Relevance Feedback and Query Expansion

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

References:

1. Modern Information Retrieval, Chapter 5 & Teaching material

2. Introduction to Information Retrieval, Chapter 9

Introduction

- Users have no detailed knowledge of
 - The collection makeup
 Difficult to
 - The retrieval environment

Difficult to formulate queries

- Yet, most users often need to reformulate their queries to obtain the results of their interest
 - Thus, the first query formulation should be treated as an initial attempt to retrieve relevant information
 - Documents initially retrieved could be analyzed for relevance and used to improve the initial query

Introduction (cont.)

- The process of query modification is commonly referred as
 - Relevance feedback, when the user provides information on relevant documents to a query, or
 - Query expansion, when information related to the query is used to expand it
- We refer to both of them as *feedback* methods

Note also that, in most collections, the same concept may be referred to using different words

- This issue, known as synonymy, has an impact on the recall of most IR systems

Introduction (cont.)

- Two basic approaches of feedback methods:
 - Explicit feedback, in which the information for query reformulation is provided directly by the users, and
 - Implicit feedback, in which the information for query reformulation is implicitly derived by the system

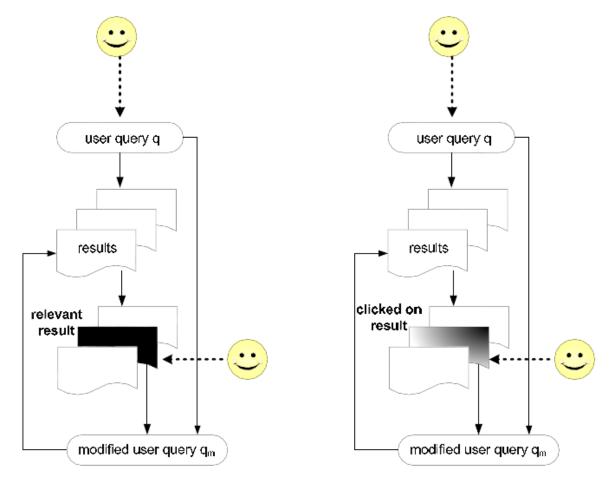
- Consider a set of documents Dr that are known to be relevant to the current query q
- In relevance feedback, the documents in *Dr* are used to transform *q* into a modified query *qm*
- However, obtaining information on documents relevant to a query requires the direct interference of the user
 - Most users are unwilling to provide this information, particularly in the Web

- Because of this high cost, the idea of relevance feedback has been relaxed over the years
- Instead of asking the users for the relevant documents, we could:
 - Look at documents they have clicked on; or
 - Look at terms belonging to the top documents in the result set
- In both cases, it is expected that the feedback cycle will produce results of higher quality

- A feedback cycle is composed of two basic steps:
 - Determine feedback information that is either related or expected to be related to the original query q and
 - Determine how to transform query q to take this information effectively into account
- The first step can be accomplished in two distinct ways:
 - Obtain the feedback information explicitly from the users
 - Obtain the feedback information implicitly from the query results or from external sources such as a thesaurus

- In an explicit relevance feedback cycle, the feedback information is provided directly by the users
- However, collecting feedback information is expensive and time consuming
- In the Web, **user clicks** on search results constitute a new source of feedback information
- A click indicate a document that is of interest to the user in the context of the current query
 - Notice that a click does not necessarily indicate a document that is relevant to the query

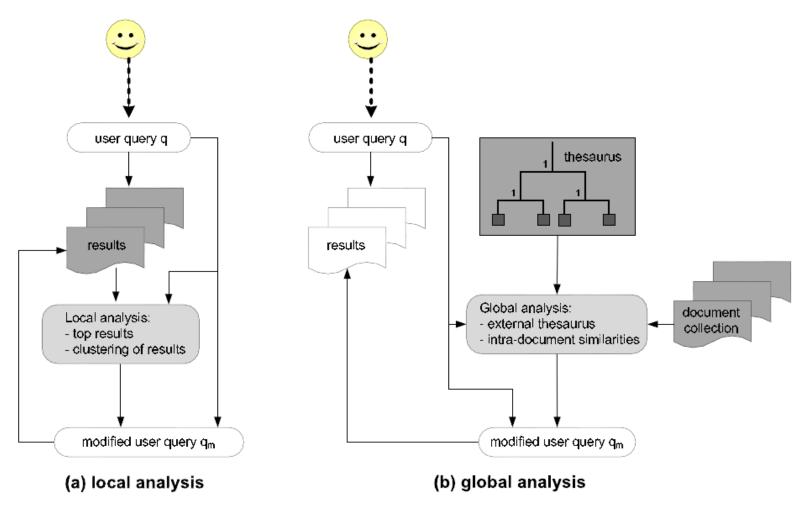
Explicit Feedback Information



(b) click feedback

- In an implicit relevance feedback cycle, the feedback information is derived implicitly by the system
- There are two basic approaches for compiling implicit feedback information:
 - Local analysis, which derives the feedback information from the top ranked documents in the result set
 - Global analysis, which derives the feedback information from external sources such as a thesaurus

• Implicit Feedback Information



- Implicit Feedback Information
 - Obviously, the feedback information is not necessarily related to the current query, which makes its utilization more challenging than information provided explicitly by the users
 - Despite that, since implicit information is abundant and can be gathered at very low cost, there has been a persistent interest in using implicit information to improve query results.

