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Modeling

• Produce a ranking function that assigns scores to 
documents with regard to a given query
– Ranking is likely the most important process of an IR system

• This process consists of two main tasks
– The conception of a logical framework for representing 

documents and queries
• Sets, vectors, probability distributions, etc.

– The definition of a ranking function (or retrieval model) that 
computes a rank (e.g., a real number) for each document in 
response to a given query
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Index Terms

• Meanings From Two Perspectives
– In a restricted sense (keyword-based)

• An index term is a (predefined) keyword (usually a noun) 
which has some semantic meaning of its own

– In a more general sense (word-based)
• An index term is simply any word which appears in the text of 

a document in the collection
• Full-text
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Index Terms (cont.)

• The semantics (main themes) of the documents and of 
the user information need should be expressed through 
sets of index terms

– Semantics is often lost when expressed through sets of words 
(e.g., possible, probable, likely)

• Expressing query intent (information need) using a few words 
restricts the semantics of what can be expressed

– Match between the documents and user queries is in the 
(imprecise?) space of index terms 
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Index Terms (cont.)
• Documents retrieved are flrequently irrelevant

– Since most users have no training in query formation, problem 
is even worst

• Not familar with the underlying IR process
• E.g: frequent dissatisfaction of Web users 

– Issue of deciding document relevance, i.e. ranking, is critical for 
IR systems

• A ranking algorithm predicts which documents the users will 
find relevant and which ones they will find irrelevant

– Establish a simple ordering of the document retrieved; 
documents appearing on the top of this ordering are 
considered to be more likely to be relevant 

• However, two users might disagree what is relevant and 
what is not

– Hopefully, the ranking algorithm can approximate the 
opinions of a large fraction of the users on the relevance 
of answers to a large fraction of queries
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Ranking Algorithms

• Also called the “information retrieval models”

• Ranking Algorithms
– Predict which documents are relevant and which are not
– Attempt to establish a simple ordering of the document 

retrieved
– Documents at the top of the ordering are more likely to be 

relevant
– The core of information retrieval systems
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Ranking Algorithms (cont.)

• A ranking is based on fundamental premises regarding 
the notion of document relevance, such as:
– Common sets of index terms
– Sharing of weighted terms
– Likelihood of relevance

– Sharing of same aspects/concepts

• Distinct sets of premises lead to a distinct IR models

    ?  ,or     DQPDQP

literal-term matching

Concept/semantic matching
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Ranking Algorithms (cont.)

• Concept Matching vs. Literal Matching

香港星島日報篇報導引述軍事觀察家的話表
示，到二零零五年台灣將完全喪失空中優勢，
原因是中國大陸戰機不論是數量或是性能上
都將超越台灣，報導指出中國在大量引進俄
羅斯先進武器的同時也得加快研發自製武器
系統，目前西安飛機製造廠任職的改進型飛
豹戰機即將部署尚未與蘇愷三十通道地對地
攻擊住宅飛機，以督促遇到挫折的監控其戰
機目前也已經取得了重大階段性的認知成果。
根據日本媒體報導在台海戰爭隨時可能爆發
情況之下北京方面的基本方針，使用高科技
答應局部戰爭。因此，解放軍打算在二零零
四年前又有包括蘇愷三十二期在內的兩百架
蘇霍伊戰鬥機。

中共新一
代空軍戰

力

Transcript of Spoken Document

relevant ?

Spoken Query
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Taxonomy of Classic IR Models
• Refer to the text content

– Unstructured 
• Boolean Model  (Set Theoretic)

– Documents and queries are represented as sets of index 
terms

• Vector (Space) Model (Algebraic)
– Documents and queries are represented as vectors in a 

t-dimensional space

• Probabilistic Model (Probabilistic)
– Document and query are represented based on 

probability theory 

– Semi-structured (Chapter 13)
• Take into account the structure components of the text like 

titles, sections, subsections, paragraphs
• Also include unstructured text  



Taxonomy of Classic IR Models (cont.)

