Latent Semantic Analysis (LSA)

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

References:

1. G.W.Furnas, S. Deerwester, S.T. Dumais, T.K. Landauer, R. Harshman, L.A. Streeter, K.E. Lochbaum, "Information Retrieval using a Singular Value Decomposition Model of Latent Semantic Structure," SIGIR1988
2. J.R. Bellegarda, "Latent semantic mapping," IEEE Signal Processing Magazine, September 2005
3. T. K. Landauer, D. S. McNamara, S. Dennis, W. Kintsch (eds.) , Handbook of Latent Semantic Analysis, Lawrence Erlbaum, 2007

Taxonomy of Classic IR Models

Classification of IR Models Along Two Axes

- Matching Strategy
- Literal term matching (matching word patterns between the query and documents)
- E.g., Vector Space Model (VSM), Hidden Markov Model (HMM), Language Model (LM)
- Concept matching (matching word meanings between the query and documents)
- E.g., Latent Semantic Analysis (LSA), Probabilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA), Word Topic Model (WTM)
- Learning Capability
- Term weighting, query expansion, document expansion, etc.
- E.g., Vector Space Model, Latent Semantic Indexing
- Most models are based on linear algebra operations
- Solid theoretical foundations (optimization algorithms)
- E.g., Hidden Markov Model (HMM), Probabilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA), Word Topic Model (WTM)
- Most models belong to the language modeling approach

Two Perspectives for IR Models（cont．）

－Literal Term Matching vs．Concept Matching

香港星島日報篇報導引述軍事觀察家的話表示，到二
零零五年台灣將完全喪失空中優勢，原因是中國大陸
戰機不論是數量或是性能上都將超越台灣，報導指出
中國在大量引進俄羅斯先進武器的同時也得加快研發
自製武器系統，目前西安飛機製造廠任職的改進型飛
豹戰機即將部署尚未與蘇愷三十通道地對地攻擊住宅
飛機，以督促遇到挫折的監控其戰機目前也已經取得
了重大階段性的認知成果。根據日本媒體報導在台海
戰爭隨時可能爆發情況之下北京方面的基本方針，使
用高科技答應局部戰爭。因此，解放軍打算在二零零
四年前又有包括蘇愷三十二期在內的兩百架蘇霍伊戰
鬥機。
－There are usually many ways to express a given concept，so literal terms in a user＇s query may not match those of a relevant document

Latent Semantic Analysis (LSA)

- Also called Latent Semantic Indexing (LSI), Latent Semantic Mapping (LSM), or Two-Mode Factor Analysis
- Three important claims made for LSA
- The semantic information can derived from a word-document co-occurrence matrix
- The dimension reduction is an essential part of its derivation
- Words and documents can be represented as points in the Euclidean space
- LSA exploits the meaning of words by removing "noise" that is present due to the variability in word choice
- Namely, synonymy and polysemy that are found in documents
T. Landauer, D. S. McNamara, S. Dennis, \& W. Kintsch (Eds.), Handbook of Latent Semantic Analysis.

Latent Semantic Analysis: Schematic

- Dimension Reduction and Feature Extraction
- PCA
feature space

- SVD (in LSA)

LSA: An Example

- Singular Value Decomposition (SVD) used for the worddocument matrix
- A least-squares method for dimension reduction

	Term 1	Term 2	Term 3	Term 4
Query	user	interface		
Document 1	user	interface	HCI	interaction
Document 2			HCI	interaction

Projection of a Vector \boldsymbol{x} :

LSA: Latent Structure Space

- Two alternative frameworks to circumvent vocabulary mismatch

LSA: Another Example (1/2)

Titles

c1:	Humart machine interface for Lab ABC compater applications
c2:	A survey of user opinion of computer system response time
$\mathrm{c} 3:$	The EPS user interface management system
$\mathrm{c4}:$	System and human system engineering testing of EPS
$\mathrm{cS}:$	Relation of user-perceived response rime to error measurement
$\mathrm{m} 1:$	The generation of random, binary, unondered rees
$\mathrm{m} 2:$	The intersection graph of paths in trees
$\mathrm{m} 3:$	Graph minors IV: Widths of trees and well-quasi-ordering
$\mathrm{m} 4:$	Graph minors: A survey

