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Classification of IR Models Along Two Axes
• Matching Strategy

– Literal term matching (matching word patterns between the query and documents)

• E.g., Vector Space Model (VSM), Language Model (LM)
– Concept matching (matching word meanings between the query and documents)

• E.g., Latent Semantic Analysis (LSA), Probabilistic Latent 
Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA), 
Word Topic Model (WTM)

• Learning Capability
– Term weighting, query expansion, document expansion, etc.

• E.g., Vector Space Model, Latent Semantic Indexing 
• Most models are based on linear algebra operations

– Solid theoretical foundations (optimization algorithms)
• E.g., Language Model, Probabilistic Latent Semantic Analysis, 

Latent Dirichlet Allocation, Word Topic Model
• Most models also belong to the language modeling (LM) 

approach
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Two Perspectives for IR Models (cont.)

中國解放
軍蘇愷戰

機

中共新一
代空軍戰

力

• Literal Term Matching vs. Concept Matching

– There are usually many ways to express a given concept, so 
literal terms in a user’s query may not match those of a relevant 
document 

香港星島日報篇報導引述軍事觀察家的話表示，到二
零零五年台灣將完全喪失空中優勢，原因是中國大陸
戰機不論是數量或是性能上都將超越台灣，報導指出
中國在大量引進俄羅斯先進武器的同時也得加快研發
自製武器系統，目前西安飛機製造廠任職的改進型飛
豹戰機即將部署尚未與蘇愷三十通道地對地攻擊住宅
飛機，以督促遇到挫折的監控其戰機目前也已經取得
了重大階段性的認知成果。根據日本媒體報導在台海
戰爭隨時可能爆發情況之下北京方面的基本方針，使
用高科技答應局部戰爭。因此，解放軍打算在二零零
四年前又有包括蘇愷三十二期在內的兩百架蘇霍伊戰
鬥機。
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Latent Semantic Analysis (LSA)

• Also called Latent Semantic Indexing (LSI), Latent 
Semantic Mapping (LSM), or Two-Mode Factor Analysis

– Three important claims made for LSA
• The semantic information can derived from a word-document 

co-occurrence matrix

• The dimension reduction is an essential part of its derivation

• Words and documents can be represented as points in the 
Euclidean space

– LSA exploits the meanings of words by removing “noise” that is 
present due to the variability in word choice  

• Namely, synonymy and polysemy that are found in documents 

T. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of Latent Semantic Analysis.
Hillsdale, NJ: Erlbaum. 
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LSA: Schematic Representation
• Dimension Reduction and Feature Extraction

– PCA

– SVD (in LSA)
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LSA: Balancing Two Opposing Effects

• First, k should be large enough to allowing fitting all the 
(semantic) structure in the real data

• Second, k should be small enough to allow filtering out 
the non-relevant representational details (which are 
present in the conventional index-term based 
representation)
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Therefore, as will be seen shortly, LSA provides a mechanism for 
elimination of noise (presented in index‐based representations) 
and removal of redundancy.
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LSA: An Example

– Singular Value Decomposition (SVD) used for the word-
document matrix

• A least-squares method for dimension reduction
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LSA: Latent Structure Space

• Two alternative frameworks to circumvent vocabulary mismatch
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LSA: Another Example (1/2)

1.
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LSA: Another Example (2/2)

Query: “human computer interaction” 

An OOV word

Words similar in meaning are “near” 
each other  in the LSA space even
if they never  co-occur in a document; 
Documents similar in concept are “near” 
each other in the LSA space even if 
they share no words in common.