• Refer to the link structure of the Web  (Chapter 11)
– Consider the links among Web pages as an integral part of the 

model

• Refer to the content of multimedia objects (Chapter 14)
– Images, video objects, audio objects  
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Document Property

Text
Links
Multimedia

Taxonomy of Classic IR Models (cont.)
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Proximal Nodes, others 
XML-based

Semi-structured Text

Classic Models

Boolean
Vector
Probabilistic

Set Theoretic

Fuzzy
Extended Boolean
Set-based

Probabilistic

BM25
Language Models        
Divergence from Ramdomness
Bayesian Networks 

Algebraic

Generalized Vector
Latent Semantic Indexing  
Neural Networks

Support Vector Machines

Page Rank
Hubs & Authorities

Web

Image retrieval
Audio and Music Retrieval
Video Retrieval

Multimedia Retrieval
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Retrieval: Ad Hoc

• Ad hoc retrieval
– Documents remain relatively static while new queries are 

submitted to the system
• The statistics for the entire document collection is obtainable 

– The most common form of user task 

Collection
“Fixed Size”

Q2

Q3

Q1

Q4 Q5
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Retrieval: Filtering

• Filtering
– Queries remain relatively static while new documents come into 

the system (and leave)
• User profiles: Describe the users’ preferences

– E.g. news wiring services in the stock market

Document Streams

User 1
Profile

Docs Filtered
for User 1

Docs Filtered
for User 2

User 2
Profile

台積電、聯電 …

統一、中華車 …

Usually do not consider the 
relations of documents

in the streams (only user task)
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Filtering & Routing

• Filtering task indicates to the user which document might 
be interested to him

• Determine which ones are really relevant is fully reserved to 
the user

– Documents with a ranking about a given threshold is 
selected

• But no ranking information of filtered documents is presented 
to user

• Routing: a variation of filtering
• Ranking information of the filtered documents is presented to 

the user 
• The user can examine the Top N documents

• The vector model is preferred (for simplicity!)
– For filtering/routing, the crucial step is not ranking but the 

construction of user profiles  
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Filtering: User Profile Construction 

• Simplistic approach
– Describe the profile through a set of keywords
– The user provides the necessary keywords
– User is not involved too much
– Drawback: If user not familiar with the service (e.g. the 

vocabulary of upcoming documents)

• Elaborate approach
– Collect information from user the about his preferences
– Initial (primitive) profile description is adjusted by relevance 

feedback (from relevant/irrelevant information)
• User intervention

– Profile is continuously changing
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A Formal Characterization of IR Models

• The quadruple /D, Q, F, R(qi,dj)/ definition
– D: a set composed of logical views (or representations) for the 

documents in collection

– Q: a set composed of logical views (or representations) for the 
user information needs, i.e., “queries”

– F: a framework for modeling documents representations, queries, 
and their relationships and operations

– R(qi, dj): a ranking function which associates a real number with 
qiQ and dj D

• Define an ordering among the documents dj with regard to 
the query qi
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A Formal Characterization of IR Models (cont.)

• Classic Boolean model
– Set of documents
– Standard operations on sets

• Classic vector model
– t-dimensional vector space
– Standard linear algebra operations on vectors

• Classic probabilistic model
– Sets (relevant/irrelevant document sets) 
– Standard probabilistic operations

• Mainly the Bayes’ theorem
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Basic Concepts

• Each document represented by a set of representative 
keywords or index terms

• An index term is a word or group of consecutive 
words in a document whose semantics is useful for 
remembering (summarizing) the document main themes

• Usually, index terms are nouns because nouns have 
meaning by themselves
– Adjectives, adverbs, and connectives mainly work as 

complements

• However, search engines assume that all words are 
index terms (full text representation)



Basic Concepts (cont.)
• Let,

– t be the number of index terms in the document collection
– ki be a generic index term

• Then,
– The vocabulary V = {k1, . . . , kt} is the set of all distinct index 

terms in the collection
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Basic Concepts (cont.)

