Learning to Rank using Language Models and SVMs

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

References:

- 1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, *Introduction to Information Retrieval*, Chapte 15 & associated slides, Cambridge University Press
- 2. Raymond J. Mooney's teaching materials
- 3. Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents," ACM Transactions on Asian Language Information Processing 3(2), June 2004.

Discriminatively-Trained Language Models (1/9)

• A simple document-based language model (LM) for information retrieval can be represented by

$$P(Q|D \text{ is } R) = \prod_{n=1}^{N} \left[m_1 P(q_n|D) + m_2 P(q_n|Corpus) \right]$$

- The use of general corpus LM $P(q_n | Corpus)$ is for probability smoothing and better retrieval performance
- Conventionally, the mixture weights $m_1, m_2 (m_1 + m_1 = 1)$ are empirically tuned or optimized by using the Expectation-Maximization (EM) algorithm

A mixture of N probability distributions

- D.R.H. Miller et al., "A hidden Markov model information retrieval system, SIGIR 1999.

- Berlin Chen et al., "An HMM/N-gram-based Linguistic Processing Approach for Mandarin Spoken Document Retrieval," Interspeech 2001

Discriminatively-Trained Language Models (2/9)

- For those documents with training queries, m_1 and m_2 can be estimated by using the Minimum Classification Error (MCE) training algorithm
 - The ordering of relevant documents *D*^{*} and irrelevant documents *D*' in the ranked list for a training query exemplar *Q* is adjusted to preserve the relationships *D*^{*} ≺ *D*[']; i.e., *D*^{*} should precede *D*' on the ranked list
 - A *learning-to-rank* algorithm
 - Documents thus can have different weights

⁻ Berlin Chen et al., "A discriminative HMM/N-gram-based retrieval approach for Mandarin spoken documents," *ACM Transactions on Asian Language Information Processing* 3(2), June 2004.

Discriminatively-Trained Language Models (3/9)

- Minimum Classification Error (MCE) Training
 - Given a query Q and a desired relevant doc D^* , define the classification error function as:

$$E(Q, D^*) = \frac{1}{|Q|} \left[-\log P(Q|D^* \text{ is } R) + \max_{D'} \log P(Q|D' \text{ is not } R) \right]$$

Also can take all irrelevant doc
in the answer set into consideration

">0": means misclassified; "<=0": means a correct decision

- Transform the error function to the loss function $L(Q, D^*) = \frac{1}{1 + \exp(-\alpha E(Q, D^*) + \beta)}$ • In the range between 0 and 1 - α : controls the slope - β : controls the offset

Discriminatively-Trained Language Models (4/9)

- Minimum Classification Error (MCE) Training
 - Apply the loss function to the MCE procedure for iteratively updating the weighting parameters
 - Constraints:

$$m_k \geq 0$$
, $\sum_k m_k = 1$

• Parameter Transformation, (e.g., Type I HMM) $m_1 = \frac{e^{\widetilde{m}_1}}{e^{\widetilde{m}_1} + e^{\widetilde{m}_2}}$ and $m_2 = \frac{e^{\widetilde{m}_2}}{e^{\widetilde{m}_1} + e^{\widetilde{m}_2}}$

$$\widetilde{m}(i+1) \quad \widetilde{m}(i)$$

- Iteratively update
$$m_1$$
 (e.g., Type I HMM) Gradient descent
 $\widetilde{m}_1(i+1) = \widetilde{m}_1(i) - \left[\varepsilon(i) \cdot \frac{\partial L(Q, D^*)}{\partial \widetilde{m}_1} \right] |_{D^* = D^*(i)}$
• Where,
 $\nabla_{D^*, \widetilde{m}_1} = \varepsilon(i) \cdot \frac{\partial L(Q, D^*)}{\partial \widetilde{m}_1} = \varepsilon(i) \cdot \frac{\partial L(Q, D^*)}{\partial \widetilde{m}_1} \cdot \frac{\partial E(Q, D^*)}{\partial \widetilde{m}_1} = \alpha \cdot L(Q, D^*) \cdot [1 - L(Q, D^*)]$
 $= \varepsilon(i) \cdot \frac{\partial L(Q, D^*)}{\partial E(Q, D^*)} \cdot \frac{\partial E(Q, D^*)}{\partial \widetilde{m}_1},$