Three sorts of basic comparisons
- Compare two words
- Compare two documents
- Compare a word to a document 
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LSA: Theoretical Foundation (1/10)

• Singular Value Decomposition (SVD)
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LSA: Theoretical Foundation (2/10)

• “term-document” matrix A has to do with the co-occurrences 
between terms (or units) and documents (or compositions)
– Contextual information for words in documents is discarded

• “bag-of-words” modeling

• Feature extraction for the entities          of matrix A
1. Conventional tf-idf statistics

2. Or,       :occurrence frequency weighted by negative entropy 
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LSA: Theoretical Foundation (3/10)

• Singular Value Decomposition (SVD)
– ATA is symmetric nxn matrix

• All eigenvalues λj are nonnegative real numbers

• All eigenvectors vj are orthonormal  (    Rn)

• Define singular values:
– As the square roots of the eigenvalues of ATA
– As the lengths of the vectors Av1, Av2 , …., Avn
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LSA: Theoretical Foundation (4/10)

• {Av1, Av2 , …. , Avr } is an orthogonal basis of Col A

– Suppose that A (or ATA) has rank r ≤ n

– Define an orthonormal basis {u1, u2 ,…., ur} for Col A

• Extend to an orthonormal basis {u1, u2 ,…, um} of Rm
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LSA: Theoretical Foundation (5/10)
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LSA: Theoretical Foundation (6/10)
• Additional Explanations

– Each row of        is related to the projection of a corresponding 
row of        onto the basis formed by columns of 

• the i-th entry of  a row of        is related to the projection of a 
corresponding row of        onto the i-th column of 

– Each row of        is related to the projection of a corresponding 
row of        onto the basis formed by

• the i-th entry of  a row of        is related to the projection of a 
corresponding row of        onto the i-th column of 
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LSA: Theoretical Foundation (7/10)

• Fundamental comparisons based on SVD
– The original word-document matrix (A)

– The new word-document matrix (A’)
• Compare two terms

→ dot product of two rows of U’Σ’
• Compare two docs

→ dot product of two rows of V’Σ’
• Compare a query word and a doc → each individual entry of A’

(scaled by the square root of singular values )

w1
w2

wm

d1 d2 dn

mxn

A

• compare two terms → dot product of two rows of A
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LSA: Theoretical Foundation (8/10)

• Fold-in: find the representation for a pseudo-document q
– For objects (new queries or docs) that did not appear in the 

original analysis
• Fold-in a new mx1 query (or doc) vector 

– Represented as the weighted sum of its component word 
(or term) vectors

– Cosine measure between the query and doc vectors in 
the latent semantic space (docs are sorted in descending 
order of their cosine values)
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Query is represented by the weighted sum of it constituent term vectors 
scaled by the inverse of singular values.

The separate dimensions 
are differentially weighted.
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LSA: Theoretical Foundation (9/10)

• Fold-in a new 1 X n term vector 
1

11ˆ

  kkknnk ΣVtt

See Figure B below
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<Figure B>
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LSA: Theoretical Foundation (10/10)

• Note that the first k columns of U and V are orthogonal, 
but the rows of U and V (i.e., the word and document 
vectors), consisting k elements, are not orthogonal 

• Alternatively, A can be written as the sum of k rank-1 
matrices 

– and        are respectively the eigenvectors of U and V

• LSA with relevance feedback (query expansion)

– is a binary vector whose elements specify which documents 
to add to the query IR – Berlin Chen 21
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LSA: A Simple Evaluation

• Experimental results
– HMM is consistently better than VSM at all recall levels
– LSA is better than VSM at higher recall levels

Recall-Precision curve at 11 standard recall levels evaluated on
TDT-3 SD collection. (Using word-level indexing terms)  
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LSA: Pro and Con (1/2)

• Pro (Advantages)
– A clean formal framework and a clearly defined optimization 

criterion (least-squares)
• Conceptual simplicity and clarity

– Handle synonymy problems (“heterogeneous vocabulary”)

• Replace individual terms as the descriptors of documents by 
independent “artificial concepts” that can specified by any 
one of several terms (or documents) or combinations 

– Good results for high-recall search
• Take term co-occurrence into account
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LSA: Pro and Con (2/2)
• Disadvantages

– Contextual or positional information for words in documents is 
discarded (the so-called bag-of-words assumption)

– High computational complexity (e.g., SVD decomposition)

– Exhaustive comparison of a query against all stored documents is 
needed (cannot make use of inverted files ?)