• Documents and queries can be represented by patterns 
of term co-occurrences

• Each of these patterns of term co-occurrence is called a 
term conjunctive component

• For each document dj (or query q) we associate a unique 
term conjunctive component c(dj) (or c(q))
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The Term-Document Matrix

• The occurrence of a term ki in a document dj establishes 
a relation between ki and dj

• A term-document relation between ki and dj can be 
quantified by the frequency of the term in the document

• In matrix form, this can written as

– where each fi,j element stands for the frequency of term ki in 
document dj
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Basic Concepts (cont.)
• Not all terms are equally useful for representing the document 

contents
– less frequent terms allow identifying a narrower set of 

documents
• The importance of the index terms is represented by weights

associated to them
– Let

• ki be an index term

• dj be a document 

• wij be a weight associated with (ki, dj )

• dj=(w1,j, w2,j, …, wt,j): an index term vector for the document dj

• gi(dj)= wi,j

– The weight wij quantifies the importance of the index term for 
describing the document semantic contents
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Classic IR Models - Basic Concepts (cont.)

• Correlation of index terms
– E.g.: computer and network
– Consideration of such correlation information does not 

consistently improve the final ranking result
• Complex and slow operations

• Important Assumption/Simplification
– Index term weights are mutually independent ! 

(bag-of-words modeling) 
– However, the appearance of one word often attracts the 

appearance of the other (e.g., “Computer” and “Network”)
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The Boolean Model

• Simple model based on set theory and Boolean algebra

• A query is specified as boolean expressions with and, or, 
not operations (connectives)
– Precise semantics, neat formalism and simplicity
– Terms are either present or absent, i.e., wij{0,1}

• A query can be expressed as a disjunctive normal form
(DNF) composed of conjunctive components
– qdnf: the DNF for a query q
– qcc: conjunctive components (binary weighted vectors) of qdnf
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The Boolean Model (cont.)

• For intance, a query [q = ka  (kb  kc)] can be 
written as a DNF

qdnf=(1,1,1)  (1,1,0)  (1,0,0) 

(1,1,1)
(1,0,0)

(1,1,0)

Ka Kb

Kc

ka  (kb   kc)
=(ka  kb)  (ka  kc)
= (ka  kb  kc)  (ka  kb   kc)
(ka  kb  kc)  (ka  kb  kc)
= (ka  kb  kc)  (ka  kb   kc) (ka  kb  kc)
=> qdnf=(1,1,1)  (1,1,0)  (1,0,0)

conjunctive components
(binary weighted vectors)

a canonical representation

(0,1,0)

(0,1,1)

(0,0,1)

(1,0,1)

Does d= ka  kb  kc satisfy q ?
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The Boolean Model (cont.)

• The similarity of a document dj to the query q (i.e., 
premise of relevance)

1: if qcc | (qcc qdnf(ki, gi(dj)=gi(qcc))
0: otherwise 

– sim(dj,q)=1 means that the document dj is relevant to the query q

– Each document dj  can be represented as a conjunctive 
component (vector)

sim(dj,q)=
A document is represented as

a conjunctive normal form
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Advantages of the Boolean Model

• Simple queries are easy to understand and relatively 
easy to implement (simplicity and neat model formulation)

• The dominant language (model) in commercial 
(bibliographic) systems until the WWW

kc

ka kb
d1

d2

d3

d4d5

d6

d8 d7

d9

d1

0

d11

cc1
cc2

cc3cc5

cc4

cc7cc8

cc6
cc2 = ka kb kc

cc1 = ka kb kc

cc4 = ka kb kc

cc3 = ka kb kc

cc6 = ka kb kc

cc5 = ka kb kc

cc8 = ka kb kc

cc7 = ka kb kc
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Drawbacks of the Boolean Model

• Retrieval based on binary decision criteria with no 
notion of partial matching  (no term weighting)
– No noton of a partial match to the query condition

– No ranking (ordering) of the documents is provided (absence 
of a grading scale)

– Term freqency counts in documents are not considered

– Much more like a data retrieval model



IR– Berlin Chen 30

Drawbacks of the Boolean Model (cont.)

• Information need has to be translated into a Boolean 
expression which most users find awkward
– The Boolean queries formulated by the users are most often too 

simplistic (difficult to specify what is wanted)

• As a consequence, the Boolean model frequently returns 
either too few or too many documents in response to a 
user query

• However, the Boolean model is still dominant model with 
commercial document database systems



Term Weighting

• The terms of a document are not equally useful for 
describing the document contents

• In fact, there are index terms which are simply vaguer 
than others

• There are (occurrence) properties of an index term which 
are useful for evaluating the importance of the term in a 
document

• For instance, a word which appears in all documents of a 
collection is completely useless for retrieval tasks
– However, deciding on the importance of a term for summarizing 

the contents of a document is not a trivial issue
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Term Weighting (cont.)