Discriminatively-Trained Language Models (5/9)

Minimum Classification Error (MCE) Training

- Iteratively update m_1 (e.g., Type I HMM)

$$\begin{aligned} \frac{\partial E(Q, D^{*})}{\partial \tilde{m}_{1}} &= \frac{-1}{|Q|} \frac{\partial \left\{ \sum_{q_{n} \in Q} \log \left[\frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{1}} + e^{\tilde{m}_{2}}} P(q_{n}|D^{*}) + \frac{e^{\tilde{m}_{2}}}{e^{\tilde{m}_{1}} + e^{\tilde{m}_{2}}} P(q_{n}|Corpus) \right] \right\}}{\partial \tilde{m}_{1}} & \begin{bmatrix} \log f(x) \end{bmatrix} = \frac{1}{f(x)} f'(x) \\ f(x)g(x) \end{bmatrix} = f'(x)g(x) + f(x)g'(x) \\ \frac{f(x)}{g(x)} \end{bmatrix} = \frac{f'(x)g(x) - f(x)g'(x)}{g^{2}(x)} \\ &= \frac{-1}{|Q|} \sum_{q_{n} \in Q} \left\{ \frac{e^{\tilde{m}_{1}}}{(e^{\tilde{m}_{1}} + e^{\tilde{m}_{2}})^{2}} \left[e^{\tilde{m}_{1}} P(q_{n}|D^{*}) + e^{\tilde{m}_{2}} P(q_{n}|Corpus) \right] + \frac{e^{\tilde{m}_{2}}}{e^{\tilde{m}_{1}} + e^{\tilde{m}_{2}}} P(q_{n}|D^{*}) \\ &= \frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{1}} + e^{\tilde{m}_{2}}} - \frac{1}{|Q|} \sum_{q_{n} \in Q} \left\{ \frac{e^{\tilde{m}_{1}}}{e^{\tilde{m}_{1}} + e^{\tilde{m}_{2}}} P(q_{n}|D^{*}) + \frac{e^{\tilde{m}_{2}}}{e^{\tilde{m}_{1}} + e^{\tilde{m}_{2}}} P(q_{n}|Corpus) \right\} \\ &= -\left[- m_{1} + \frac{1}{|Q|} \sum_{q_{n} \in Q} \frac{m_{1}P(q_{n}|D^{*}) + m_{2}P(q_{n}|Corpus)}{m_{1}P(q_{n}|D^{*}) + m_{2}P(q_{n}|Corpus)} \right], \end{aligned}$$

Note :

Discriminatively-Trained Language Models (6/9)

• Minimum Classification Error (MCE) Training

- Iteratively update m_1

$$\nabla_{D^{*},\tilde{m}_{1}}(i) = -\varepsilon(i) \cdot \alpha \cdot L(Q, D^{*}) \cdot [1 - L(Q, D^{*})]$$

$$\cdot \left[-m_{1}(i) + \frac{1}{|Q|} \sum_{q_{n} \in Q} \frac{m_{1}(i)P(q_{n}|D^{*}) + m_{2}(i)P(q_{n}|Corpus)}{m_{1}(i)P(q_{n}|D^{*}) + m_{2}(i)P(q_{n}|Corpus)} \right],$$

$$the new weight$$

$$m_{1}(i+1) = \frac{e^{\tilde{m}_{1}(i+1)}}{e^{\tilde{m}_{1}(i+1)} + e^{\tilde{m}_{2}(i+1)}}$$

$$= \frac{e^{\tilde{m}_{1}(i)}e^{-\nabla_{D^{*},\tilde{m}_{1}}(i)}}{e^{\tilde{m}_{1}(i)}e^{-\nabla_{D^{*},\tilde{m}_{1}}(i)} + e^{\tilde{m}_{2}(i)}e^{-\nabla_{D^{*},\tilde{m}_{2}}(i)}}$$

$$\frac{\tilde{m}_{1}(i+1) = \tilde{m}_{1}(i) - \nabla_{D^{*},\tilde{m}_{1}}(i)}{e^{\tilde{m}_{1}(i)}e^{-\nabla_{D^{*},\tilde{m}_{1}}(i)} + e^{\tilde{m}_{2}(i)}e^{-\nabla_{D^{*},\tilde{m}_{2}}(i)}}$$