Summary of Feedback Methods

- Feedback information from the user
 - Relevance feedback
 - With vector, probabilistic models et al.
- Information derived from the set of documents initially retrieved (called local set of documents)
 - Local analysis
 - Local clustering, local context analysis
- Global information derived from document collection
 - Global analysis
 - Similar thesaurus or statistical thesaurus

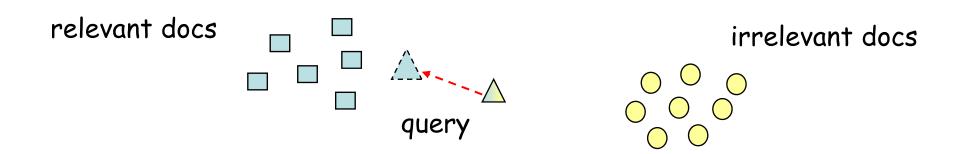
Explicit Relevance Feedback

Explicit Relevance Feedback

- In a classic relevance feedback cycle, the user is presented with a list of the retrieved documents
- Then, the user examines them and marks those that are relevant
- In practice, only the top 10 (or 20) ranked documents need to be examined
- The main idea consists of
 - Selecting important terms from the documents that have been identified as relevant, and
 - Enhancing the importance of these terms in a new query formulation

Explicit Relevance Feedback (cont.)

- Expected effect: the new query will be moved towards the relevant docs and away from the nonrelevant ones
- Early experiments have shown good improvements in precision for small test collections



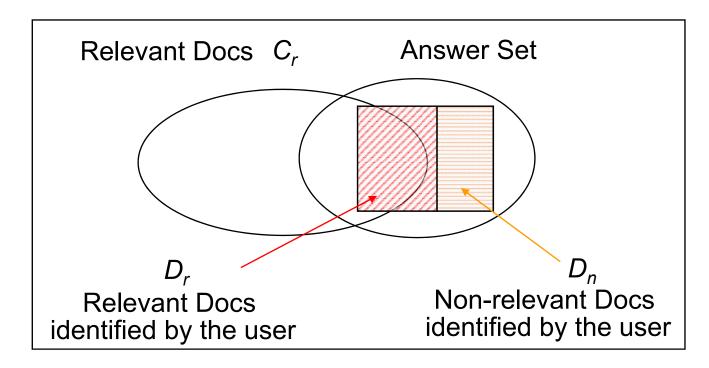
Explicit Relevance Feedback (cont.)

- Relevance feedback presents the following characteristics:
 - It shields the user from the details of the query reformulation process (all the user has to provide is a relevance judgment)
 - It breaks down the whole searching task into a sequence of small steps which are easier to grasp
 - Provide a controlled process designed to emphasize some terms (relevant ones) and de-emphasize others (non-relevant ones)

Vector Model: The Rocchio Method

- Premises
 - Documents identified as relevant (to a given query) have similarities among themselves
 - Further, non-relevant docs have term-weight vectors which are dissimilar from the relevant documents
 - The basic idea of the Rocchio Method is to reformulate the query such that it gets:
 - Closer to the neighborhood of the relevant documents in the vector space, and
 - Away from the neighborhood of the non-relevant documents

• Terminology



Doc Collection with size N

Optimal Condition

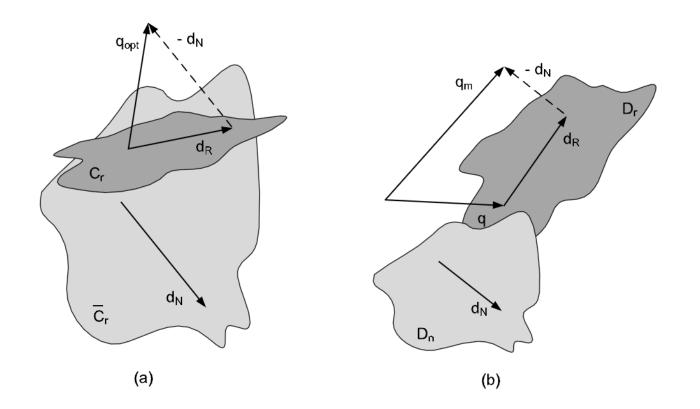
- The complete set of relevant docs C_r to a given query q is known in advance

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\forall \vec{d}_i \in C_r} \vec{d}_i - \frac{1}{N - |C_r|} \sum_{\forall \vec{d}_j \notin C_r} \vec{d}_j$$

Elements in the final vector representation should be kept nonnegative (to be in the positive quadrant of the vector space)

 Problem: the complete set of relevant docs C_r are not known a priori

• **Solution**: we can formulate an initial query and to incrementally change the initial query vector



- In Practice: There are three classic and similar ways to calculate the modified query Rocchio 1965
 - 1. Standard_Rocchio

$$\vec{q}_{m} = \alpha \cdot \vec{q} + \frac{\beta}{\mid D_{r} \mid} \cdot \sum_{\forall \vec{d}_{i} \in Dr} \vec{d}_{i} - \frac{\gamma}{\mid D_{n} \mid} \cdot \sum_{\forall \vec{d}_{j} \in Dn} \vec{d}_{j}$$

 $\vec{q}_{m} = \alpha \cdot \vec{q} + \beta \cdot \sum_{\forall \vec{d}_{i} \in Dr} \vec{d}_{i} - \gamma \cdot \sum_{\forall \vec{d}_{i} \in Dn} \vec{d}_{j}$

modified que 2. Ide_Regular

initial/original query

Elements in the final vector representation should be kept nonnegative (to be in the positive quadrant of the vector space)

3. Ide_Dec_Hi

$$\vec{q}_m = \alpha \cdot \vec{q} + \beta \cdot \sum_{\forall \vec{d}_i \in Dr} \vec{d}_i - \gamma \cdot \max_{non - relevant} \left(\vec{d}_j \right)$$

Positive more valuable than negative feedback.

IR – Berlin Chen 22

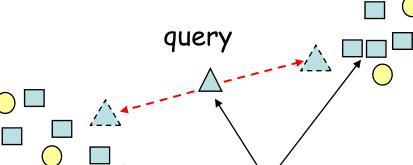
Some Observations

- Similar results were achieved for the above three approach (Dec-Hi slightly better in the past)
- Usually, constant β is bigger than γ (why?)
- In Practice (cont.)
 - More about the constants
 - Rocchio, 1971: a=1
 - Ide, 1971: α=β= γ=1
 - Positive feedback strategy: γ=0

In implementation, terms occurring in the relevant or non-relevant documents can be used in toto or selectively to reweight/argument or be moved from the initial query.