• To characterize term importance, we associate a weight 
wi,j > 0 with each term ki that occurs in the document dj

– If ki that does not appear in the document dj , then wi,j = 0

• The weight wi,j quantifies the importance of the index 
term ki for describing the contents of document dj

• These weights are useful to compute a rank for each 
document in the collection with regard to a given query
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Term Weighting (cont.)

• Let,
– ki be an index term and dj be a document
– V = {k1, k2, ..., kt} be the set of all index terms
– wi,j > 0 be the weight associated with (ki, dj)

• Then we define dj = (w1,j ,w2,j , ...,wt,j) as a weighted 
vector that contains the weight wi,j of each term ki  V in 
the document dj
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Term Weighting (cont.)

• The weights wi,j can be computed using the frequencies 
of occurrence of the terms within documents

• Let fi,j be the frequency of occurrence of index term ki in 
the document dj

• The total frequency of occurrence Fi of term ki in the 
collection is defined as

– where N is the number of documents in the collection
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Term Weighting (cont.)

• The document frequency ni of a term ki is the number 
of documents in which it occurs
– Notice that ni ≤  Fi

• For instance, in the document collection below, the 
values fi,j , Fi and ni associated with the term “do” are
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Term-Term Correlation Matrix

• For classic information retrieval models, the index term 
weights are assumed to be mutually independent
– This means that wi,j tells us nothing about wi+1,j

• This is clearly a simplification because occurrences of 
index terms in a document are not uncorrelated

• For instance, the terms computer and network tend to 
appear together in a document about computer 
networks
– In this document, the appearance of one of these terms attracts 

the appearance of the other
– Thus, they are correlated and their weights should reflect this 

correlation
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Term-Term Correlation Matrix (cont.)

• To take into account term-term correlations, we can 
compute a correlation matrix 

• Let M = [mij] be a term-document matrix t × N
where mij = wi,j

• The matrix C = M·Mt is a term-term correlation matrix

• Each element cu,v  C expresses a correlation between 
terms ku and kv, given by

– Higher the number of documents in which the terms ku and kv co-
occur, stronger is this correlation
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Term-Term Correlation Matrix (cont.)

• Term-term correlation matrix for a sample collection

– Further, we can take advantage of factors such as term-term 
distances inside documents to improve the estimates of term-
term correlations (see Chapter 5)
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TF-IDF Weights

• Term frequency (TF) 
• Inverse document frequency (IDF) 

They are foundations (building blocks) of the most 
popular term weighting scheme in IR, called TF‐IDF
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Term Frequency (TF) Weights

• The simplest formulation is

• A variant of tf weight used in the literature is

– Where the log is taken in base 2

• The log expression is a the preferred form because it 
makes them directly comparable to idf weights, as we 
later discuss
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Term Frequency (TF) Weights: An Example

• Log tf weights tfi,j for the example collection
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Inverse Document Frequency

• We call document exhaustivity the number of index 
terms assigned to a document

• The more index terms are assigned to a document, the 
higher is the probability of retrieval for that document
– If too many terms are assigned to a document, it will be retrieved 

by queries for which it is not relevant

• Optimal exhaustivity: we can circumvent this problem 
by optimizing the number of terms per document

• Another approach is by weighting the terms differently, 
by exploring the notion of term specificity
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Inverse Document Frequency (cont.)

• Specificity is a property of the term semantics
– Term is more or less specific depending on its meaning
– To exemplify, the term beverage is less specific than the terms 

tea and beer
– We could expect that the term beverage occurs in more 

documents than the terms tea and beer

• Term specificity should be interpreted as a statistical 
rather than semantic property of the term

• Statistical term specificity: the inverse of the number 
of documents in which the term occurs
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Inverse Document Frequency : Derivation

• Terms are distributed in a text according to Zipf’s Law
• Thus, if we sort the vocabulary terms in decreasing order 

of document frequencies we have

– Where n(r) refers to the r-th largest document frequency and α
is an empirical constant

• That is, the document frequency of term ki is an 
exponential function of its rank

– where C is a second empirical constant
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Inverse Document Frequency : Derivation

