Modeling in Information Retrieval - Classical Models

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

References:

1. Modern Information Retrieval, Chapter 3 & Teaching material

2. Language Modeling for Information Retrieval, Chapter 3

Modeling

- Produce a ranking function that assigns scores to documents with regard to a given query
 - Ranking is likely the most important process of an IR system
- This process consists of two main tasks
 - The conception of a logical framework for representing documents and queries
 - Sets, vectors, probability distributions, etc.
 - The definition of a ranking function (or retrieval model) that computes a rank (e.g., a real number) for each document in response to a given query

Index Terms

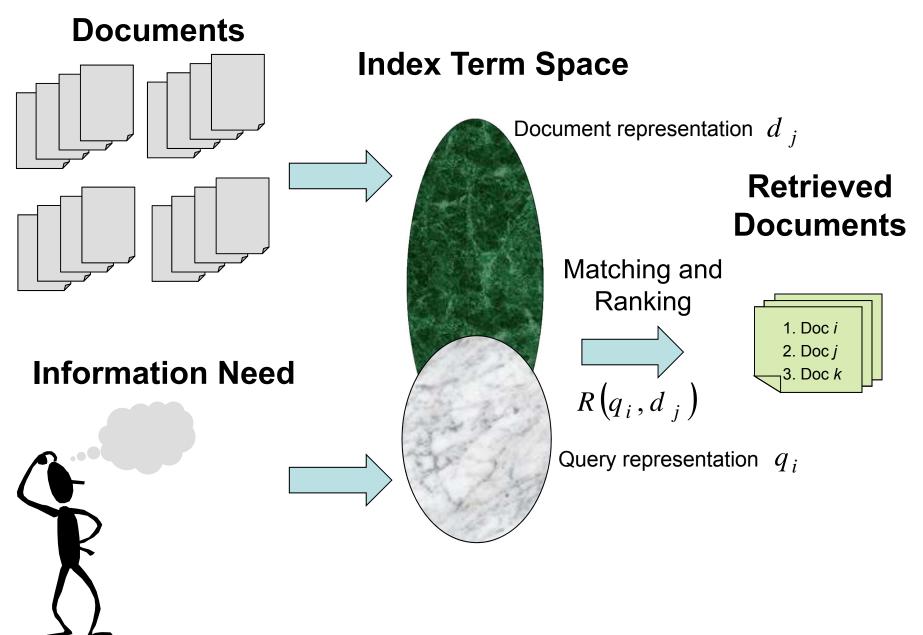
- Meanings From Two Perspectives
 - In a restricted sense (keyword-based)
 - An index term is a (predefined) keyword (usually a noun) which has some semantic meaning of its own
 - In a more general sense (word-based)
 - An index term is simply any word which appears in the text of a document in the collection
 - Full-text

Index Terms (cont.)

- The semantics (main themes) of the documents and of the user information need should be expressed through sets of index terms
 - Semantics is often lost when expressed through sets of words (e.g., possible, probable, likely)
 - Expressing query intent (information need) using a few words restricts the semantics of what can be expressed
 - Match between the documents and user queries is in the (imprecise?) space of index terms

Index Terms (cont.)

- Documents retrieved are flrequently irrelevant
 - Since most users have no training in query formation, problem is even worst
 - Not familar with the underlying IR process
 - E.g: frequent dissatisfaction of Web users
 - Issue of deciding document relevance, i.e. ranking, is critical for IR systems
 - A ranking algorithm predicts which documents the users will find relevant and which ones they will find irrelevant
 - Establish a simple ordering of the document retrieved; documents appearing on the top of this ordering are considered to be more likely to be relevant
 - However, two users might disagree what is relevant and what is not
 - Hopefully, the ranking algorithm can approximate the opinions of a large fraction of the users on the relevance of answers to a large fraction of queries



Ranking Algorithms

- Also called the "information retrieval models"
- Ranking Algorithms
 - Predict which documents are relevant and which are not
 - Attempt to establish a simple ordering of the document retrieved
 - Documents at the top of the ordering are more likely to be relevant
 - The core of information retrieval systems

Ranking Algorithms (cont.)