Terms

		c1	c2	c3	c4	cs	m 1	m2	m3	m4
1.	human	1	O	0	1	0	0	\bigcirc	0	0
2.	interface	1	0	1	0	0	0	0	0	0
3.	computer	1	1	0	0	0	0	0	0	0
4.	user	0	1	1	0	1	0	0	0	0
5.	system	0	1	1	2	0	0	0	0	0
6.	response	0	1	0	0	1	0	0	0	0
7.	time	0	1	0	0	1	0	0	0	0
8.	EPS	0	0	1	1	0	0	0	0	0
9.	survey	0	1	0	0	0	0	O	0	1
10.	frees	0	0	0	0	0	1	1	1	0
11.	graph	0	0	0	0	0	0	1	1	1
12.	minors	0	0	0	0	0	0	0	1	1

LSA: Another Example (2/2)

2-D Plot of Terms and Docs from Example

Words similar in meaning are "near" each other in the LSA space even if they never co-occur in a document; Documents similar in concept are "near" each other in the LSA space even if they share no words in common.

Three sorts of basic comparisons

- Compare two words
- Compare two documents
- Compare a word to a document

Query: "human computer interaction"
11 graph
-m3(10,11,12)
ㅁm4($9,11,12$)
10 tree
-m2(10,11)

An OOV word
Thee sorts of basic comparisons

- Compare two words
- Compare two documents
- Compare a word to a document

FIG. 1. A two-dimensional plot of 12 Terms and 9 Documents from the sampe TM set. Terms are represented by filled circles. Documents are shown as open squares, and component terms are indicated parenthetically. The query ("human computer interaction") is represented as a pseudo-document at point q. Axes are scaled for Document-Document or Term-Term comparisons. The dotted cone represents the region whose points are within a cosine of .9 from the query q. All documents about human-computer ($\mathrm{c} 1-\mathrm{cs}$) are "near" the query (i.e., within this cone), but none of the graph theory documents $(\mathrm{ml}=\mathrm{m} 4)$ are nearby. In this reduced space, even documents c 3 and c 5 which share no terms with the query are near it.

LSA: Theoretical Foundation (1/10)

LSA: Theoretical Foundation (2/10)

- "term-document" matrix A has to do with the co-occurrences between terms (or units) and documents (or compositions)
- Contextual information for words in documents is discarded
- "bag-of-words" modeling
- Feature extraction for the entities $a_{i, j}$ of matrix A

1. Conventional $t f$-idf statistics
2. Or, $a_{i, j}$:occurrence frequency weighted by negative entropy
occurrence count

$$
a_{i, j}=\frac{f_{i, j}}{\left|d_{j}\right|} \times\left(1-\varepsilon_{i}\right), \quad\left|d_{j}\right|=\sum_{i=1}^{m} f_{i, j}
$$

normalized entropy of term i

$$
0 \leq \varepsilon_{i} \leq 1
$$

$\tau_{i}=\sum_{j=1}^{n} f_{i, j} \quad$ in the collection

LSA: Theoretical Foundation (3/10)

- Singular Value Decomposition (SVD)
- $A^{T} A$ is symmetric $n \times n$ matrix
- All eigenvalues λ_{j} are nonnegative real numbers

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq 0 \quad \Sigma^{2}=\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \ldots, \lambda_{n}\right)
$$

- All eigenvectors v_{j} are orthonormal $\left(\in R^{n}\right)$

$$
V=\left[v_{1} v_{2} \ldots v_{n}\right] \quad v_{j}^{T} v_{j}=1 \quad\left(V^{T} V=I_{n x n}\right)
$$

- Define singular values: sigma $\sigma_{j}=\sqrt{\lambda_{j}}, j=1, \ldots, n$
- As the square roots of the eigenvalues of $A^{\top} A$
- As the lengths of the vectors $A v_{1}, A v_{2}, \ldots, A v_{n}$

$$
\begin{aligned}
& \text { For } \Lambda_{i} \neq 0, \quad i=1, \ldots r, \\
& \left\{A v_{1}, A v_{2}, \ldots ., A v_{r}\right\} \text { is an } \\
& \text { orthogonal basis of } \operatorname{Col} A
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{1}=\left\|A v_{1}\right\| \\
& \sigma_{2}=\left\|A v_{2}\right\|
\end{aligned} \begin{aligned}
& \left\|A v_{i}\right\|^{2}=v_{i}^{T} A^{T} A v_{i}=v_{i}^{T} \lambda_{i} v_{i}=\lambda_{i} \\
& \Rightarrow\left\|A v_{i}\right\|=\sigma_{i}
\end{aligned}
$$

LSA: Theoretical Foundation (4/10)