• Setting α = 1 (simple approximation for English 
collections) and taking logs we have

• For r = 1, we have C = n(1), i.e., the value of C is the 
largest document frequency
– This value (i.e., C’s value) works as a normalization constant

• An alternative is to do the normalization assuming C = N, 
where N is the number of documents in the collection
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Inverse Document Frequency : Derivation

• Let ki be the term with the r-th largest document 
frequency, i.e., n(r) = ni. Then,

– where idfi is called the inverse document frequency of term ki 

• IDF provides a foundation for modern term weighting 
schemes and is used for ranking in almost all IR systems
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Inverse Document Frequency : An Example

• IDF values for example collection
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More on Inverse Document Frequency 

• In a large real collection, we expect the most selective 
terms to be nouns or noun groups (a noun composed of 
various words)

• The least selective terms are usually article, 
conjunctions, and prepositions which are frequently 
referred to as stop words

• IDF weights provide a foundation for modern term 
weighting schemes and are used by almost any modern 
IR system
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TF-IDF weighting scheme

• The best known term weighting schemes use weights 
that combine IDF factors with term frequencies

• Let wi,j be the term weight associated with the term ki  

and the document dj

• Then, we define

– Which is referred to as a TF-IDF weighting scheme
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TF-IDF weighting scheme: An Example

• TF-IDF weights of all terms present in our example 
document collection

IR– Berlin Chen 50



Variants of TF-IDF

• Several variations of the above expression for TF-IDF 
weights are described in the literature

• For TF weights, five distinct variants are illustrated 
below
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Variants of TF-IDF (Cont.)

• Five distinct variants of IDF weights

– The probabilistic inverse frequency variant arises from the 
classic probabilistic model, as discussed later on
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Variants of TF-IDF (Cont.)

• Distinct combinations of TF variants and IDF variants 
yield various forms of TF-IDF weights
– Recommended TF-IDF weighting schemes
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TF-IDF Properties

• Consider the TF, IDF, and TF-IDF weights for the Wall 
Street Journal reference collection

• To study their behavior, we would like to plot them 
together

• While IDF is computed over all the collection, TF is 
computed on a per document basis
– Thus, we need a representation of TF based on all the collection, 

which is provided by the term collection frequency Fi

• This reasoning leads to the following TF and IDF term 
weight
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TF-IDF Properties (Cont.)
• Plotting TF and IDF in logarithmic scale yields

– Statistics are gathered from the Wall Street Journal collection
– The horizontal axis corresponding the rank of each term 

according to TF

• We observe that TF and IDF weights present power-law 
behaviors that balance each other

• The terms of intermediate IDF values display maximum 
TF-IDF weights and are most interesting for ranking
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TF-IDF Properties (Cont.)

• Common terms (such as stopwords) and rare terms 
(such as foreign words or misspellings) are not of great 
value for ranking
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Document Length Normalization

• Document sizes might vary widely

• This is a problem because longer documents are more 
likely to be retrieved by a given query

• To compensate for this undesired effect, we can divide 
the rank of each document by its length

• This procedure consistently leads to better ranking, and 
it is called document length normalization
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Document Length Normalization (cont.)

• Methods of document length normalization depend on 
the representation adopted for the documents:

– Size in bytes: consider that each document is represented 
simply as a stream of bytes

– Number of words: each document is represented as a single 
string, and the document length is the number of words in it

– Vector norms: documents are represented as vectors of 
weighted terms
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Document Length Normalization (cont.)

• Documents represented as vectors of weighted terms
– Each term of a collection is associated with an orthonormal 

unit vector ki in a t-dimensional space
– For each term ki of a document dj is associated the term vector
– component wi,j ×ki
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Document Length Normalization (cont.)

• The document representation dj is a vector composed of 
all its term vector components

• The document length is given by the norm of this vector, 
which is computed as follows
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Document Length Normalization (cont.)