- A ranking is based on fundamental premises regarding the notion of document relevance, such as:
 - Common sets of index terms
 - Sharing of weighted terms
 - Likelihood of relevance

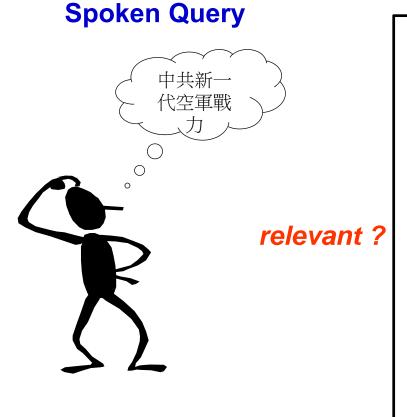
P(Q|D) or P(Q,D)?

literal-term matching

- Sharing of same aspects/concepts Concept/semantic matching
- Distinct sets of premises lead to a distinct IR models

Ranking Algorithms (cont.)

Concept Matching vs. Literal Matching



Transcript of Spoken Document

香港星島日報篇報導引述軍事觀察家的話表 示,到二零零五年台灣將完全喪失空中 原因是中國大陸戰機不論是數量或是性能上 都將招越台灣,報導指出中國在大量引 羅斯先進武器的同時也得加快研發自製武器 系統,目前西安飛機製造廠任職的改進型飛 豹戰機即將部署尚未與蘇愷三十通道地對地 攻擊住宅飛機,以督促遇到挫折的監控其戰 已經取得了重大階段性的認知成果。 機目面 根據日本媒體報導在台海戰爭隨時可能爆發 下北京方面的基本方针, 使用高科 答應局部戰爭。因此,解放軍打算在 又有包括蘇愷三十二期在內的兩百架 四年前 蘇霍伊戰鬥機。

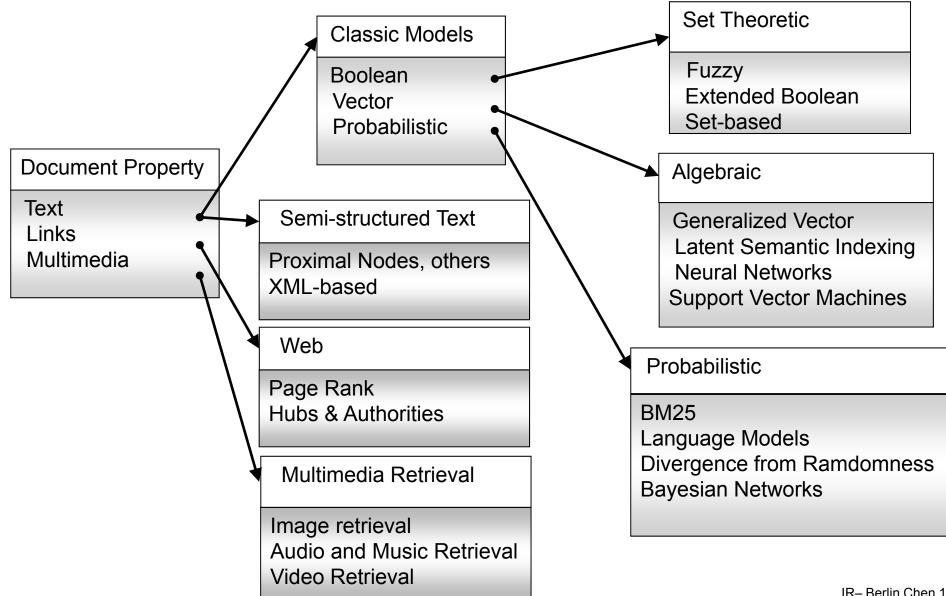
Taxonomy of Classic IR Models

- Refer to the text content
 - Unstructured
 - Boolean Model (Set Theoretic)
 - Documents and queries are represented as sets of index terms
 - Vector (Space) Model (Algebraic)
 - Documents and queries are represented as vectors in a *t*-dimensional space
 - Probabilistic Model (Probabilistic)
 - Document and query are represented based on probability theory
 - Semi-structured (Chapter 13)
 - Take into account the structure components of the text like titles, sections, subsections, paragraphs
 - Also include unstructured text

Taxonomy of Classic IR Models (cont.)

- Refer to the link structure of the Web (Chapter 11)
 - Consider the links among Web pages as an integral part of the model
- Refer to the content of multimedia objects (Chapter 14)
 - Images, video objects, audio objects

Taxonomy of Classic IR Models (cont.)