- $\left\{A v_{1}, A v_{2}, \ldots, A v_{r}\right\}$ is an orthogonal basis of $\operatorname{Col} A$

$$
A v_{i} \bullet A v_{j}=\left(A v_{i}\right)^{T} A v_{j}=v_{i}^{T} A^{T} A v_{j}=\lambda_{j} v_{i}^{T} v_{j}=0
$$

- Suppose that A (or $A^{\top} A$) has rank $r \leq n$

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0, \quad \lambda_{r+1}=\lambda_{r+2}=\ldots .=\lambda_{n}=0
$$

- Define an orthonormal basis $\left\{u_{1}, u_{2}, \ldots ., u_{r}\right\}$ for $\operatorname{Col} A$

$$
u_{i}=\frac{1}{\left\|A v_{i}\right\|} A v_{i}=\frac{1}{\sigma_{i}} A v_{i} \Rightarrow \sigma_{i} u_{i}=A v_{i}, \quad v_{i}
$$

Uis also an

$$
\begin{gathered}
\text { orthonormal matrix } \\
(\mathrm{mxr})
\end{gathered} u_{1} u_{2} \ldots u_{r} \Sigma_{r}=A\left[\begin{array}{ll}
v_{1} v_{2} & v_{r}
\end{array}\right]
$$

- Extend to an orthonormal basís $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ of R^{m}

$$
\|A\|_{F}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}
$$

$$
\|A\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\underset{\mathbb{R}-\text { Berin Chen } 14}{\sigma_{r}^{2}} ?
$$

$$
\begin{aligned}
& \Rightarrow\left[u_{1} u_{2} \ldots u_{r} \ldots u_{m}\right] \Sigma=A\left[v_{1} v_{2} \ldots v_{r} \ldots v_{n}\right] \\
& \Rightarrow U \Sigma=A V \Rightarrow U \Sigma V^{T}=A V V^{T}
\end{aligned}
$$

LSA: Theoretical Foundation (5/10)

FIGURE 4 The four fundamental subspaces and the action of A.

$$
\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\left(\begin{array}{ll}
\boldsymbol{U}_{1} & \boldsymbol{U}_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1} & \boldsymbol{0} \\
\mathbf{0} & 0
\end{array}\right)\binom{\boldsymbol{V}_{V_{2}^{T}}^{T}}{\boldsymbol{V}_{2}^{T}}
$$

$$
=\boldsymbol{U}_{1} \boldsymbol{\Sigma}_{1} \boldsymbol{V}_{1}^{T}
$$

$$
=\boldsymbol{A} \boldsymbol{V}_{1} \boldsymbol{V}_{1}^{T} \quad U \Sigma=A V
$$

$$
=A
$$

LSA: Theoretical Foundation (6/10)

- Additional Explanations
- Each row of U is related to the projection of a corresponding row of A onto the basis formed by columns of V

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& \Rightarrow A V=U \Sigma V^{T} V=U \Sigma \quad \Rightarrow U \Sigma=A V
\end{aligned}
$$

- the i-th entry of a row of U is related to the projection of a corresponding row of A onto the i-th column of V
- Each row of V is related to the projection of a corresponding row of A^{T} onto the basis formed by U

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& \Rightarrow A^{T} U=\left(U \Sigma V^{T}\right)^{T} U=V \Sigma U^{T} U=V \Sigma \\
& \Rightarrow V \Sigma=A^{T} U
\end{aligned}
$$

- the i-th entry of a row of V is related to the projection of a corresponding row of A^{T} onto the i-th column of U

LSA: Theoretical Foundation (7/10)

- Fundamental comparisons based on SVD
- The original word-document matrix (A)

- compare two terms \rightarrow dot product of two rows of A
- or an entry in $A A^{\top}$
- compare two docs \rightarrow dot product of two columns of A
- or an entry in $A^{\top} A$
- compare a term and a doc \rightarrow each individual entry of A
- The new word-document matrix (A^{\prime})

