}} \vec{m}_{4}+\left(\frac{2 \cdot 2}{\sqrt{15}}+\frac{s_{d 1,4}}{\sqrt{26}}\right) \vec{m}_{6}+\frac{1 \cdot 3}{\sqrt{26}} \vec{m}_{7}+\left(\frac{2 \cdot 1}{\sqrt{15}}+\frac{1 \cdot 4}{\sqrt{26}}\right) \vec{m}_{8} \\
\vec{q}=1 \vec{k}_{1}+2 \vec{k}_{2}+3 \vec{k}_{3} \\
=\frac{1 \cdot 3}{\sqrt{15}} \vec{m}_{2}+\frac{2 \cdot 5}{\sqrt{34}} \vec{m}_{3}+\left(\frac{1 \cdot 1}{\sqrt{15}}+\frac{2 \cdot 2}{\sqrt{34}}\right) \vec{m}_{4}+\left(\frac{1 \cdot 2}{\sqrt{15}}+\frac{3 \cdot 1}{\sqrt{26}}\right) \vec{m}_{6}+\left(\frac{2 \cdot 1}{\sqrt{34}}+\frac{3 \cdot 3}{\sqrt{26}}\right) \vec{m}_{7}+\left(\frac{1 \cdot 1}{\sqrt{15}}+\frac{2 \cdot 2}{\sqrt{34}}+\frac{3 \cdot 4}{\sqrt{26}}\right) \vec{m}_{8} \\
s_{q, 2}
\end{array} \\
& \begin{array}{c}
\vec{k}_{2}=\frac{5 \vec{m}_{3}+2 \vec{m}_{4}+1 \vec{m}_{7}+2 \vec{m}_{8}}{\sqrt{5^{2}+2^{2}+1^{2}+2^{2}}}=\frac{5 \vec{m}_{3}+2 \vec{m}_{4}+1 \vec{m}_{7}+2 \vec{m}_{8}}{\sqrt{34}} \quad \vec{k}_{3}=\frac{0 \vec{m}_{5}+1 \vec{m}_{6}+3 \vec{m}_{7}+4 \vec{m}_{8}}{\sqrt{0^{2}+1^{2}+3^{2}+4^{2}}}=\frac{1 \vec{m}_{6}+3 \vec{m}_{7}+4 \vec{m}_{8}}{\sqrt{26}} \\
\vec{d}_{1}=2 \vec{k}_{1}+1 \vec{k}_{3} \\
=\frac{2 \cdot 3}{\sqrt{15}} \vec{m}_{2}+\frac{s_{d 1,2}}{\sqrt{15}} \vec{m}_{4}+\left(\frac{2 \cdot 2}{\sqrt{15}}+\frac{s_{d 1,4}}{\sqrt{26}}\right) \vec{m}_{6}+\frac{1 \cdot 3}{\sqrt{26}} \vec{m}_{7}+\left(\frac{2 \cdot 1}{\sqrt{15}}+\frac{1 \cdot 4}{\sqrt{26}}\right) \vec{m}_{8} \\
\vec{q}=1 \vec{k}_{1}+2 \vec{k}_{2}+3 \vec{k}_{3} \\
=\frac{1 \cdot 3}{\sqrt{15}} \vec{m}_{2}+\frac{2 \cdot 5}{\sqrt{34}} \vec{m}_{3}+\left(\frac{1 \cdot 1}{\sqrt{15}}+\frac{2 \cdot 2}{\sqrt{34}}\right) \vec{m}_{4}+\left(\frac{1 \cdot 2}{\sqrt{15}}+\frac{3 \cdot 1}{\sqrt{26}}\right) \vec{m}_{6}+\left(\frac{2 \cdot 1}{\sqrt{34}}+\frac{3 \cdot 3}{\sqrt{26}}\right) \vec{m}_{7}+\left(\frac{1 \cdot 1}{\sqrt{15}}+\frac{2 \cdot 2}{\sqrt{34}}+\frac{3 \cdot 4}{\sqrt{26}}\right) \vec{m}_{8} \\
s_{q, 2}
\end{array} \\
& \operatorname{sim}(q, d)=\text { consine }(q, d)=\frac{\sum_{r \mid s_{q, r} \neq 0 \wedge s_{d, r} \neq 0} s_{q, r} \cdot s_{d, r}}{\sqrt{\sum_{r \mid s_{q, r} \neq 0 \wedge s_{d, r} \neq 0} s_{q, r}^{2}} \sqrt{\sum_{r \mid s_{q, r} \neq 0 \wedge s_{d, r} \neq 0} s_{d, r}^{2}}} \text { The similarity between the query and doc is }
\end{aligned}
$$

Generalized Vector Model (cont.)

- Term Correlation
- The degree of correlation between the terms k_{i} and k_{j} can now be computed as

$$
\vec{k}_{i} \bullet \vec{k}_{j}=\sum_{\forall r \mid g_{i}\left(m_{r}\right)=1 \wedge g_{j}\left(m_{r}\right)=1} \quad \hat{c}_{i, r} \times \hat{c}_{j, r}
$$

- Do not need to be normalized? (because we have done it before! See p26)

More on Generalized Vector Model

- Advantages
- Model considers correlations among index terms
- Model does introduce interesting new ideas
- Disadvantages
- Not clear in which situations it is superior to the standard vector model
- Computation cost is fairly high with large collections
- Since the number of "active" minterms might be proportional to the number of documents in the collection

Despite these drawbacks, the generalized vector model does introduce new ideas which are of importance from a theoretical point of view.

