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Clustering

• Place similar objects in the same group and 
assign dissimilar objects to different groups (typically 
using a distance measure, such as Euclidean distance)

W d l t i– Word clustering
• Neighbor overlap: words occur with the similar left and right 

neighbors (such as in and on)g ( )
– Document clustering

• Documents with the similar topics or concepts are put 
t thtogether

• But clustering cannot give a comprehensive description 
of the objectof the object
– How to label objects shown on the visual display is a difficult 

problem
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Clustering vs. Classification

• Classification is supervised and requires a set of labeled p q
training instances for each group (class)
– Learning with a teacher

• Clustering is unsupervised and learns without a teacher 
to provide the labeling information of the training data setto provide the labeling information of the training data set

– Also called automatic or unsupervised classification
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Types of Clustering Algorithms

• Two types of structures produced by clustering 
algorithmsalgorithms
– Flat or non-hierarchical clustering
– Hierarchical clusteringg

• Flat clustering
– Simply consisting of a certain number of clusters and the relation p y g

between clusters is often undetermined
– Measurement: construction error minimization or probabilistic 

optimizationp
• Hierarchical clustering

– A hierarchy with usual interpretation that each node stands for a 
b l f it th ’ dsubclass of its mother’s node

• The leaves of the tree are the single objects
• Each node represents the cluster that contains all the objects 
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p j
of its descendants

– Measurement: similarities of instances



Hard Assignment vs. Soft Assignment (1/2)

• Another important distinction between clustering 
algorithms is whether they perform soft or hard 
assignment

• Hard Assignment
– Each object (or document in the context of IR) is assigned to oneEach object (or document in the context of IR) is assigned to one 

and only one cluster

f   ( b b l  h)• Soft Assignment (probabilistic approach)
– Each object may be assigned to multiple clusters
– An object has a probability distribution overix ( )ixP ⋅An object       has a probability distribution                   over

clusters          where                    is the probability that       is a 
member of  
Is somewhat more appropriate in many tasks such as NLP

ix ( )ixP
jc

jc
( )ji cxP ix
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– Is somewhat more appropriate in many tasks such as NLP, 
IR, …



Hard Assignment vs. Soft Assignment (2/2)

• Hierarchical clustering usually adopts hard assignmentg y p g

• While in flat clustering, both types of assignments are g, yp g
common
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Summarized Attributes of Clustering Algorithms  (1/2) 

• Hierarchical Clustering
P f bl f d t il d d t l i– Preferable for detailed data analysis

– Provide more information than flat clustering

– No single best algorithm (each of the algorithms only optimal for 
some applications)

– Less efficient than flat clustering (minimally have to compute n x n
matrix of similarity coefficients)matrix of similarity coefficients) 
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Summarized Attributes of Clustering Algorithms (2/2)
• Flat Clustering

– Preferable if efficiency is a consideration or data sets are very y y
large

– K-means is the conceptually feasible method and should 
probably be used on a new data because its results are often 
sufficient 

• K-means assumes a simple Euclidean representation space• K-means assumes a simple Euclidean representation space, 
and so cannot be used for many data sets, e.g., nominal data 
like colors (or samples with features of different scales)

– The EM algorithm is the most choice. It can accommodate 
definition of clusters and allocation of objects based on complex 
probabilistic modelsprobabilistic models

• Its extensions can be used to handle topological/hierarchical 
orders of samples
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– E.g., Probabilistic Latent Semantic Analysis (PLSA)



Some Applications of Clustering in IR (1/5)

• Cluster Hypothesis (for IR): Documents in the same 
cluster behave similarly with respect to relevance tocluster behave similarly with respect to relevance to 
information needs

• Possible applications of Clustering in IRpp g

– These possible applications differ in
• The collection of documents to be clustered
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• The collection of documents to be clustered
• The aspect of the IR system to be improved



Some Applications of Clustering in IR (2/5)

1. Whole corpus analysis/navigation
Better user interface (users prefer browsing over searching since– Better user interface (users prefer browsing over searching since 
they are unsure about which search terms to use)

– E.g., the scatter-gather approach (for a collection of New York 
Times)