More on Explicit Relevance Feedback

- Advantages
 - Simple, good results
 - Modified term weights are computed directly from the retrieved docs
- Disadvantages
 - No optimality criterion
 - Empirical and heuristic



(what if relevant documents belong to multiple clusters?)

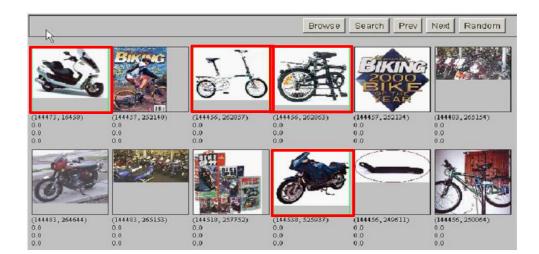
- High computing cost (potentially long response time)
 - Only reweight certain prominent terms in relevant docs?
- There are still cases where relevance feedback alone is not sufficient: e.g., misspellings, cross-language IR, mismatch of searcher's versus collection vocabularies

More on Explicit Relevance Feedback (cont.)

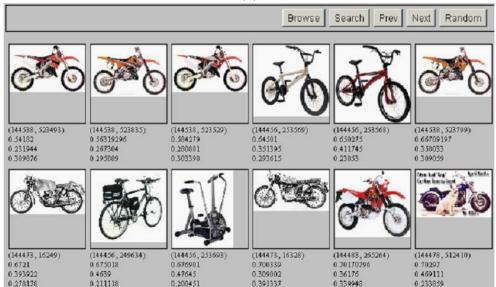
- Have a side effect:
 - Tack a user's evolving information need
 - Seeing some documents may lead users to refine their understanding of the information they are seeking
- However, most Web search users would like to complete their search in a single interaction
 - Relevance feedback is mainly a recall enhancing strategy and Web search users are only rarely concerned with getting sufficient recall
 - An important more recent thread of work is the use of clickthrough data (through query log mining or clickstream mining) to provide indirect/implicit relevance feedback (to be discussed later on!)

Explicit Relevance Feedback for Image Search

The retrieved results with the initial text query"bike"



The new top-ranked results calculated after a round of relevance feedback



Relevance Feedback for Probabilistic Model

Roberston & Sparck Jones 1976

• Similarity Measure

•

$$sim(d_{j},q) \approx \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \left[\log \frac{P(k_{i} \mid R)}{1 - P(k_{i} \mid R)} + \log \frac{1 - P(k_{i} \mid \overline{R})}{P(k_{i} \mid \overline{R})} \right]$$
prob. of observing term k_{j} in the set of relevant docs

Initial Search (with some assumptions)
$$- P(k_{i} \mid R) = 0.5 \text{ :is constant for all indexing terms}$$

$$- P(k_{i} \mid \overline{R}) = \frac{n_{i}}{N} \text{ :approx. by doc freq. of index terms}$$

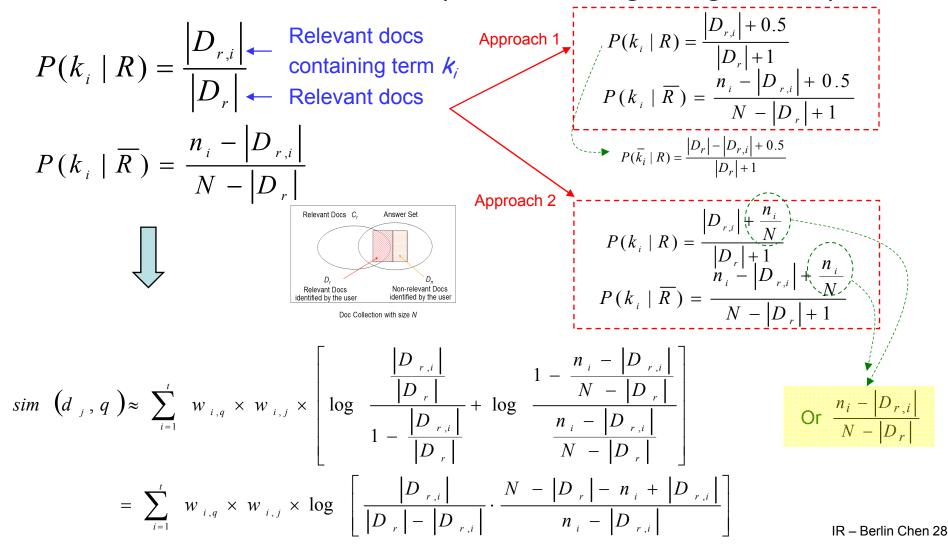
$$\longrightarrow sim(d_{j}, q) \approx \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \left[\log \frac{0.5}{1 - 0.5} + \log \frac{1 - \frac{n_{i}}{N}}{\frac{n_{i}}{N}} \right]$$

$$= \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \log \frac{N - n_{i}}{n_{i}}$$

$$\text{IR-Berlin Chen 27}$$

Relevance Feedback for Probabilistic Model (cont.)

• Relevance feedback (term reweighting alone)



Relevance Feedback for Probabilistic Model (cont.)

- Advantages
 - Feedback process is directly related to the derivation of new weights for query terms
 - The term reweighting is optimal under the assumptions of term independence and binary doc indexing
- Disadvantages
 - Document term weights are not taken into account
 - Weights of terms in previous query formulations are disregarded
 - No query expansion is used
 - The same set of index terms in the original query is reweighted over and over again

A Variant of Probabilistic Term Reweighting

• Differences

- Distinct initial search assumptions
- Within-document frequency weight included
- **Initial search** (assumptions)

$$sim(d_{j},q) \propto \sum_{i=1}^{t} w_{i,q} w_{i,j} F_{i,j,q}$$
$$F_{i,j,q} = (C + idf_{i}) \overline{f}_{i,j} \qquad \overline{f}_{i,j} = K + (1+K) \frac{f_{i,j}}{\max(f_{i,j})}$$

~ Inversed document frequency

Term frequency
 (normalized with the maximum within-document frequency)

• *C* and *K* are adjusted with respect to the doc collection

http://ciir.cs.umass.edu/

Croft 1983

A Variant of Probabilistic Term Reweighting (cont.)