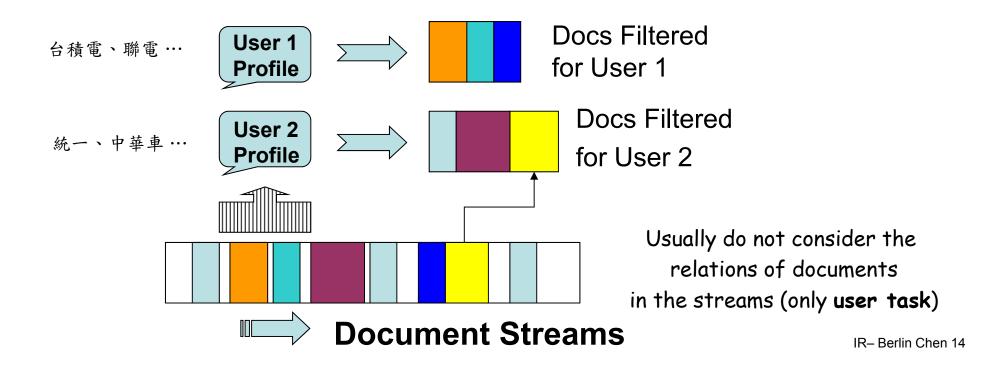
Retrieval: Ad Hoc

- Ad hoc retrieval
 - Documents remain relatively static while new queries are submitted to the system
 - The statistics for the entire document collection is obtainable
 - The most common form of user task

Ad hoc retrieval: Search based on a user query is sometimes called ad hoc search because the range of possible queries is huge and not pre-specified.

Retrieval: Filtering

- Filtering
 - Queries remain relatively static while new documents come into the system (and leave)
 - User profiles: Describe the users' preferences
 - E.g. news wiring services in the stock market



Filtering & Routing

- Filtering task indicates to the user which document might be interested to him
 - Determine which ones are really relevant is fully reserved to the user
 - Documents with a ranking about a given threshold is selected
 - But no ranking information of filtered documents is presented to user
- **Routing**: a variation of filtering
 - Ranking information of the filtered documents is presented to the user
 - The user can examine the Top N documents
- The vector model is preferred (for simplicity!)
 - For filtering/routing, the crucial step is not ranking but the construction of user profiles

Filtering: User Profile Construction

- Simplistic approach
 - Describe the profile through a set of keywords
 - The user provides the necessary keywords
 - User is not involved too much
 - Drawback: If user not familiar with the service (e.g. the vocabulary of upcoming documents)
- Elaborate approach
 - Collect information from user the about his preferences
 - Initial (primitive) profile description is adjusted by relevance feedback (from relevant/irrelevant information)
 - User intervention
 - Profile is continuously changing

A Formal Characterization of IR Models

- The quadruple /**D**, **Q**, *F*, $R(q_i, d_j)$ / definition
 - D: a set composed of logical views (or representations) for the documents in collection
 - Q: a set composed of logical views (or representations) for the user information needs, i.e., "queries"
 - F: a framework for modeling documents representations, queries, and their relationships and operations
 - $R(q_i, d_j)$: a ranking function which associates a real number with $q_i \in \mathbf{Q}$ and $d_j \in \mathbf{D}$
 - Define an ordering among the documents d_j with regard to the query q_i

A Formal Characterization of IR Models (cont.)

- Classic Boolean model
 - Set of documents
 - Standard operations on sets
- Classic vector model
 - *t*-dimensional vector space
 - Standard linear algebra operations on vectors
- Classic probabilistic model
 - Sets (relevant/irrelevant document sets)
 - Standard probabilistic operations
 - Mainly the Bayes' theorem

Basic Concepts

- Each document represented by a set of representative keywords or index terms
- An index term is a word or group of consecutive words in a document whose semantics is useful for remembering (summarizing) the document main themes
- Usually, index terms are nouns because nouns have meaning by themselves
 - Adjectives, adverbs, and connectives mainly work as complements
- However, search engines assume that all words are index terms (full text representation)

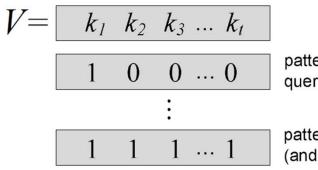
Basic Concepts (cont.)

- Let,
 - -t be the number of index terms in the document collection
 - $-k_i$ be a generic index term
- Then,
 - The **vocabulary** $V = \{k_1, \ldots, k_t\}$ is the set of all distinct index terms in the collection

$$V = \begin{bmatrix} k_1 & k_2 & k_3 & \dots & k_t \end{bmatrix}$$
vocabulary of *t* index terms

Basic Concepts (cont.)