Users often prefer browsing over searching, 
because they are unsure about which 
search terms to use. 
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Some Applications of Clustering in IR (3/5)

2. Improve recall in search applicationsp pp
– Achieve better search results by 

• Alleviating the term-mismatch (synonym) problem facing the 
t d lvector space model

found relevant document

• Estimating the collection model of the language modeling 
(LM) retrieval approach more accurately 

( ) ( ) ( ) ( )[ ]∏ N PPQP M1MM λλ( ) ( ) ( ) ( )[ ]∏ ⋅−+⋅= =
N
i CiDiD wPwPQP 1 M1MM λλ

The collection model can be estimated from 
the cluster the document D belongs to instead
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the cluster the document D belongs to, instead 
of the entire collection



Some Applications of Clustering in IR (4/5)

3. Better navigation of search results
– Result set clustering– Result set clustering
– Effective “user recall” will be higher
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Some Applications of Clustering in IR (5/5)

4. Speed up the search processp p p
– For retrieval models using exhaustive matching (computing the 

similarity of the query to every document) without efficient 
inverted index supportsinverted index supports 

• E.g., latent semantic analysis (LSA), language modeling 
(LM) ? 

– Solution: cluster-based retrieval
• First find the clusters that are closet to the query and then 

only consider documents from these clustersonly consider documents from these clusters
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Evaluation of Clustering (1/2)

• Internal criterion for the quality of a clustering resultq y g
– The typical objective is to attain 

• High intra-cluster similarity (documents with a cluster are 
i il )similar)

• Low inter-cluster similarity (document from different clusters 
are dissimilar))

– The measured quality depends on both the document 
representation and the similarity measure used
G d i t l it i d t il t l t– Good scores on an internal criterion do not necessarily translate 
into good effectiveness in an application
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Evaluation of Clustering (2/2)

• External criterion for the quality of a clustering result
Evaluate how well the clustering matches the gold standard– Evaluate how well the clustering matches the gold standard 
classes produced by human judges

• That is, the quality is measured by the ability of the clustering 
algorithm to discover some or all of the hidden patterns or 
latent (true) classes 

.
. .

. . .

. . . .

– Two common criteria
• Purity
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Purity 
• Rand Index (RI) 



Purity (1/2)

• Each cluster is first assigned to class which is most 
frequent in the clusterq

• Then, the accuracy of the assignment is measured by 
counting the number of correctly assigned documents g y g
and dividing by the sample size 

( ) kj cIω∑=ΓΩ max1Purity

– : the set of clusters

( ) kj
k j

c
N

Iω∑ΓΩ max,Purity

{ }Kωωω ,,, 21 K=Ω
{ }– : the set of classes

– : the sample size
{ }Jccc ,,, 21 K=Γ

N

( ) ( ) 71.0345
17
1,Purity =++=ΓΩ
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Purity (2/2)

• High purity is easy to achieve for a large number of g p y y g
clusters (?)
– Purity will be 1 if each document gets its own cluster 
– Therefore, purity cannot be used to trade off the quality of the 

clustering against the number of clusters
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Rand Index (1/3)

• Measure the similarity between the clusters and the 
l i d t thclasses in ground truth
– Consider the assignments of all possible N(N-1)/2 pairs of N

distinct documents in the cluster and the true classdistinct documents in the cluster and the true class

Number of 
points

Same cluster in 
clustering

Different clusters 
in clusteringpoints clustering in clustering

Same class in 
ground truth

TP
(True Positive)

FN
(False Negative)g ( ue os t e) ( g )

Different classes 
in ground truth

FP
(False Positive)

TN
(True Negative)

TNTPRI +
=
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Rand Index (2/3)
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Rand Index (3/3)

• The rand index has a value between 0 and 1
– 0 indicates that the clusters and the classes in ground truth do 

not agree on any pair of points (documents)
1 i di t th t th l t d th l i d t th– 1 indicates that the clusters and the classes in ground truth are 
exactly the same 
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F-Measure Based on Rand Index

• F-Measure: harmonic mean of precision (P) and recall (R)p ( ) ( )