• Relevance feedback

$$F_{i,j,q} = (C + \log \frac{P(k_i \mid R)}{1 - P(k_i \mid R)} + \log \frac{1 - P(k_i \mid \overline{R})}{P(k_i \mid \overline{R})})\overline{f}_{i,j}$$

$$P(k_{i} | R) = \frac{\left| D_{r,i} \right| + 0.5}{\left| D_{r} \right| + 1}$$
$$P(k_{i} | \overline{R}) = \frac{n_{i} - \left| D_{r,i} \right| + 0.5}{N - \left| D_{r} \right| + 1}$$

A Variant of Probabilistic Term Reweighting (cont.)

- Advantages
 - The within-doc frequencies are considered
 - A normalized version of these frequencies is adopted
 - Constants C and K are introduced for greater flexibility
- Disadvantages
 - More complex formulation
 - No query expansion (just reweighting of index terms)

Evaluation of Relevance Feedback Strategies

- Recall-precision figures of user reference
 feedback is unrealistic
 - Since the user has seen the docs during reference feedback
 - A significant part of the improvement results from the higher ranks assigned to the set *R* of seen relevant docs

d

Relevant Docs

identified by the user

$$\vec{q}_{m} = \alpha \cdot \vec{q} + \frac{\beta}{|D_{r}|} \cdot \sum_{\forall \vec{d}_{i} \in Dr} \vec{d}_{i} - \frac{\gamma}{|D_{n}|} \cdot \sum_{\forall \vec{d}_{j} \in Dn} \vec{d}_{i}$$

modified query

original query

Doc Collection with size N

 The real gains in retrieval performance should be measured based on the docs not seen by the user yet

Non-relevant Docs

identified by the user

Evaluation of Relevance Feedback Strategies (cont.)

- 1. Recall-precision figures relative to the residual collection
 - The residual collection is the set of all docs minus the set of feedback docs provided by the user
 - Evaluate the retrieval performance of the modified query \vec{q}_m considering only the residual collection
 - The recall-precision figures for $\vec{q_m}$ tend to be lower than the figures for the original query \vec{q}
 - It's OK ! If we just want to compare the performance of different relevance feedback strategies

Evaluation of Relevance Feedback Strategies (cont.)

- 2. Or alternatively, perform a comparative evaluation of \vec{q} and \vec{q}_m on another collection
- 3. Or, the best evaluation of the utility of relevance feedback is to do user studies of its effectiveness in terms of how many documents a user find in a certain amount of time

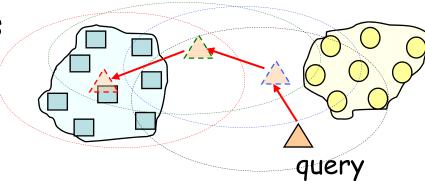
Automatic Local/Global Analysis

- Remember that in user relevance feedback cycles
 - Top ranked docs separated into two classes
 - Relevant docs
 - Non-relevant docs
 - Terms in known relevant docs help describe a larger cluster of relevant docs
 - From a "clustering" perspective

Attar and Fraenkel 1977

 Description of larger cluster of relevant docs is built iteratively with assistance from the user

relevant docs



irrelevant docs

Automatic Local/Global Analysis (cont.)

- Alternative approach: automatically obtain the description for a large cluster of relevant docs
 - Identify terms which are related to the query terms
 - Synonyms
 - Stemming variations
 - Terms are close each other in context

陳水扁 總統 李登輝 總統府 秘書長 陳師孟 一邊一國…

連戰 宋楚瑜 國民黨 一個中國 …

Automatic Local/Global Analysis (cont.)

- Two strategies
 - Global analysis
 - All docs in collection are used to determine a global thesaurus-like structure for QE
 - Local analysis
 - Similar to relevance feedback but without user interference
 - Docs retrieved at query time are used to determine terms for QE
 - Local clustering, local context analysis

QE through Local Clustering

- QE through **Clustering**
 - Build global structures such as association matrices to quantify term correlations
 - Use the correlated terms for QE
 - But not always effective in general collections 陳水扁 總統 呂秀蓮 綠色矽島 勇哥 吳淑珍 … 陳水扁 視察 阿里山 小火車
- QE through Local Clustering
 - Operate solely on the docs retrieved for the query
 - Not suitable for Web search: time consuming
 - Suitable for intranets
 - Especially, as the assistance for search information in specialized doc collections like medical (patent) doc collections

QE through Local Clustering (cont.)

- Definition (Terminology)
 - Stem
 - V(s): a non-empty subset of words which are grammatical variants of each other
 - -E.g. {polish, polishing, polished}
 - A canonical form *s* of *V*(*s*) is called a **stem**
 - -e.g., s= polish
 - For a given query
 - Local doc set D_1 : the set of documents retrieved
 - local vocabulary V_l : the set of all distinct words (stems) in the local document set
 - S_{l} the set of all distinct stem derived from V_l

Association clusters

 Consider the co-occurrence of stems (terms) inside docs

• Metric Clusters

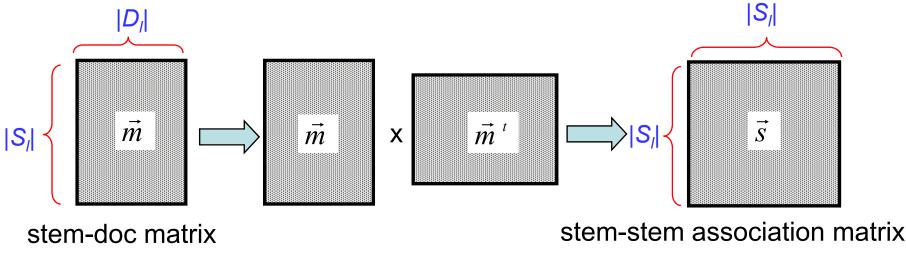
– Consider the distance between two terms in a doc

Scalar Clusters

- Consider the neighborhoods of two terms
 - Do they have similar neighborhoods?