• Three variants of document lengths for the example
• collection
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The Vector Model

• Also called Vector Space Model (VSM)

• Some perspectives
– Use of binary weights is too limiting
– Non-binary weights provide consideration for partial matches
– These term weights are used to compute a degree of similarity

between a query and each document
– Ranked set of documents provides better matching for user 

information need

SMART system
Cornell U., 1968
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The Vector Model (cont.)
• Definition:

– wij > =0  whenever  ki  dj

– wiq >= 0  whenever  ki  q 
– document vector dj= (w1j, w2j, ..., wtj)
– query vector        q= (w1q, w2q, ..., wtq)
– To each term ki is associated a unitary (basis) vector ui

– The unitary vectors ui and us are assumed to be orthonormal
(i.e., index terms are assumed to occur independently within 
the documents)

• The t unitary vectors  ui form an orthonormal basis for a 
t-dimensional space
– Queries and documents are represented as weighted vectors

totally t terms in 
the vocabulary
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The Vector Model (cont.)

• How to measure the degree of similarity 
– Distance, angle or projection?

q = 0u1 + 0u2 +  3u3

d1 = 2u1 + 4u2 + 5u3

d2 = 3u1 + 7u2 + 7u3

u3

u1

u2

d1 = 2u1+ 4u2 + 5u3

d2 = 3u1 + 7u2 + 7 u3

q = 0u1 + 0u2 + 3u3

5

3

7

7

2 3

4
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The Vector Model (cont.)

• The similarity of a document dj to the query q

– Establish a threshold on sim(dj,q) and retrieve documents with a 
degree of similarity above the threshold
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The Vector Model (cont.)

• Degree of similarity         Relevance 
– Usually, wij > =0 & wiq >= 0

• Cosine measure ranges between 0 and 1

– highly relevant !

– almost irrelevant !

1),( qdsim j

0),( qdsim j
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The Vector Model (cont.)

• The role of index terms

– Which index terms (features) better describe the relevant class
• Intra-cluster similarity (TF-factor)
• Inter-cluster dissimilarity  (IDF-factor)

Document collection

the ideal answer set

R R IR as a binary clustering 
(relevant/non-relevant) problem 

balance between these
two factors
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The Vector Model (cont.)

• The vector model with  TF-IDF weights is a good 
ranking strategy with general collections, for example

– These equations should only be applied for values of term 
frequency greater than zero

– If the term frequency is zero, the respective weight is also zero

• The vector model is usually as good as the known 
ranking alternatives. It is also simple and fast to compute
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The Vector Model (cont.)

• Document ranks computed by the Vector model for the
• query “to do” (see TF-IDF weight values in Slide 49)
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The Vector Model (cont.)

• Experimental Results on TDT Chinese collections
– Mandarin Chinese broadcast news
– Measured in mean Average Precision (mAP)
– ACM TALIP (2004)

Retrieval Results for the Vector Space Model 

Average Precision

Word-level Syllable-level
S(N), N=1 S(N), N=1~2 S(N), N=1 S(N), N=1~2

TDT-2
(Dev.)

TD 0.5548 0.5623 0.3412 0.5254
SD 0.5122 0.5225 0.3306 0.5077

TDT-3
(Eval.)

TD 0.6505 0.6531 0.3963 0.6502
SD 0.6216 0.6233 0.3708 0.6353
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The Vector Model (cont.)

• Advantages
– Term-weighting improves quality of the answer set
– Partial matching allows retrieval of docs that approximate the 

query conditions
– Cosine ranking formula sorts documents according to degree of 

similarity to the query
– Document normalization is naturally built-in into the ranking

• Disadvantages
– Assumes mutual independence of index terms 

• Not clear that this is bad though (??): leveraging term 
dependencies is challenging and might lead to poor results, if 
not done appropriately 
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The Probabilistic Model
Roberston & Sparck Jones 1976

• Known as the Binary Independence Retrieval (BIR) 
model

– “Binary”: all weights of index terms are binary (0 or 1)

– “Independence”: index terms are independent ! 

• Capture the IR problem using a probabilistic framework
– Bayes’ decision rule
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The Probabilistic Model (cont.)