- Compare two terms $A^{\prime} A^{\top}=\left(U^{\prime} \Sigma^{\prime} V^{\top}\right)\left(U^{\prime} \Sigma^{\prime} V^{\top} T\right)^{\top}=U^{\prime} \Sigma^{\top} V^{\top} V^{\top} V^{\prime} \Sigma^{\top} T U^{\top}=\left(U^{\top} \Sigma^{\top}\right)\left(U^{\prime} \Sigma^{\prime}\right)^{\top}$
$U^{\prime}=U_{\text {m×k }}$
\rightarrow dot product of two rows of $U^{\prime} \Sigma^{\prime}$
- Compare two docs $A^{\top} A^{\prime}=\left(U^{\prime} \Sigma^{\prime} V^{\top}\right)^{\top}\left(U^{\prime} U^{\prime} \Sigma^{\prime} V^{\top}\right)=V^{\prime} \Sigma^{\prime} T^{\top} U^{\top} U^{\prime} \Sigma^{\prime} V^{\top}=\left(V^{-} \Sigma^{-} \Sigma^{\top}\right)\left(V^{\prime} \Sigma^{\prime}\right)^{\top}$
\rightarrow dot product of two rows of $V^{\prime} \Sigma^{\prime}$
- Compare a query word and a doc \rightarrow each individual entry of A^{\prime} (scaled by the square root of singular values)

LSA: Theoretical Foundation (8/10)

- Fold-in: find the representation for a pseudo-document q
- For objects (new queries or docs) that did not appear in the original analysis
- Fold-in a new $m \times 1$ query (or doc) vector

See Figure A in next page

$$
\hat{q}_{1 \times k}=\left(q^{T}\right)_{1 \times m} U_{m \times k_{1}^{\prime}} \Sigma_{k \times k} \quad \text { are differentially weighted. }
$$

Just like a row of $V \quad$ Query is represented by the weighted sum of it constituent term vectors scaled by the inverse of singular values.

- Represented as the weighted sum of its component word (or term) vectors
- Cosine measure between the query and doc vectors in the latent semantic space (docs are sorted in descending order of their cosine values)

$$
\operatorname{sim}(\hat{q}, \hat{d})=\operatorname{coine}(\hat{q} \Sigma, \hat{d} \Sigma)=\frac{\hat{q} \Sigma^{2} \hat{d}^{T}}{|\hat{q} \Sigma||\hat{d} \Sigma|}
$$

LSA: Theoretical Foundation (9/10)

- Fold-in a new $1 \times \mathrm{n}$ term vector

$$
\hat{t}_{1 \times k}=t_{1 \times n} V_{n \times k} \sum \underset{k \times k}{-1} \text { See Figure B below }
$$

LSA: Theoretical Foundation (10/10)

- Note that the first k columns of U and V are orthogonal, but the rows of U and V (i.e., the word and document vectors), consisting k elements, are not orthogonal
- Alternatively, A can be written as the sum of k rank-1 matrices

$$
A \approx A_{k}=\sum_{i=1}^{k} u_{i} \sigma_{i} v_{i}^{T}
$$

$-u_{i}$ and v_{i} are respectively the eigenvectors of U and V

- LSA with relevance feedback (query expansion)

$$
\hat{q}_{1 \times k}=\left(q^{T}\right)_{1 \times m} U_{m \times k} \Sigma_{k \times k}^{-1}+\left(d^{T}\right)_{1 \times n} V_{n \times k}
$$

- d is a binary vector whose elements specify which documents to add to the query

LSA: A Simple Evaluation

- Experimental results
- HMM is consistently better than VSM at all recall levels
- LSA is better than VSM at higher recall levels

Recall-Precision curve at 11 standard recall levels evaluated on TDT-3 SD collection. (Using word-level indexing terms)

LSA: Pro and Con (1/2)

- Pro (Advantages)
- A clean formal framework and a clearly defined optimization criterion (least-squares)
- Conceptual simplicity and clarity
- Handle synonymy problems ("heterogeneous vocabulary")
- Replace individual terms as the descriptors of documents by independent "artificial concepts" that can specified by any one of several terms (or documents) or combinations
- Good results for high-recall search
- Take term co-occurrence into account

LSA: Pro and Con (2/2)

- Disadvantages
- Contextual or positional information for words in documents is discarded (the so-called bag-of-words assumption)
- High computational complexity (e.g., SVD decomposition)
- Exhaustive comparison of a query against all stored documents is needed (cannot make use of inverted files ?)
- LSA offers only a partial solution to polysemy (e.g. bank, bass,...)
- Every term is represented as just one point in the latent space (represented as weighted average of different meanings of a term)
- To date, aside from folding-in, there is no optimal way to add information (new words or documents) to an existing worddocument space
- Re-compute SVD (or the reduced space) with the added information is a more direct and accurate solution

LSA: Junk E-mail Filtering

- One vector represents the centriod of all e-mails that are of interest to the user, while the other the centriod of all e-mails that are not of interest