 Documents and queries can be represented by patterns of term co-occurrences



pattern that represents documents (and queries) with the term k_1 and no other

pattern that represents documents (and queries) with all index terms

- Each of these patterns of term co-occurrence is called a term conjunctive component
- For each document d_j (or query q) we associate a unique term conjunctive component c(d_j) (or c(q))

The Term-Document Matrix

- The occurrence of a term *k_i* in a document *d_j* establishes a relation between *k_i* and *d_j*
- A **term-document relation** between *k_i* and *d_j* can be quantified by the frequency of the term in the document
- In matrix form, this can written as

$$\begin{array}{ccc} d_1 & d_2 \\ k_1 & \left[\begin{array}{ccc} f_{1,1} & f_{1,2} \\ f_{2,1} & f_{2,2} \\ f_{3,1} & f_{3,2} \end{array} \right]$$

where each *f_{i,j}* element stands for the frequency of term *ki* in document *dj*

Basic Concepts (cont.)

- Not all terms are equally useful for representing the document contents
 - less frequent terms allow identifying a narrower set of documents
- The importance of the index terms is represented by weights associated to them
 - Let
 - k_i be an index term
 - d_i be a document
 - w_{ij} be a weight associated with (k_i, d_j)
 - \$\vec{d_j}=(w_{1,j}, w_{2,j}, ..., w_{t,j})\$: an index term vector for the document \$d_j\$
 \$g_i(\vec{d_j})=w_{i,j}\$
 - The weight w_{ij} quantifies the importance of the index term for describing the document semantic contents

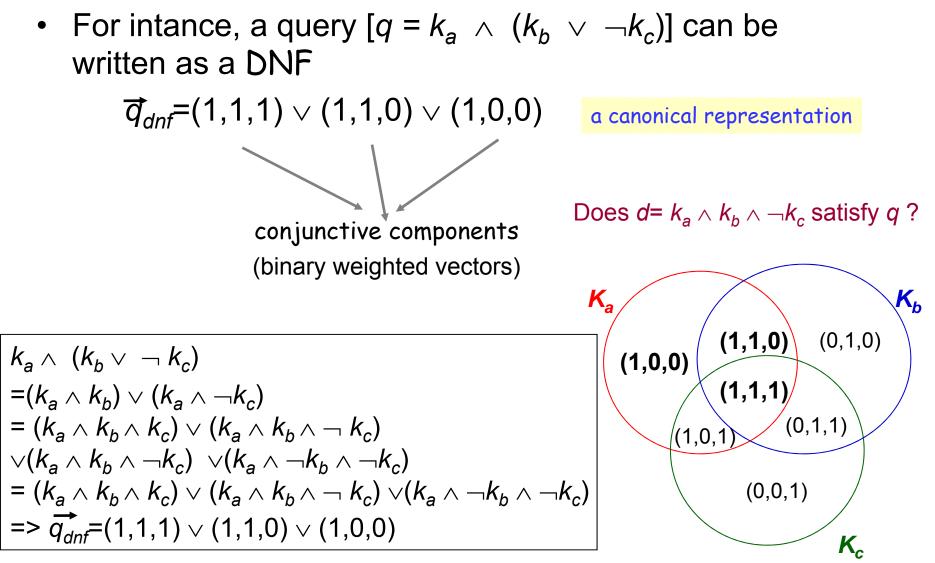
Classic IR Models - Basic Concepts (cont.)

- Correlation of index terms
 - E.g.: computer and network
 - Consideration of such correlation information does not consistently improve the final ranking result
 - Complex and slow operations
- Important Assumption/Simplification
 - Index term weights are mutually independent ! (bag-of-words modeling)
 - However, the appearance of one word often attracts the appearance of the other (e.g., "Computer" and "Network")

The Boolean Model

- Simple model based on set theory and Boolean algebra
- A query is specified as boolean expressions with and, or, not operations (connectives)
 - Precise semantics, neat formalism and simplicity
 - Terms are either present or absent, i.e., $w_{ij} \in \{0,1\}$
- A query can be expressed as a disjunctive normal form (DNF) composed of conjunctive components
 - $-\vec{q}_{dnf}$: the DNF for a query q
 - $\vec{q_{cc}}$: conjunctive components (binary weighted vectors) of $\vec{q_{dnf}}$

The Boolean Model (cont.)



IR-Berlin Chen 26

The Boolean Model (cont.)