$$= \frac{e^{\tilde{m}_{1}(i)}e^{-\nabla_{D^{*},\tilde{m}_{1}}(i)} / (e^{\tilde{m}_{1}(i)} + e^{\tilde{m}_{2}(i)})] + [e^{\tilde{m}_{2}(i)}e^{-\nabla_{D^{*},\tilde{m}_{2}}(i)} / (e^{\tilde{m}_{1}(i)} + e^{\tilde{m}_{2}(i)})]$$

$$the old weight$$

$$= \frac{m_{1}(i) \cdot e^{-\nabla_{D^{*},\tilde{m}_{1}}(i)}}{m_{1}(i) \cdot e^{-\nabla_{D^{*},\tilde{m}_{1}}(i)} + m_{2}(i) \cdot e^{-\nabla_{D^{*},\tilde{m}_{2}}(i)}},$$

Discriminatively-Trained Language Models (7/9)

- Minimum Classification Error (MCE) Training
 - Final Equations
 - Iteratively update m_{1}

$$\nabla_{D^{*},\tilde{m}_{1}}(i) = -\varepsilon(i) \cdot \alpha \cdot L(Q, D^{*}) \cdot \left[1 - L(Q, D^{*})\right]$$
$$\cdot \left[-m_{1}(i) + \frac{1}{|Q|} \sum_{q_{n} \in Q} \frac{m_{1}(i)P(q_{n}|D^{*}) + m_{2}(i)P(q_{n}|Corpus)}{m_{1}(i)P(q_{n}|D^{*}) + m_{2}(i)P(q_{n}|Corpus)} \right]$$
$$m_{1}(i+1) = \frac{m_{1}(i) \cdot e^{-\nabla_{D^{*},\tilde{m}_{1}}(i)}}{m_{1}(i) \cdot e^{-\nabla_{D^{*},\tilde{m}_{1}}(i)} + m_{2}(i) \cdot e^{-\nabla_{D^{*},\tilde{m}_{2}}(i)}}$$

• m_2 can be updated in the similar way

Discriminatively-Trained Language Models (8/9)

• Experimental results with MCE training

	Average Precision		Word-level	Syllable-level	Fusion
			Uni	Uni+Bi*	
Defense		TQ/TD	0.6459	0.6858	0.7329
Before	TDT2		···► (0.6327)	(0.5718)	
		TQ/SD	0.5810	0.6300	0.6914
			(0.5658)	(0.5307)	

Iterations=100

 The results for the syllable-level indexing features were significantly improved

Discriminatively-Trained Language Models (9/9)

- Similar treatments have been recently applied to Document Topic Models (e.g., PLSA) and Word Topic Models (WTM) with good success
- For example, the ranking formula for PLSA can be represented by

$$P(q|D) = \alpha \cdot \left(\beta \cdot \left[\sum_{T_k} P(q|T_k) P(T_k|D)\right] + (1-\beta) \cdot P(q|Corpus)\right) + (1-\alpha) \cdot P(q|D)$$
$$= \sum_{T_k} \alpha \beta \cdot P(q|T_k) P(T_k|D) + \alpha (1-\beta) \cdot P(q|Corpus) + (1-\alpha) \cdot P(q|D)$$
$$= \sum_{T_k} \left(\left[\alpha \beta \cdot P(q|T_k) + \alpha (1-\beta) \cdot P(q|Corpus) + (1-\alpha) \cdot P(q|D)\right] P(T_k|D)\right)$$

- The weighting parameters α and β document topic distributions $P(T_k|D)$ can be trained by the MCE algorithm

Vector Representations

- Data points (e.g., documents) of different classes (e.g., relevant/non-relevant classes) are represented as vectors in a *n*-dimensional vector space
 - Each dimension has to do with a specific feature, whose value usually is normalized

- Support vector machines (SVM)
 - Look for a decision surface (or hyperplane) that is maximally far away from any data point
 - Margin: the distance from the decision surface to the closest data points on either side (or the support vectors)
 - SVM is a kind of large-margin classifier

Support Vectors

 SVM is fully specified by a small subset of the data (i.e., the support vectors) that defines the position of the separator (the decision hyperplane)

- Maximization of the margin
 - If there are no points near the decision surface, then there are no very uncertain classification decisions
 - Also, a slight error in measurement or a slight document variation will not cause a misclassification

Formulation of SVM with Algebra (1/2)

- Assume here that data points are linearly separable
- Euclidean distance of a point to the decision boundary

Assume data points are linear separable !