Association clusters

- Based on the co-occurrence of stems (terms) inside docs
 - Assumption: stems co-occurring frequently inside docs have a synonymity association
- An association matrix with $|S_i|$ rows and $|D_i|$ columns
 - Each entry $f_{s_i,j}$ the frequency of a stem s_i in a doc d_j



Association clusters

 Each entry in the stem-stem association matrix stands for the correlation factor between two stems

$$c_{u,v} = \sum_{d_j \in D_l} f_{s_{u,j}} \times f_{s_{v,j}}$$

- The unnormalized form

$$s_{u,v} = c_{u,v}$$

- Prefer terms with high frequency
- The normalized form (ranged from 0 to 1)

$$S_{u,v} = \frac{C_{u,v}}{C_{u,u} + C_{v,v} - C_{u,v}}$$

Tanimoto coefficient

• Prefer terms with low frequency

IR – Berlin Chen 43

Association clusters

- The *u*-th row in the association matrix stands all the associations for the stem s_u
- A local association cluster $S_u(m)$
 - Defined as a set of stems s_v (v≠u) with their respective values s_{u,v} being the top m ones in the u-th row of the association matrix
- Given a query, only the association clusters of query terms are calculated
 - The stems (terms) belong to the association clusters are selected and added the query formulation

Association clusters

- Other measures for term association
 - Dice coefficient

$$s_{u,v} = \frac{2 \times c_{u,v}}{c_{u,u} + c_{v,v}}$$

• Mutual information

$$s_{u,v} = MI(k_u, k_v) = \log \frac{P(k_u, k_v)}{P(k_u)P(k_v)} = \log \frac{\frac{n_{u,v}}{N}}{\frac{n_u}{N} \times \frac{n_v}{N}}$$

11

• Metric Clusters

- Key idea
 - Association clusters are simply based on the frequency of co-occurrence of pairs of terms in documents and do not take into account *where* the terms occur in a document
 - Two terms occurring in the same sentence seem more correlated than two terms occurring far apart in a document
 - It would be worthwhile to factor in the distance between two terms in the computation of their correlation factor

• Metric Clusters

 Take into consideration the distance between two terms in a doc while computing their correlation factor

$$c_{u,v} = \sum_{d_{j} \in D_{l}} \sum_{n \in M} \sum_{m} \frac{1}{r(k_{u}(n, j), k_{v}(n, j))}$$

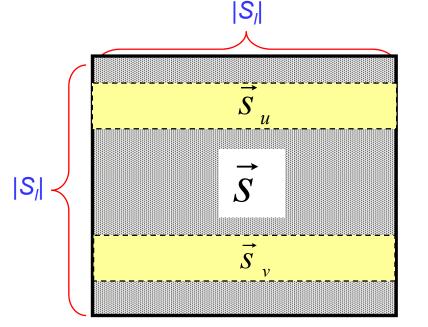
The *n*-th occurrence of term k_v in doc *j r*(.) is a function computing the distance (in terms of the number of words) between k_u and k_v

- The entry of local stem-stem metric correlation matrix \vec{s} can be expressed as
 - The unnormalized form $s_{u,v} = c_{u,v}$ • The normalized form $c_{u,v}$ The local association clusters of stems can be similarly defined

 $s_{u,v} = \frac{1}{\text{total number of } [k_u, k_v] \text{ pairs considered}}$

Scalar Clusters

- **Idea**: two stems (terms) with similar neighborhoods have some synonymity relationship
- Derive the synonymity relationship between two stems by comparing the sets $S_u(m)$ and $S_v(m)$



 $\implies s_{u,v} = \frac{\vec{s}_u \cdot \vec{s}_v}{|\vec{s}_u| \times |\vec{s}_u|}$

Use Cosine measure to derive a new scalar association matrix

The stem-stem association matrix achieved before

QE with Neighbor Terms

- Terms that belong to clusters associated to the query terms can be used to expand the original query
- Such terms are called neighbors of the query terms and are characterized as follows
- A term kv that belongs to a cluster Cu(n), associated with another term ku, is said to be a neighbor of ku
- Often, neighbor terms represent distinct keywords that are correlated by the current query context

QE with Neighbor Terms (cont.)

- Consider the problem of expanding a given user query q with neighbor terms
- One possibility is to expand the query as follows
- For each term ku ∈ q, select m neighbor terms from the cluster Cu(n) and add them to the query
- This can be expressed as follows:

$$q_{m} = q \bigcup \{k_{v} | k_{v} \in C_{u}(n), k_{u} \in q\}$$

 Hopefully, the additional neighbor terms kv will retrieve new relevant documents

QE with Neighbor Terms (cont.)

- The set *Cu*(*n*) might be composed of terms obtained using correlation factors normalized and un-normalized
- Query expansion is important because it tends to improve recall
- However, the larger number of documents to rank also tends to lower precision
- Thus, query expansion needs to be exercised with great care and fine tuned for the collection at hand

Local Context Analysis

Calculation of term

Local Analysis

correlations at query time

- Based on the set of docs retrieved for the original query
- Based on term (stem) correlation inside docs
- Terms are neighbors of each query terms are used to expand the query
- Global Analysis

Local context

analysis

combines

features

from both

- Pre-calculation
- of term correlations
- Based on the whole doc collection
- The thesaurus for term relationships are built by considering small contexts (e.g. passages) and phrase structures instead of the context of the whole doc
- Terms closest to the whole query are selected for query expansion

Local Context Analysis (cont.)