The similarity of a document d_j to the query q (i.e., premise of relevance)

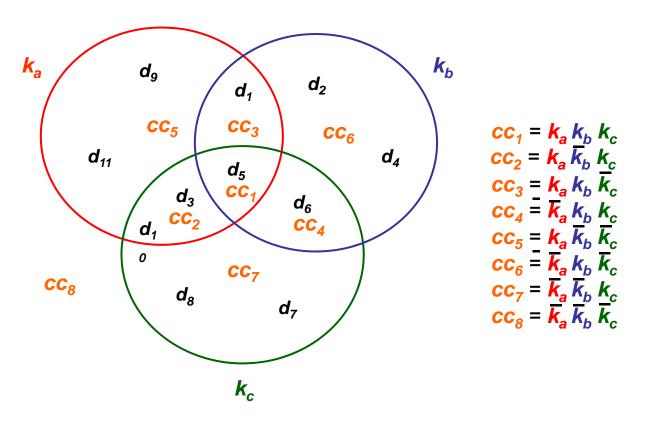
$$sim(d_{j},q) = \begin{cases} 1: \text{ if } \exists \overrightarrow{q_{cc}} \mid (\overrightarrow{q_{cc}} \in \overrightarrow{q_{dnf}} \land (\forall k_{i}, g_{i}(\overrightarrow{d_{j}}) = g_{i}(\overrightarrow{q_{cc}})) \\ 0: \text{ otherwise} \end{cases}$$

A document is represented as a conjunctive normal form

- $sim(d_j,q)=1$ means that the document d_j is relevant to the query q
- Each document d_j can be represented as a conjunctive component (vector)

Advantages of the Boolean Model

- Simple queries are easy to understand and relatively easy to implement (simplicity and neat model formulation)
- The dominant language (model) in commercial (bibliographic) systems until the WWW



IR– Berlin Chen 28

Drawbacks of the Boolean Model

- Retrieval based on binary decision criteria with no notion of partial matching (no term weighting)
 - No noton of a partial match to the query condition
 - No ranking (ordering) of the documents is provided (absence of a grading scale)
 - Term freqency counts in documents are not considered
 - Much more like a data retrieval model

Drawbacks of the Boolean Model (cont.)

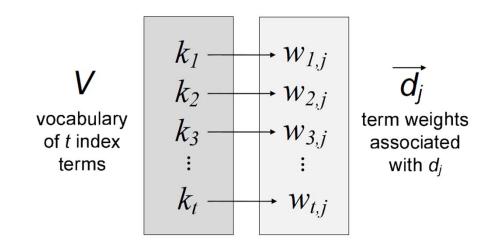
- Information need has to be translated into a Boolean expression which most users find awkward
 - The Boolean queries formulated by the users are most often too simplistic (difficult to specify what is wanted)
- As a consequence, the Boolean model frequently returns either too few or too many documents in response to a user query
- However, the Boolean model is still dominant model with commercial document database systems

Term Weighting

- The terms of a document are not equally useful for describing the document contents
- In fact, there are index terms which are simply vaguer than others
- There are (occurrence) properties of an index term which are useful for evaluating the importance of the term in a document
- For instance, a word which appears in all documents of a collection is completely useless for retrieval tasks
 - However, deciding on the importance of a term for summarizing the contents of a document is not a trivial issue

- To characterize term importance, we associate a weight w_{i,j} > 0 with each term k_i that occurs in the document d_j
 If k_i that does not appear in the document d_j, then w_{i,j} = 0
- The weight *w*_{*i*,*j*} quantifies the importance of the index term *k*_{*i*} for describing the contents of document *d*_{*j*}
- These weights are useful to compute a rank for each document in the collection with regard to a given query

- Let,
 - $-k_i$ be an index term and dj be a document
 - $V = \{k_1, k_2, ..., k_t\}$ be the set of all index terms
 - $w_{i,j} > 0$ be the weight associated with (k_i, d_j)
- Then we define $\vec{d_j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$ as a weighted vector that contains the weight $w_{i,j}$ of each term $k_i \in V$ in the document d_j