FNTP
TP        ,

FPTP
TP

+
=

+
= RP

FNTPFPTP ++

( )PRbb ++ 22 11 ( )
RPb

PRb

PR
b
b

b
+

+
=

+

+
= 22

1
1
1F

– If we want to penalize false negatives (FN) more strongly than 
false positives (FP), then we can set               (separating similar 
d t i ti th tti di i il

1>b
documents is sometimes worse than putting dissimilar 
documents in the same cluster)

• That is, giving more weight to recall (R) 
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Normalized Mutual Information (NMI)

• NMI is an information-theoretical measure

( ) ( )
( ) ( )( ) 2/

C;C,NMI
CHH

I
+Ω
Ω

=Ω

( ) ( ) ( )
( ) ( )logC;

∩
∑ ∑ ∩=Ω

jk

jk

k j
jk cpp

cp
cpI

ω
ω

ω

( ) ( ) ( )l

estimate) (ML   log            

∑Ω

∩
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∩
=

jk
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jk

H

c

cN
N

c

ω

ωω

( ) ( ) ( )

estimate) (ML   log          

log

∑−=

∑−=Ω

kk

k
kk

NN

ppH

ωω

ωω

– NMI will have a value between 0 and 1

k NN
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NMI will have a value between 0 and 1



Summary of External Evaluation Measures
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Flat ClusteringFlat Clustering
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Flat Clustering

• Start out with a partition based on randomly selected 
seeds (one seed per cluster) and then refine the initialseeds (one seed per cluster) and then refine the initial 
partition
– In a multi-pass manner (recursion/iterations)

• Problems associated with non-hierarchical clustering
Wh t t ?– When to stop ?

– What is the right number of clusters (cluster cardinality) ?
group average similarity, likelihood, mutual information

k-1 → k → k+1

• Algorithms introduced here
– The K-means algorithm Hierarchical clustering 
– The EM algorithm also has to face this problem
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The K-means Algorithm (1/10)

• Also called Linde-Buzo-Gray (LBG) in signal processingy ( ) g p g
– A hard clustering algorithm
– Define clusters by the center of mass of their members
– Objects (e.g., documents) should be represented in vector form

• The K-means algorithm also can be regarded as 
A ki d f t ti ti– A kind of vector quantization 

• Map from a continuous space (high resolution) to a discrete 
space (low resolution)p ( )

– E.g. color quantization
• 24 bits/pixel (16 million colors) → 8 bits/pixel (256 colors)
• A compression rate of 3 

{ } { }         
1

index 
1

k
jj

jn
t

t mF xX
== =⎯⎯ →⎯= Dim(xt)=24  → |F|=28
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The K-means Algorithm (2/10)

squares)ofsumresidual:(RSSerrortionreconstrucTotal

{ }( )
⎪⎩

⎪
⎨
⎧ −=−

=−= ∑∑=
th i0

minif   1
 where  ,

squares)ofsum  residual:(RSSerror tion reconstrucTotal
2

1
j

t
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t
t
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N k

i
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k
ii bbE
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automatic label

– and        are unknown in advance

⎪⎩= = otherwise  01 1t i

imt
ib
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– depends on         and this optimization problem can not be 
solved analytically 
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The K-means Algorithm (3/10)

• Initialization
– A set of initial cluster centers is needed { }k

ii 1=m

• Recursion
– Assign each object      to the cluster whose center is closest tx

⎪⎩

⎪
⎨
⎧ −=−

=
otherwise  0

minif   1 j
t

ji
t

t
ib

mxmx

– Then, re-compute the center of each cluster as the centroid or 
mean (average) of its members

U i th d id th l t t ?