Xu and Croft 1996

- Operations of local context analysis
 - Document concepts: Noun groups (named concept here) from retrieved docs as the units for QE instead of single keywords
 - Concepts selected from the top ranked passages (instead of docs) based on their co-occurrence with the whole set of query terms (no stemming)

QE through Local Context Analysis

- The operations can be further described in three steps
 - Retrieve the top *n* ranked passages using the original query (a doc is segmented into several passages)
 - For each concept c in the top ranked passages, the similarity sim(q,c) between the whole query q and the concept c is computed using a variant of *tf-idf* ranking
 - The top *m* ranked concepts are added to the original query *q* and appropriately weighted, e.g.
 - Each concept is assigned a weight 1-0.9x *i/m* (*i*: the position in rank)
 - Original query terms are stressed by a weight of 2

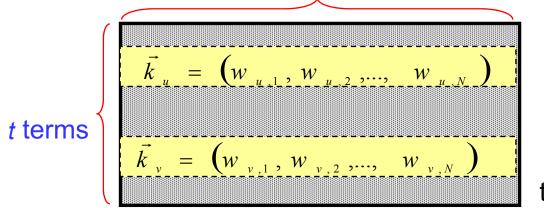
QE through Local Context Analysis (cont.)

• The similarity between a concept and a query

$$sim(q,c) = \prod_{k_i \in q} \left(\delta + \frac{\log(f(c,k_i) \times idf_c)}{\log n} \right)^{idf_i} emphasize the infrequent terms Set to 0.1 to avoid zero the no. of top ranked f(c, k_i) = \sum_{j=1}^{n} pf_{i,j} \times pf_{c,j}$$
 passages considered $idf_c = \max\left(1, \frac{\log_{10} N/np_c}{5}\right)$ the no. of passages Frequency of the concept c in passage j $idf_i = \max\left(1, \frac{\log_{10} N/np_i}{5}\right)$ the no. of passages containing concept c

QE based on a Similarity Thesaurus

- Belongs to Global Analysis
- How to construct the similarity thesaurus -
 - Term to term relationships rather than term co-occurrences are considered
- How to select term for query expansion
 - Terms for query expansion are selected based on their similarity to the whole query rather the similarities to individual terms *N*. doc



Docs are interpreted as indexing elements here

- Doc frequency within the term vector
- •Inverse term frequency

term-doc matrix

Qiu and Frei 1993

- Definition
 - $f_{u,j}$: the frequency of term k_u in document d_j
 - $-t_j$: the number of distinct index terms in document d_j
 - Inverse term frequency (*ITF*)

ITF _j = log $\left(\frac{t}{t_j}\right)$ (doc containing more distinct terms is less important)

The weight associated with each entry in the term-doc matrix

$$W_{u,j} = \underbrace{\left(0.5 + 0.5 \frac{f_{u,j}}{\max_{g} f_{u,g}} \right) \times ITF_{j}}_{\text{Max } g f_{u,g}} \times ITF_{j}} \text{Let term vector}$$
The importance of
he doc d_{j} to a term k_{u}

$$\sqrt{\sum_{l=1}^{N} \left[\left(0.5 + 0.5 \frac{f_{u,l}}{\max_{g} f_{u,g}} \right) \times ITF_{l} \right]^{2}}_{\text{IR-Berlin Chen 57}}$$

• The relationship between two terms k_u and k_v

$$c_{u,v} = \vec{k}_u \cdot \vec{k}_v = \sum_{\forall d_j} w_{u,j} \times w_{v,j}$$
 is just a cosine measure?
ranged from 0 to 1

- The vector representations are normalized
- The computation is computationally expensive
 - There may be several hundred thousands of docs

- Steps for QE based on a similarity thesaurus
 - 1. Represent the query in the term-concept space

$$\vec{q} = \sum_{k_u \in q} w_{u,q} \times \vec{k}_u$$

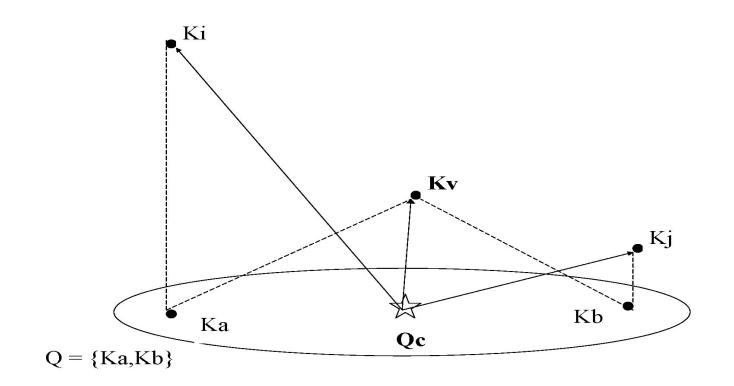
2.Based on the global thesaurus, compute a similarity between the each term k_v and the whole query q

$$sim(q,k_v) = \left(\sum_{k_u \in q} w_{u,q} \times \vec{k}_u\right) \cdot \vec{k}_v = \sum_{k_u \in q} w_{u,q} \times c_{u,v}$$

- 3. Expand the query with the top r ranked terms according to $sim(q,k_v)$
 - The weight assigned to the expansion term

$$w_{v,q'} = \frac{sim(q,k_v)}{\sum_{k_u \in q} w_{u,q}} = \frac{\sum_{k_u \in q} w_{u,q} \times C_{u,v}}{\sum_{k_u \in q} w_{u,q}}$$
ranged from 0 to 1?