LSA: Dynamic Language Model Adaptation (1/4)

- Let w_{q} denote the word about to be predicted, and H_{q-1} the admissible LSA history (context) for this particular word
- The vector representation of H_{q-1} is expressed by \widetilde{d}_{q-1}
- Which can be then projected into the latent semantic space
LSA representation $\quad \widetilde{\bar{v}}_{q-1}=\widetilde{v}_{q-1} S=\widetilde{d}_{q-1}^{T} U \quad$ [change of notation : $S=\Sigma$]
- Iteratively update \widetilde{d}_{q-1} and $\widetilde{\bar{v}}_{q-1}$ as the decoding evolves
VSM representation
LSA representation

$$
\begin{aligned}
& \widetilde{d}_{q}=\frac{n_{q}-1}{n_{q}} \widetilde{d}_{q-1}+\frac{1-\varepsilon_{i}}{n_{q}}[0 \ldots 1 \ldots 0]^{T} \\
& \widetilde{\bar{v}}_{q}=\widetilde{v}_{q} S=d_{q-1}^{T} U=\frac{n_{q}}{n_{q}}\left[\left(n_{q}-1\right) \tilde{\bar{v}}_{q-1}+\left(\underline{\left(1-\varepsilon_{i}\right)} u_{i}\right]\right. \\
& \text { or }=\frac{1}{n_{q}}\left[\bar{i}_{i}\left(n_{q}-1\right) \tilde{\bar{v}}_{q-1}+\left(1-\varepsilon_{i}\right) u_{i}\right] \begin{array}{c}
\text { with } \\
\begin{array}{l}
\text { exponential } \\
\text { decay } \\
\text { Berlin Chen 25 }
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

LSA: Dynamic Language Model Adaptation (2/4)

- Integration of LSA with N-grams

$$
\operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n+l)}\right)=\operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n)}, H_{q-1}^{(l)}\right)
$$

where H_{q-1} denotes some suitable history for word w_{q}, and the superscripts ${ }^{(n)}$ and ${ }^{(l)}$ refer to the n-gram component $\left(w_{q-1} w_{q-2} \ldots w_{q-n+1}\right.$, with $\left.n>1\right)$, the LSA component $\left(\widetilde{d}_{q-1}\right)$:
This expression can be rewritten as :

$$
\operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n+l)}\right)=\frac{\operatorname{Pr}\left(w_{q}, H_{q-1}^{(l)} \mid H_{q-1}^{(n)}\right)}{\sum_{w_{i} \in V} \operatorname{Pr}\left(w_{i}, H_{q-1}^{(l)} \mid H_{q-1}^{(n)}\right)}
$$

LSA: Dynamic Language Model Adaptation (3/4)

- Integration of LSA with N -grams (cont.)

$$
\left.\begin{array}{ll}
\operatorname{Pr}\left(w_{q}, H_{q-1}^{(l)} \mid H_{q-1}^{(n)}\right)= & \begin{array}{l}
\text { Assume the probability of the document } \\
\text { history given the current word is not affected }
\end{array} \\
& \operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n)}\right) \cdot \operatorname{Pr}\left(H_{q-1}^{(l)} \mid w_{q}, H_{q-1}^{(n)}\right) \\
=\operatorname{Pr}\left(w_{q} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \operatorname{Pr}\left(\widetilde{d}_{q-1} \mid w_{q} w_{q-1} w_{q-2} \cdots w_{q-n+1}\right)
\end{array}\right]=\operatorname{Pr}\left(w_{q} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \operatorname{Pr}\left(\tilde{d}_{q-1} \mid w_{q}\right) .
$$

$\xrightarrow[\square]{ } \operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n+l)}\right)=$

$$
\frac{\operatorname{Pr}\left(w_{q} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \frac{\operatorname{Pr}\left(w_{q} \mid \widetilde{d}_{q-1}\right)}{\operatorname{Pr}\left(w_{q}\right)}}{\sum_{w_{i} \in V} \operatorname{Pr}\left(w_{i} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \frac{\operatorname{Pr}\left(w_{i} \mid \widetilde{d}_{q-1}\right)}{\operatorname{Pr}\left(w_{i}\right)}}
$$

LSA: Dynamic Language Model Adaptation (4/4)