⎩

• Using the medoid as the cluster center ?
(a medoid is one of the objects in the cluster that is closest to 

the centroid)
tN t Th t t t d til t bilim
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The K-means Algorithm (4/10)

• AlgorithmAlgorithm
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The K-means Algorithm (5/10)

• Example 1p
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The K-means Algorithm (6/10)

• Example 2

government
finance
sports

research

name
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The K-means Algorithm (7/10)

• Complexity: O(IKNM)
– I: Iterations; K: cluster number; N: object number; M: object 

dimensionality 

• Choice of initial cluster centers (seeds) is important• Choice of initial cluster centers (seeds) is important

– Pick at random
Or calculate the mean of all data and generate k initial– Or, calculate the mean     of all data and generate k initial 
centers      by adding small random vector to the mean

– Or, project data onto the principal component (first eigenvector), 
im δm ±

m

divide it range into k equal interval, and take the mean of data in 
each group as the initial center 

– Or use another method such as hierarchical clustering algorithm
im

– Or, use another method such as hierarchical clustering algorithm 
on a subset of the objects

• E.g., buckshot algorithm uses the group-average 
l ti l t i t d l l f th d t th t
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agglomerative clustering to randomly sample of the data that 
has size square root of the complete set



The K-means Algorithm (8/10)

• Poor seeds will result in sub-optimal clusteringp g
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The K-means Algorithm (9/10)

• How to break ties when in case there are several centers 
with the same distance from an object
– E.g., randomly assign the object to one of the candidate clusters

( i th bj t t th l t ith l t i d )(or assign the object to the cluster with lowest index)

– Or, perturb objects slightly

• Applications of the K-means Algorithm
– Clustering
– Vector quantization 
– A preprocessing stage before classification or regression

M f th i i l t l di i l /h b• Map from the original space to l-dimensional space/hypercube

l l k (k l t )
Nodes on the hypercube 
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l=log2k   (k clusters)
A linear classifier 



The K-means Algorithm (10/10)

• E.g., the LBG algorithm
By Linde Buzo and Gray { Σ }{ Σ }

M→2M at each iteration
– By Linde, Buzo, and Gray {μ11,Σ11,ω11}{μ12,Σ12,ω12}

Global mean Cluster 1 mean

Cluster 2mean

{μ13,Σ13,ω13} {μ14,Σ14,ω14}

squares) of sum (residual
errortion Reconstruc Total

{ }( ) 2

1 1
1 ∑ ∑ −=

= =
=

N

t

k

i
i

tt
i

k
ii bE mxXm
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The EM Algorithm (1/3)

• EM (Expectation-Maximization) algorithm( p ) g
– A kind of model-based clustering
– Also can be viewed as a generalization of K-means
– Each cluster is a “model” for generating the data

• The centroid is good representative for each model 
• Generate an object (e g document) consists of first picking a• Generate an object (e.g., document) consists of first picking a 

centroid at random and then adding some noise
– If the noise is normally distributed, the procedure will 

result in clusters of spherical shape 

• Physical Models for EMy
– Discrete: Mixture of multinomial distributions
– Continuous: Mixture of Gaussian distributions 
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The EM Algorithm (2/3)
• EM is a soft version of K-mean

– Each object could be the member of multiple clusters kωj p
– Clustering as estimating a mixture of (continuous) probability distributions

( )1ωixP
A Mixture Gaussian HMM
(  A Mi  f G i )

k
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The EM Algorithm (2/3)

1ω
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Maximum Likelihood Estimation (MLE) (1/2)

• Hard Assignmentg

P(B| ω1)=2/4=0.5
cluster ω1

P(W| ω1)=2/4=0.5

IR – Berlin Chen 39



Maximum Likelihood Estimation (2/2)

• Soft Assignment P(ω1)=(0.7+0.4+0.9+0.5)/
(0.7+0.4+0.9+0.5

+0.3+0.6+0.1+0.5)
=2.5/4=0.625

State ω1 State ω2P(ω2)=1- P(ω1)=0.375

0.7 0.3

0 4 0 60.4 0.6

0.9 0.1
P(B|ω1)=(0.7+0.9)/

(0.7+0.4+0.9+0.5)
P(B|ω2)=(0.3+0.1)/

(0.3+0.6+0.1+0.5)

0.5 0.5
=1.6/2.5=0.64

P(B|ω1)=(0.4+0.5)/

(0.3 0.6 0.1 0.5)
=0.4/1.5=0.27

P(B|ω2)=(0.6+0.5)/
(0 3+0 6+0 1+0 5)
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P(B|ω1) (0.4 0.5)/
(0.7+0.4+0.9+0.5)