• Retrieval is modeled as a classification process
– Two classes for each query: the relevant or non-relevant 

documents

香港星島日報篇報導引述軍事觀察家的話表示到二零零

五年台灣將完全喪失空中優勢原因是中國大陸戰機不論是數量

或是性能上都將超越台灣報導指出中國在大量引進俄羅斯先進

武器的同時也得加快研發自製武器系統目前西安飛機製造廠任職

的改進型飛豹戰機即將部署尚未與蘇愷三十通道地對

地攻擊住宅飛機以督促遇到挫折的監控其戰機目前也已經

取得了重大階段性的認知成果根據日本媒體報導在台海戰

爭隨時可能爆發情況之下北京方面的基本方針使用高科技答應局部

戰爭因此解放軍打算在二零零四年前又有包括蘇愷

三十二期在內的兩百架蘇霍伊戰鬥機

(Spoken) Document

Relevant
Document

Set

)|( jdRP


)|( jdRP


jd


)|( jdRP


: the prob. that the doc. dj

is relevant to the query 
q

)|( jdRP


: the prob. that the doc. dj

is non-relevant to the query q

Non-relevant
Document

Set
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The Probabilistic Model (cont.)

• Given a user query, there is an ideal answer set
– Contain exactly the relevant documents and no others
– The querying process as a specification of the properties of this 

ideal answer set (       )

• Problem: what are these properties?
– Only the semantics of index terms can be used to characterize 

these properties 

• Guess at the beginning what they could be 
– I.e., an initial guess for the preliminary probabilistis description of 

ideal answer set

• Improve/Refine the probabilistic description of the 
answer set by iterations/interations
– Without (or with) the assistance from a human subject 

qR
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The Probabilistic Model (cont.)

• How to improve the probabilistic description of the ideal 
answer set ?

Document Collection

the ideal answer set

?jd


qR

)|()|( jqjq dRPdRP
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The Probabilistic Model (cont.)

• Given a particular document dj , calculate the 
probability of belonging to the relevant class, retrieve if 
greater than probability of belonging to non-relevant 
class

• The similarity of a document dj to the query q

)|()|( jqjq dRPdRP


 Bayes’ Decision Rule
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 Likelihood/Odds Ratio Test

Bayes’ Theory

The same for all documents

! retrieved so, if
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The Probabilistic Model (cont.)

• Explanation
– : the prob. that a doc randomly selected form the entire 

collection is relevant to the query q
– : the prob. that the doc dj  is relevant to the query q

(selected from the relevant doc set R )

• Further assume independence of index terms
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The Probabilistic Model (cont.)

• Further assume independence of index terms
– Another representation

– Take logarithms
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The same for all documents!
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The Probabilistic Model (cont.)

• Further assume independence of index terms
– Use term weighting wi,q x wi,j to replace gi(dj)
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Binary weights (0 or 1) are used here

is not known at the beginning
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The Probabilistic Model (cont.)

• Initial Assumptions
– :is constant for all indexing terms

– :approx. by distribution of index terms among all 
doc in the collection, i.e. the document  frequency of indexing 
term       (Suppose that |R|>>|R|, N  |R|))

(     : no. of doc that contain      .       : the total doc no.)

• Re-estimate the probability distributions
– Use the initially retrieved and ranked Top D documents
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The Probabilistic Model (cont.)

• Handle the problem of “zero” probabilities
– Add constants as the adjust constant

– Or use the information of document frequency 

1
5.0

)|(




D
D

RkP i
qi

1
5.0

)|(




DN
Dn

RkP ii
qi

1
)|(






D
N
nD

RkP
i

i

qi

1
)|(






DN
N
nDn

RkP
i

ii

qi



IR– Berlin Chen 82

The Probabilistic Model (cont.)

• Advantages
– Documents are ranked in decreasing order of probability of 

relevance (optimality)

• Disadvantages
– Need to guess initial estimates for
– Estimate the characteristics of the relevant class/set        through 

user-identified examples of relevant docs (without true training 
data)

– All weights are binary: the method does not take into account tf
and idf factors

– Independence assumption of index terms
– The lack of document length normalization

)|( RkP i

R

More advanced variations of the probabilistic models, such as the BM‐25 model, 
correct these deficiencies to yield improved retrieval.
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Brief Comparisons of Classic Models

• Boolean model does not provide for partial matches
and is considered to be the weakest classic model

• Salton and Buckley did a series of experiments that 
indicated that, in general, the vector model 
outperforms the probabilistic model with general 
collections
– This also seems to be the dominant thought among 

researchers and practitioners of IR 
– The vector model, whose weighting scheme is firmly 

grounded on information theory, provides a simple yet 
effective ranking formula for general collections 