1. The shortest distance between a point \vec{x} to a hyperplane is perpendicular to the plane, i.e., parallel to \vec{w}

2. The point on the plane closest to \vec{x} is \vec{x}'

$$\vec{x}' = \vec{x} - yr \frac{w}{|\vec{w}|}$$

$$\Rightarrow \vec{w}^{T} \left(\vec{x} - yr \frac{\vec{w}}{|\vec{w}|} \right) + b = 0$$

$$\Rightarrow r = \frac{y \left(\vec{w}^{T} \vec{x} + b \right)}{|\vec{w}|} \text{ or } \frac{|\vec{w}^{T} \vec{x} + b|}{|\vec{w}|}$$

3. We can scale $y(\vec{w}^{T}\vec{x} + b)$, the so-called "functional margin", as we please; for example, to 1

Therefore, the margin defined by the support vectors is expressed by $\frac{2}{|\vec{w}|}$ (i.e., for support vectors $y(\vec{w}^{T}\vec{x}+b)=1$; while for the others $y(\vec{w}^{T}\vec{x}+b) \ge 1$) IR - Berlin Chen 13

Formulation of SVM with Algebra (2/2)

- SVM is designed to find \vec{w} and b that can maximize the geometric margin
 - $-\frac{2}{|\vec{w}|} \text{ (maximization of } \frac{2}{|\vec{w}|} \text{ is equivalent to minimization of } \frac{1}{2} \vec{w}^{\mathsf{T}} \vec{w} \text{)}$ $\text{ For all } \{\vec{x}_i, y_i\} \in \mathbf{D}, \ y_i \left(\vec{w}^{\mathsf{T}} \vec{x}_i + b\right) \ge 1$

Mathematical formulation (assume linear separability)

• Primal Problem

- Minimize
$$\mathbf{L}_{p}$$
 with respect to \vec{w} and \vec{b}
min $\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}$ subject to $y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) \geq +1, \forall i$
 $\mathbf{L}_{p} = \left[\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w}\right] - \sum_{i=1}^{N} \alpha_{i} \left[y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) - 1\right] \left[(\alpha_{i} \geq 0)\right]$

$$= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{i=1}^{N} \alpha_{i} y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) + \sum_{i=1}^{N} \alpha_{i}$$

$$\frac{\partial \mathbf{L}_{p}}{\partial \vec{b}} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathbf{L}_{p}}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

Formulation of SVM with Algebra (3/3)

Dual problem (plug 2 and 3 into 1)

– Maximize \mathbf{L}_{d} with respect to α_{i}

A convex quadratic-optimization problem $\mathbf{L}_{d} = \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \sum_{i=1}^{N} \alpha_{i} y_{i} (\vec{w}^{\mathrm{T}} \vec{x}_{i} + b) + \sum_{i=1}^{N} \alpha_{i}$ $= \frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} - \vec{w}^{\mathrm{T}} \left[\sum_{i=1}^{N} \alpha_{i} y_{i} \vec{x}_{i} \right] - b \left[\sum_{i=1}^{N} \alpha_{i} y_{i} \right] + \sum_{i=1}^{N} \alpha_{i}$ $= -\frac{1}{2} \vec{w}^{\mathrm{T}} \vec{w} + \sum_{i=1}^{N} \alpha_{i}$ $= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \left[\vec{x}_{i}^{\mathrm{T}} \vec{x}_{j} \right] + \sum_{i=1}^{N} \alpha_{i}$ Subject to the constraints that $\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$ and $\alpha_{i} \ge 0 \forall i$

• Most α_i are 0 and only a small number have $\alpha_i > 0$ (they are support vectors)

Have to do with the number of training instances, but not the input dimension

Dealing with Nonseparability (1/2)

 Datasets that are linearly separable (with some noise) work out great:

• But what are we going to do if the dataset is just too hard?