 The term k_v selected for query expansion might be quite close to the whole query while its distances to individual query terms are larger



- The similarity between query and doc measured in the term-concept space
 - Doc is first represented in the term-concept space

$$\vec{d}_{j} = \sum_{k_{v} \in d_{j}} w_{v,j} \times \vec{k}_{v}$$

Similarity measure

$$sim\left(q,d_{j}\right) \propto \sum_{k_{v} \in d_{j}} \sum_{k_{u} \in q} w_{v,j} \times w_{u,q} \times c_{u,v}$$

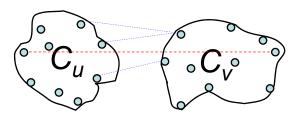
- Analogous to the formula for query-doc similarity in the generalized vector space model
 - Differences
 - » Weight computation
 - » Only the top r ranked terms are used here

QE based on a Statistical Thesaurus

- Belongs to Global Analysis
- Global thesaurus is composed of classes which group correlated terms in the context of the whole collection
- Such correlated terms can then be used to expand the original user query
 - The terms selected must be **low frequency terms**
 - With high discrimination values

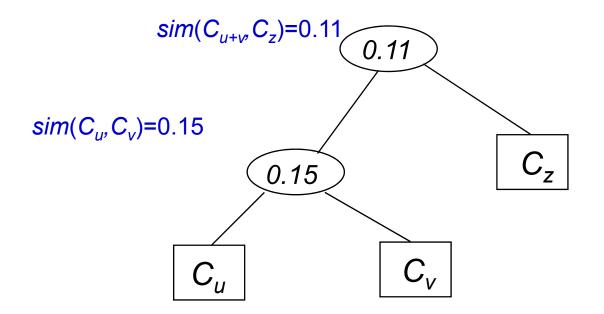
- However, it is difficult to cluster low frequency terms
 - To circumvent this problem, we cluster docs into classes instead and use the low frequency terms in these docs to define our thesaurus classes
 - This algorithm must produce small and tight clusters
 - Depend on the cluster algorithm

- Complete Link Algorithm
 - Place each doc in a distinct cluster
 - Compute the similarity between all pairs of clusters
 - Determine the pair of clusters $[C_u, C_v]$ with the highest inter-cluster similarity (using the cosine formula)
 - Merge the clusters C_u and C_v
 - Verify a stop criterion. If this criterion is not met then go back to step 2
 - Return a hierarchy of clusters
- Similarity between two clusters is defined as
 - The minimum of similarities between all pairs of inter-cluster docs



Cosine formula of the vector model is used

• Example: hierarchy of three clusters

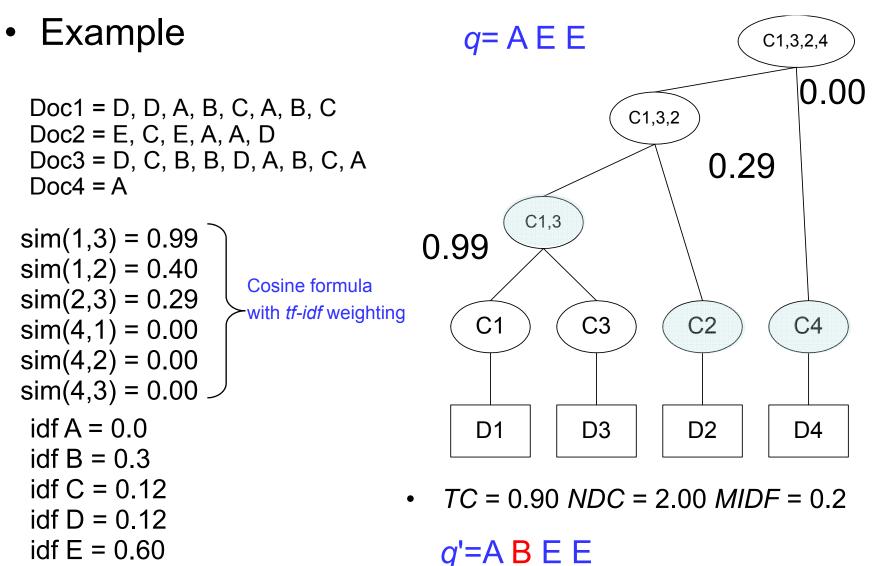


- Higher level clusters represent a looser grouping
 - Similarities decrease as moving up in the hierarchy

- Given the doc cluster hierarchy for the whole collection, the terms that compose each class of the global thesaurus are selected as follows
 - Three parameters obtained from the user
 - *TC*: Threshold class
 - *NDC*: Number of docs in class
 - *MIDF*: Minimum inverse doc frequency

- Use the parameter *TC* as threshold value for determining the doc clusters that will be used to generate thesaurus classes
 - It has to be surpassed by sim(C_u, C_v) if the docs in the clusters C_u and C_v are to be selected as sources of terms for a thesaurus class
- Use the parameter NDC as a limit on the size of clusters (number of docs) to be considered
 - A low value of *NDC* might restrict the selection to the smaller clusters

- Consider the set of docs in each doc cluster preselected above
 - Only the lower frequency terms are used as sources of terms for the thesaurus classes
 - The parameter *MIDF* defines the minimum value of inverse doc frequency for any term which is selected to participate in a thesaurus class
- Given the thesaurus classes have been built, they can be to query expansion



- Problems
 - Initialization of parameters TC, NDC and MIDF
 - *TC* depends on the collection
 - Inspection of the cluster hierarchy is almost always necessary for assisting with the setting of *TC*
 - A high value of *TC* might yield classes with too few terms
 - While a low value of *TC* yields too few classes

Explicit Feedback Through Clicks

- Web search engine users not only inspect the answers to their queries, they also click on them
- The clicks reflect preferences for particular answers in the context of a given query
 - They can be collected in large numbers without interfering with the user actions
 - The immediate question is whether they also reflect relevance judgments on the answers
 - Under certain restrictions, the answer is affirmative as we now discuss

Eye Tracking

- Clickthrough data provides limited information on the user behavior
- One approach to complement information on the user behavior is to use eye tracking devices
 - Such commercially available devices can be used to determine the area of the screen the user is focused in
 - The approach allows correctly detecting the area of the screen of interest to the user in 60-90% of the cases
 - Further, the cases for which the method does not work can be determined

Eye Tracking (cont.)