Intuitively, $\operatorname{Pr}\left(w_{q} \mid \widetilde{d}_{q-1}\right)$ reflects the "relevance" of word w_{q} to the admissible history, as observed through \widetilde{d}_{q-1} :

$$
\begin{aligned}
& \operatorname{Pr}\left(w_{q} \mid \widetilde{d}_{q-1}\right) \\
& \approx K\left(w_{q} \mid \widetilde{d}_{q-1}\right) \\
& =\cos \left(u_{q} S^{1 / 2}, \widetilde{v}_{q-1} S^{1 / 2}\right)=\frac{u_{q} S \widetilde{v}_{q-1}^{T}}{\left\|u_{q} S^{1 / 2}\right\| \widetilde{v}_{q-1} S^{1 / 2} \|}
\end{aligned}
$$

As such, it will be highest for words whose meaning aligns most closely with the semantic favric of \widetilde{d}_{q-1} (i.e., relevant "content" words), and lowest for words which do not convey any particular information about this fabric (e.g., "function" works like "the").

LSA: Cross-lingual Language Model Adaptation (1/2)

- Assume that a document-aligned (instead of sentencealigned) Chinese-English bilingual corpus is provided

LSA: Cross-lingual Language Model Adaptation (2/2)

- CL-LSA adapted Language Model

$$
\begin{aligned}
& P_{\text {Adapt }}\left(c_{k} \mid c_{k-1}, c_{k-2}, d_{i}^{E}\right) \\
& =\lambda \cdot P P_{\text {CL-LCA-Unigram }}\left(c_{k} \mid d_{i}^{E}\right)+P_{\text {BG-Trigram }}\left(c_{k} \mid c_{k-1}, c_{k-2}\right) \\
& P_{\text {CL-LCA-Unigram }}\left(c \mid d_{i}^{E}\right)=\sum_{e} P_{T}(c \mid e) P\left(e \mid d_{i}^{E}\right) \\
& P_{T}(c \mid e) \approx \frac{\operatorname{sim}(\vec{c}, \vec{e})^{\gamma}}{\sum_{c^{\prime}} \operatorname{sim}\left(\vec{c}^{\prime}, \vec{e}\right)^{\gamma}} \quad(\gamma \gg 1)
\end{aligned}
$$

LSA: SVDLIBC

- Doug Rohde's SVD C Library version 1.3 is based on the SVDPACKC library
- Download it at http://tedlab.mit.edu/~dr/

LSA: Exercise (1/4)

- Given a sparse term-document matrix
- E.g., 4 terms and 3 docs

- Each entry can be weighted by TFxIDF score

Row Col. Nonzero\#Tem \# Doc entries		
4	3	
2		2 nonzero entries at Col 0
0	2.3	Col 0, Row 0
2	3.8	Col 0, Row 2
1		1 nonzero entry
1	1.3	Col 1, Row 1
3		3 nonzero entry
		at Col 2
0	4.2	Col 2, Row 0
1	2.2	Col 2, Row 1
2	0.5	Col 2, Row 2

- Perform SVD to obtain term and document vectors represented in the latent semantic space
- Evaluate the information retrieval capability of the LSA approach by using varying sizes (e.g., 100, 200,...,600 etc.) of LSA dimensionality

LSA: Exercise (2/4)

- Example: term-document matrix

```
Indexing Doc no. Nonzero
    512532265218852
```

 77
 5087.725771
 59616.213399
 61213.080868
 7097.725771
 7137.725771
 7447.725771
 11907.725771
 120016.213399
 12597.725771
 - SVD command (IR_svd.bat)

No. of reserved eigenvectors
output
LSA100-Ut
LSA100-S

LSA: Exercise (3/4)

- LSA100-Ut

51253 words

word vector (u^{\top}): 1×100

- LSA100-Vt
- LSA100-S

100
2686.18
829.941
559.59
\ldots.

100 eigenvalues

LSA: Exercise (4/4)

- Fold-in a new $m_{\times} 1$ query vector

$$
\begin{array}{l:l}
\hat{q}_{1 \times k}= & \left(q^{T}\right)_{1 \times m} U_{m \times k}, ~ \\
\text { Just like a row of } V & \begin{array}{l}
\text { Query represented by the weighted } \\
\\
\text { sum of it constituent term vectors }
\end{array}
\end{array}
$$

- Cosine measure between the query and doc vectors in the latent semantic space

$$
\operatorname{sim}(\hat{q}, \hat{d})=\text { coine } \quad(\hat{q} \Sigma, \hat{d} \Sigma)=\frac{\hat{q} \Sigma^{2} \hat{d}^{T}}{|\hat{q} \Sigma||\hat{d} \Sigma|}
$$