• How about mapping data to a higher-dimensional space?

Dealing with Nonseparability (2/2)

 General idea: The original feature space can always be mapped by a function φ(·) to some higher-dimensional feature space where the training set is separable

Kernel Trick (1/2)

• The SVM decision function for an input \vec{x} at a highdimensional (the transformed) space can be represented

$$f(\vec{x}) = \operatorname{sign} \left(\vec{w}^{\mathrm{T}} \varphi(\vec{x}) + b \right)$$
$$= \operatorname{sign} \left(\sum_{i=1}^{N} \alpha_{i} y_{i} \varphi(\vec{x}_{i})^{\mathrm{T}} \varphi(\vec{x}) + b \right)$$
$$= \operatorname{sign} \left(\sum_{i=1}^{N} \alpha_{i} y_{i} K(\vec{x}_{i}, \vec{x}) + b \right)$$

as

- A kernel function $K(\vec{x}_i, \vec{x})$ is introduced, defined by the inner (dot) product of points (vectors) in the high-dimensional space
 - $K(\vec{x}_i, \vec{x})$ can be computed simply and efficiently in terms of the original data points
 - We wouldn't have to actually map from $\vec{x} \to \varphi(\vec{x})$ (however, we still can directly compute $K(\vec{x}_i, \vec{x}) = \varphi(\vec{x}_i)^T \varphi(\vec{x})$)

Kernel Trick (2/2)

- Common Kernel Functions
 - Polynomials of degree *q*: $K(\vec{u}, \vec{v}) = (\vec{u}^T \vec{v} + 1)^q$
 - Polynomial of degree two (quadratic kernel)

 $K(\vec{u}, \vec{v}) = (\vec{u}^{\mathrm{T}} \vec{v} + 1)^{2}$ two-dimensional points $= (u_{1}v_{1} + u_{2}v_{2} + 1)^{2} \text{ (where } \vec{u}^{\mathrm{T}} = [u_{1}, u_{2}], \vec{u}^{\mathrm{T}} = [v_{1}, v_{2}])$ $= 1 + 2u_{1}v_{1} + 2u_{2}v_{2} + 2u_{1}u_{2}v_{1}v_{2} + u_{1}^{2}v_{1}^{2} + u_{2}^{2}v_{2}^{2}$ $\phi(\vec{u}) = [1, \sqrt{2}u_{1}, \sqrt{2}u_{2}, \sqrt{2}u_{1}u_{2}, u_{1}^{2}, u_{2}^{2}]^{\mathrm{T}}$

- Radial-basis function (Gaussian distribution): $K(\vec{u}, \vec{v}) = e^{-(\vec{u}-\vec{v})^2/(2\sigma^2)}$
- Sigmoidal function: $K(\vec{u}, \vec{v}) = \tanh(2\vec{u}^{\mathrm{T}}\vec{v}+1)$

The above kernels are not always very useful in text classification !

Soft-Margin Hyperplane (1/2)

- Even for very high-dimensional problems, data points could be linearly inseparable
- We can instead look for the hyperplane that incurs the least error
 - Define slack variables $\xi_i \ge 0$ that store the variation from the margin for each data points

Soft-Margin Hyperplane (2/2)

- Dual Problem

$$\hat{\mathbf{L}}_{d} = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}^{\mathrm{T}} \vec{x}_{j}$$

subject to
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \text{ and } 0 \le \alpha_{i} \le C \quad \forall i$$

- Neither slack variables ξ_i nor their Lagrange multipliers μ_i appear in the dual problem!
- Again, $\vec{\chi}$ with non-zero α_i will be support vectors
- Solution to the dual problem is:

$$\vec{w} = \sum_{i=1}^{N} \alpha_{i} y_{i} \vec{x}_{i}$$

$$b = y_{k} (1 - \xi_{k}) - \vec{w}^{\mathrm{T}} \vec{x}_{k} \text{ for } k = \arg \max_{k} \alpha_{k}$$

- Parameter C can be viewed as a way to control overfitting a regularization term
 - The larger the value ${\cal C}\,$, the more we should pay attention to each individual data point
 - The smaller the value C , the more we can model the bulk of the data

Using SVM for Ad-Hoc Retrieval (1/2)

 For example, documents are simply represented by twodimensional vectors \u03c8 (d_i,q) consisting of cosine score and term proximity

► Figure 15.7 A collection of training examples. Each R denotes a training example labeled *relevant*, while each N is a training example labeled *nonrelevant*.