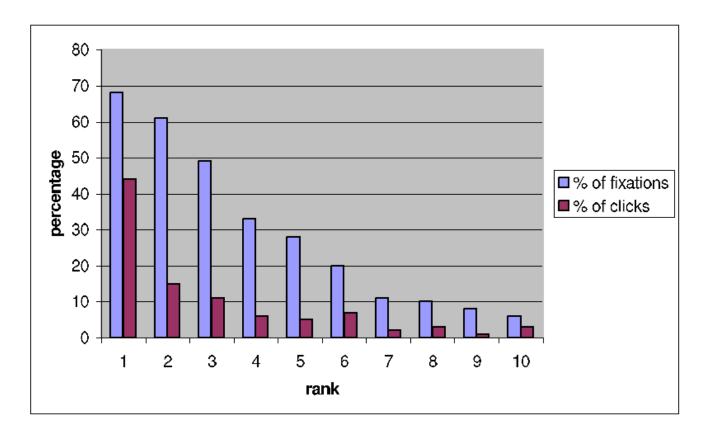
- Eye movements can be classified in four types: fixations, saccades, pupil dilation, and scan paths
 - Fixations are a gaze at a particular area of the screen lasting for 200-300 milliseconds
 - This time interval is large enough to allow effective brain capture and interpretation of the image displayed
 - Fixations are the ocular activity normally associated with visual information acquisition and processing
 - That is, fixations are key to interpreting user behavior

User Behavior

- Eye tracking experiments have shown that users scan the query results from top to bottom
- The users inspect the first and second results right away, within the second or third fixation
- Further, they tend to scan the top 5 or top 6 answers thoroughly, before scrolling down to see other answers

User Behavior (cont.)

 Percentage of times each one of the top results was viewed and clicked on by a user, for 10 test tasks and 29 subjects (Joachims et al.)



User Behavior (cont.)

- We notice that the users inspect the top 2 answers almost equally, but they click three times more in the first
- This might be indicative of a user bias towards the search engine
 - That is, that the users tend to trust the search engine in recommending a top result that is relevant

User Behavior (cont.)

- This can be better understood by presenting test subjects with two distinct result sets:
 - The normal ranking returned by the search engine
 - And, a modified ranking in which the top 2 results have their positions swapped
- Analysis suggests that the user displays a *trust* bias in the search engine that favors the top result
 - That is, the position of the result has great influence on the user's decision to click on it

Clicks as a Metric of Preferences

- Thus, it is clear that interpreting clicks as a direct indicative of relevance is not the best approach
- More promising is to interpret clicks as a metric of user preferences
 - For instance, a user can look at a result and decide to skip it to click on a result that appears lower
 - In this case, we say that the user prefers the result clicked on to the result shown upper in the ranking
 - This type of preference relation takes into account:
 - The results clicked on by the user
 - The results that were inspected and not clicked on
- More discussion on this issue is given in Ch. 11

Trends and Research Issues (1/3)

- Visual display
 - Graphical interfaces (2D or 3D) for relevance feedback
 - Quickly identify (by visual inspection) relationships among doc in the answer set 廣播新聞搜尋瀏覽系統 (*)

Allow users to visually explore the document space!

Lee and Chen, "Spoken document understanding and organization," *IEEE Signal Processing Magazine* 22 (5), Sept. 2005

- Topic Mar lopic Map 伊拉克 巴格達 以色列 阿拉法特 Topic Map Topic Map 美軍 陸戰隊 Topic Map [sum.102.0] [sum.] 02.10.3 [sum.] 02.10.0 Isum 1 02 09 2 sum 1 02.11.2 勒斯坦辣伯利博赫霍達成協議 (c) 2 自殺 巴士 ct 30/'02/12:00 ٢
- Utilization of local and global analysis techniques to the Web environments
 - How to alleviate the computational burden imposed on the search engine?

Trends and Research Issues (2/3)

• Yahoo! uses manually built hierarchy of concepts to assist the user with forming the query

YAHOO! SEARCH		
Web Images Video Audio Directory Local News Shopping More »		
palm Search		
Answers My Web Search Services Advanced Search Preferences		
Search Results 1 - 10 of about 160,000,000 for palm - 0.07 sec. (About this page)		
	Also try: palm springs, palm pilot, palm trees, palm reading More	SPONSOR RESULTS
•	SPONSOR RESULTS Official Palm Store store.palm.com Free shipping on all handhelds and more at the official Palm store. Palms Hotel - Best Rate Guarantee www.vegas.com Book the Palms Hotel Casino with our best rate guarantee at VEGAS.com, the official Vegas travel site.	Palm Memory Memory Giant is fast and easy. Guaranteed compatible memory. Great www.memorygiant.com The Palms, Turks and Caicos Islands Resort/Condo photos, rates, availability, and respectives
¥7	Palm Pilots - Palm Downloads Yahoo! Shortcut - <u>About</u>	availability and reservations www.worldwidereservationsystems.co
1.	Palm, Inc. = Maker of handheld PDA devices that allow mobile users to manage schedules, contacts, and other personal and business information. Category: <u>B2B > Personal Digital Assistants (PDAs)</u> www.palm.com - 20k - <u>Cached</u> - <u>More from this site</u> - <u>Save</u>	The Palms Casino Resort, Las Vegas Low price guarantee at the Palms Casino resort in Las Vegas. Book lasvegas.hotelscorp.com

► Figure 9.6 An example of query expansion in the interace of the Yahoo! web search engine in 2006. The expanded query suggestions appear just below the "Search Results" bar.

Trends and Research Issues (3/3)

- Building relationships between named entities
 - Renlifang (人立方) of msra