=0.9/2.5=0.36

(0.3+0.6+0.1+0.5)
=0.11/1.5=0.73



Expectation-Maximization Updating Formulas (1/3)

• Expectationp
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– Compute the likelihood that each cluster          generates a  
document vector  
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Expectation-Maximization Updating Formulas (2/3)

• Maximization
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– Mixture Weight
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Expectation-Maximization Updating Formulas (3/3)

• Covariance Matrix of Gaussian

( )( )∑ −−⋅
Σ

n

i

T

kikiki xx
1

ˆˆ
ˆ

μμγ rrrr

∑
=Σ

=′
′

=
n

i
ki

i
k

1

1

γ

( )( )
∑

∑ −−⋅
= =

n

n

i

T

kikiki xx
1

ˆˆ
     

μμγ rrrr

∑
=′

′
i

ki
1
γ

IR – Berlin Chen 43



More facts about The EM Algorithm

• The initial cluster distributions can be estimated using g
the K-means algorithm, which EM can then “soften up”

• The procedure terminates when the likelihood function            
is converged or maximum number of ( )ΘXP

iterations is reached
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Hierarchical Clustering
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Hierarchical Clustering

• Can be in either bottom-up or top-down manners
– Bottom-up (agglomerative)

• Start with individual objects and grouping the most similar 
ones

凝集的

ones
– E.g., with the minimum distance apart

( ) 1 distance measures will

• The procedure terminates when one cluster containing all 

( ) ( )yxd
yxsim

,1
1,

+
= be discussed later on

p g
objects has been formed

T d (di i i ) 分裂的– Top-down (divisive)
• Start with all objects in a group and divide them into groups 

so as to maximize within-group similarity

分裂的
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Hierarchical Agglomerative Clustering (HAC)

• A bottom-up approachp pp

• Assume a similarity measure for determining the 
similarity of two objects

Start with all objects in a separate cluster (a singleton)• Start with all objects in a separate cluster (a singleton) 
and then repeatedly joins the two clusters that have the 
most similarity until there is one only cluster survivedmost similarity until there is one only cluster survived

• The history of merging/clustering forms a binary tree or 
hierarchy

IR – Berlin Chen 47



HAC: Algorithm 

Initialization (for tree leaves):Initialization (for tree leaves):
Each object is a cluster

cluster number

merged as a new cluster

The original two clustersThe original two clusters 
are removed

IR – Berlin Chen 48
• ci denotes a specific cluster here



Distance Metrics

• Euclidian Distance (L2 norm)
m

Make sure that all attributes/dimensions have the same scale (or

2

1
2 )(),( i

m

i
i yxyxL −=∑

=

rr

– Make sure that all attributes/dimensions have the same scale (or 
the same variance)

• L Norm (City block distance)• L1 Norm (City-block distance)

∑ −=
m

ii yxyxL1 ),( rr

• Cosine Similarity (transform to a distance by subtracting 

∑
=i

ii yy
1

1 ),(

from 1)
yx rr

−
•1 d b t 0 d 1
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Measures of Cluster Similarity (1/9)

• Especially for the bottom-up approaches

1. Single-link clustering
– The similarity between two clusters is the similarity of the two 

l t bj t i th l tclosest objects in the clusters

– Search over all pairs of objects that are from the two different 
clusters and select the pair with the greatest similarityclusters and select the pair with the greatest similarity

– Elongated clusters are achieved

( ) ( )y,xsim,sim
ji y,xji

rr
rr ωω

ωω
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= max

f th i i l

ωi ωj

cf. the minimal 
spanning tree
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Measures of Cluster Similarity (2/9)

2. Complete-link clustering
– The similarity between two clusters is the similarity of their two 

most dissimilar members

S h h d l t hi d– Sphere-shaped clusters are achieved

– Preferable for most IR and NLP applications

( ) ( )y,xsim,sim
ji y,xji

rr
rr ωω

ωω
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= min

ωi ωj

M iti t tli

least similarity
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– More sensitive to outliers 