– LSA offers only a partial solution to polysemy (e.g. bank, bass,…)
• Every term is represented as just one point in the latent space 

(represented as weighted average of different meanings of a term)

– To date, aside from folding-in, there is no optimal way to add 
information (new words or documents) to an existing word-document 
space

• Re-compute SVD (or the reduced space) with the added 
information is a more direct and accurate solution
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LSA: Junk E-mail Filtering

• One vector represents the centriod of all e-mails that are 
of interest to the user, while the other the centriod of all 
e-mails that are not of interest 
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LSA: Dynamic Language Model Adaptation (1/4)
• Let wq denote the word about to be predicted, and 

Hq-1 the admissible LSA history (context) for this 
particular word
– The vector representation of Hq-1 is expressed by

• Which can be then projected into the latent semantic 
space

• Iteratively update          and          as the decoding 
evolves
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LSA: Dynamic Language Model Adaptation (2/4)

• Integration of LSA with N-grams
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LSA: Dynamic Language Model Adaptation (3/4)

• Integration of LSA with N-grams (cont.)
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Assume the probability of the document 
history given the current word is not affected 
by the immediate context preceding it
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LSA: Dynamic Language Model Adaptation (4/4)
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J. Bellegarda, Latent Semantic Mapping: Principles & Applications (Synthesis Lectures on Speech and Audio 
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LSA: Cross-lingual Language Model 
Adaptation (1/2)

• Assume that a document-aligned (instead of sentence-
aligned) Chinese-English bilingual corpus is provided 

Lexical triggers and latent semantic analysis for cross-lingual language model adaptation, TALIP 2004, 3(2)  
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LSA: Cross-lingual Language Model 
Adaptation (2/2)

• CL-LSA adapted Language Model
is a relevant English doc of the Mandarin 

doc being transcribed, obtained by CL-IR
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LSA: SVDLIBC

• Doug Rohde's SVD C Library version 1.3 is based
on the SVDPACKC library

• Download it at http://tedlab.mit.edu/~dr/
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LSA: Exercise (1/4)

• Given a sparse term-document matrix
– E.g., 4 terms and 3 docs

– Each entry can be weighted by TFxIDF score

• Perform SVD to obtain term and document vectors 
represented in the latent semantic space

• Evaluate the information retrieval capability of the LSA 
approach by using varying sizes (e.g., 100, 200,...,600 
etc.) of LSA dimensionality

2.3   0.0   4.2 
0.0   1.3   2.2 
3.8   0.0   0.5 
0.0   0.0   0.0

Term

Doc
4    3    6 
2
0  2.3
2  3.8
1
1  1.3
3
0   4.2
1   2.2
2   0.5

Row
#Tem

Col.
# Doc

Nonzero 
entries

2 nonzero entries 
at Col 0

Col 0, Row 0 
Col 0, Row 2 

1 nonzero entry
at Col 1

Col 1, Row 1 
3 nonzero entry

at Col 2
Col 2, Row 0 
Col 2, Row 1 
Col 2, Row 2 
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LSA: Exercise (2/4)

• Example: term-document matrix

• SVD command (IR_svd.bat)
svd -r st  -o LSA100  -d 100  Term-Doc-Matrix

51253 2265 218852
77
508 7.725771
596 16.213399
612 13.080868
709 7.725771
713 7.725771
744 7.725771
1190 7.725771
1200 16.213399
1259 7.725771
……

Indexing 
Term no. Doc no. Nonzero 

entries

sparse matrix input prefix of output files
No. of reserved 

eigenvectors 
name of sparse 

matrix input

LSA100-Ut

LSA100-S

LSA100-Vt

output
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LSA: Exercise (3/4)

• LSA100-Ut

• LSA100-S

100  51253
0.003 0.001 ……..
0.002 0.002 …….

word vector (uT): 1x100

51253 words

100
2686.18
829.941
559.59
….

100 eigenvalues

• LSA100-Vt
100  2265
0.021 0.035 ……..
0.012 0.022 …….

doc vector (vT): 1x100

2265 docs
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LSA: Exercise (4/4)

• Fold-in a new mx1 query vector 

• Cosine measure between the query and doc vectors in 
the latent semantic space
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Query represented by the weighted
sum of it constituent term vectors

The separate dimensions 
are differentially weighted

Just like a row of V
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