Using SVM for Ad-Hoc Retrieval (2/2)

- Examples: Nallapati, Discriminative Models for Information Retrieval, *SIGIR 2004*
 - Basic Features used in SVM

	Feature		Feature
1	$\sum_{q_i \in Q \cap D} \log(c(q_i, D))$	4	$\sum_{q_i \in Q \cap D} \left(\log\left(\frac{ C }{c(q_i, C)}\right) \right)$
2	$\sum_{i=1}^{n} \log(1 + \frac{c(q_i, D)}{ D })$	5	$\sum_{i=1}^{n} \log(1 + \frac{c(q_i, D)}{ D } i df(q_i))$
3	$\sum_{q_i \in Q \cap D} \log(idf(q_i))$	6	$\sum_{i=1}^{n} \log(1 + \frac{c(q_i, D)}{ D } \frac{ C }{c(q_i, C)})$

- Compared with LM and ME (maximum entropy) models

$\textbf{Train} \downarrow \textbf{Test} \rightarrow$		Disks 1-2	Disk 3	Disks 4-5	WT2G	
		(151-200)	(101-150)	(401-450)	(426-450)	lested on 4
Disks 1-2	LM ($\mu^* = 1900$)	0.2561 (6.75e-3)	0.1842	0.2377 (0.80)	0.2665 (0.61)	TREC collections
(101-150)	SVM	0.2145	0.1877 (0.3)	0.2356	0.2598	
	ME	0.1513	0.1240	0.1803	0.1815	
Disk 3	LM ($\mu^* = 500$)	0.2605 (1.08e-4)	0.1785 (0.11)	0.2503 (0.21)	0.2666	
(51-100)	SVM	0.2064	0.1728	0.2432	0.2750 (0.55)	
	ME	0.1599	0.1221	0.1719	0.1706	
Disks 4-5	LM ($\mu^* = 450$)	0.2592 (1.75e-4)	0.1773 (7.9e-3)	0.2516 (0.036)	0.2656	
(301-350)	SVM	0.2078	0.1646	0.2355	0.2675 (0.89)	
	ME	0.1413	0.0978	0.1403	0.1355	
WT2G	LM ($\mu^* = 2400$)	0.2524 (4.6e-3)	0.1838 (0.08)	0.2335	0.2639	
(401-425)	SVM	0.2199	0.1744	0.2487 (0.046)	0.2798 (0.037)	
	ME	0.1353	0.0969	0.1441	0.1432	
Best TREC runs		0.4226	N/A	0.3207	N/A	
(Site)		(UMass)		(Queen's College)		IR – Berlin Chen 23

Ranking SVM (1/2)

- Construct an SVM that not only considers the relevance of documents to the a training query but also the order of each document pair on the ideal ranked list
 - First, construct a vector of features $\psi(d_i, q)$ for each documentquery pair
 - Second, capture the relationship between each document pair by introducing a new vector representation $\phi(d_i, d_j, q)$ for each document pair

$$\phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$$

- Third, if d_i is more relevant than d_j given q (denoted $d_i \prec d_j$, i.e., d_i should precede d_j on the ranked list), then associate they with the label $y_{ijq} = +1$; otherwise, $y_{ijq} = -1$
- Cf. T. Joachims and F. Radlinski, Search Engines that Learn from Implicit Feedback, IEEE Trans. on Computer 40(8), pp. 34-40, 2007

Ranking SVM (2/2)

- Therefore, the above ranking task is formulated as:
 - Find \vec{x} , b, and $\xi_{ijq} \ge 0$ such that
 - $\frac{1}{2}\vec{w}^{\mathrm{T}}\vec{w} + C\sum_{i,j,q}\xi_{i,j,q}$ is minimized
 - For all $\{\phi(d_i, d_j, q): d_i \prec d_j\}, \ \vec{w}^T \phi(d_i, d_j, q) + b \ge 1 \xi_{i, j, q}$

(Note that y_{ijq} are left out here. Why?)