Measures of Cluster Similarity (3/9)

single link

complete link
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Measures of Cluster Similarity (4/9)
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Measures of Cluster Similarity (5/9)

3. Group-average agglomerative clusteringp g gg g
– A compromise between single-link and complete-link clustering

– The similarity between two clusters is the average similarityThe similarity between two clusters is the average similarity 
between members

ωi ωj

– If the objects are represented as length-normalized vectors and 
the similarity measure is the cosinethe similarity measure is the cosine

• There exists an fast algorithm for computing the average 
similarity

( ) ( ) yx
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yxyxyxsim
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rrrr
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== ,cos,

IR – Berlin Chen 54

length-normalized vectors



Measures of Cluster Similarity (6/9)

3. Group-average agglomerative clustering (cont.)
– The average similarity SIM between vectors in a cluster ωj is defined as
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– Express in terms of
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Measures of Cluster Similarity (7/9)

3 Group-average agglomerative clustering (cont )3. Group-average agglomerative clustering (cont.)
-As merging two clusters ci and cj , the cluster sum 

vectors and are known in advance( )is ωr ( )js ωr

vectors             and              are known in advance

( ) ( ) ( ) jiNewjiNew sss ωωωωωω +=+=    ,rrr
ji ωω +

– The average similarity for their union will be 
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Measures of Cluster Similarity (8/9)

4. Centroid clusteringg
– The similarity of two clusters is defined as the similarity of their 

centroids
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Measures of Cluster Similarity (9/9)

• Graphical summary of four cluster similarity measures
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Example: Word Clustering 

• Words (objects) are described and clustered using a set ( j ) g
of features and values
– E.g., the left and right neighbors of tokens of words

higher nodes:higher nodes:
decreasing
of similarity

IR – Berlin Chen 59
“be” has least similarity with the other 21 words ! 



Divisive Clustering (1/2)

• A top-down approachp pp

• Start with all objects in a single cluster

• At each iteration, select the least coherent cluster and 
split it

• Continue the iterations until a predefined criterion (e.g., 
the cluster number) is achieved)

• The history of clustering forms a binary tree or hierarchy

IR – Berlin Chen 60



Divisive Clustering (2/2)

• To select the least coherent cluster, the measures used in 
bottom-up clustering (e.g. HAC) can be used again here
– Single link measure

C l t li k– Complete-link measure
– Group-average measure

• How to split a cluster
– Also is a clustering task (finding two sub-clusters)g ( g )
– Any clustering algorithm can be used for the splitting operation, 

e.g.,
B tt ( l ti ) l ith• Bottom-up (agglomerative) algorithms

• Non-hierarchical clustering algorithms (e.g., K-means)
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Divisive Clustering: Algorithm

:
split the least coherent cluster

Generate two new clusters and 
remove the original one

IR – Berlin Chen 62

• cu denotes a specific cluster here



Hierarchical Document Organization (1/7)

• Explore the Probabilistic Latent Topical Information
– TMM/PLSA approachpp

Two-dimensional 
Tree Structure

for Organized Topics
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• Documents are clustered by the latent topics and organized in a two-
dimensional tree structure, or a two-layer map

• Those related documents are in the same cluster and the relationships 
among the clusters have to do with the distance on the map
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among the clusters have to do with the distance on the map
• When a cluster has many documents, we can further analyze it into an 

other map on the next layer 



Hierarchical Document Organization (2/7)

• The model can be trained by maximizing the total log-
lik lih d f ll t b d i th d t ll tilikelihood of all terms observed in the document collection
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– EM training can be performed
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Hierarchical Document Organization (3/7)

• Criterion for Topic Word Selectingp g
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Hierarchical Document Organization (4/7)

• Example
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Hierarchical Document Organization (5/7)

• Example (cont.)p ( )
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Hierarchical Document Organization (6/7)g ( )

• Self-Organization Map (SOM) g p ( )
– A recursive regression process 
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Hierarchical Document Organization (7/7)

• Results
Model Iterations distBetween/distWithin

10 1.9165
20 2 0650

TMM
20 2.0650
30 1.9477
40 1.9175

SOM 100 2.0604
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