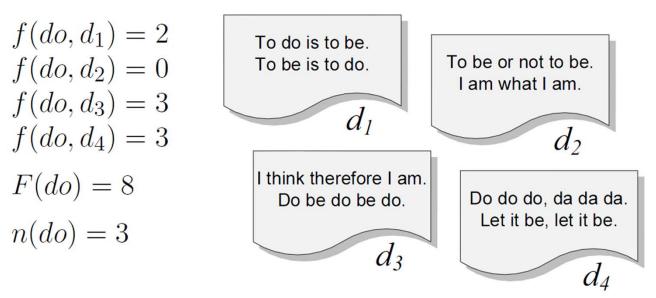


- The weights *w*_{*i,j*} can be computed using the **frequencies of occurrence** of the terms within documents
- Let *f*_{*i*,*j*} be the frequency of occurrence of index term *k*_{*i*} in the document *d*_{*j*}
- The **total frequency of occurrence** *F^{<i>i*} of term *k^{<i>i*} in the collection is defined as

$$F_i = \sum_{j=1}^N f_{i,j}$$

– where *N* is the number of documents in the collection

- The **document frequency** *n^{<i>i*} of a term *k^{<i>i*} is the number of documents in which it occurs
 - Notice that $n_i \leq F_i$
- For instance, in the document collection below, the values *f*_{*i*,*j*}, *F*_{*i*} and *n*_{*i*} associated with the term "*do*" are



Term-Term Correlation Matrix

- For classic information retrieval models, the index term weights are assumed to be **mutually independent**
 - This means that *wi*,*j* tells us nothing about *wi*+1,*j*
- This is clearly a simplification because occurrences of index terms in a document are not uncorrelated
- For instance, the terms computer and network tend to appear together in a document about computer networks
 - In this document, the appearance of one of these terms attracts the appearance of the other
 - Thus, they are correlated and their weights should reflect this correlation

Term-Term Correlation Matrix (cont.)

- To take into account term-term correlations, we can compute a correlation matrix
- Let $\overrightarrow{M} = [m_{ij}]$ be a term-document matrix $t \times N$ where $m_{ij} = w_{i,j}$

• The matrix $\vec{C} = \vec{M} \cdot \vec{M^t}$ is a term-term correlation matrix

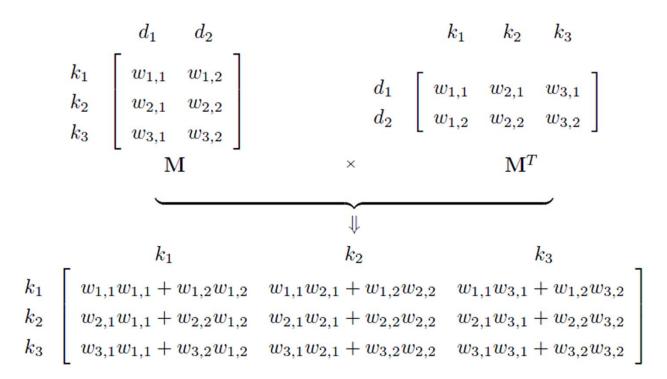
 Each element c_{u,v} ∈ C expresses a correlation between terms k_u and k_v, given by

$$c_{uv} = \sum_{d_j} w_{u,j} \times w_{v,j}$$

- Higher the number of documents in which the terms k_u and k_v co-occur, stronger is this correlation

Term-Term Correlation Matrix (cont.)

• Term-term correlation matrix for a sample collection



 Further, we can take advantage of factors such as term-term distances inside documents to improve the estimates of termterm correlations (see Chapter 5)

TF-IDF Weights

- Term frequency (TF)
- Inverse document frequency (IDF)

They are foundations (building blocks) of the most popular term weighting scheme in IR, called **TF-IDF**

Term Frequency (TF) Weights

• The simplest formulation is

$$tf_{i,j} = f_{i,j}$$

The frequency of occurrence of index term *ki* im the document *dj*

• A variant of *tf* weight used in the literature is

$$tf_{i,j} = \begin{cases} 1 + \log f_{i,j} & \text{if } f_{i,j} > 0\\ 0 & \text{otherwise} \end{cases}$$

– Where the log is taken in base 2

 The log expression is a the preferred form because it makes them directly comparable to *idf* weights, as we later discuss

Term Frequency (TF) Weights: An Example

• Log tf weights tfi,j for the example collection

 d_4

To do is to be.	Vo	Vocabulary		$tf_{i,1}$	$tf_{i,2}$	$tf_{i,3}$	$tf_{i,4}$
To be is to do.	1	to		3	2	-	
	2	do		2	-	2.585	2.585
d_1	3	is		2	-	-	- :
To be or not to be.	4	be		2	2	2	2
I am what I am.	5	or		-	1	-	-
	6	not		- 1	1	-	-
d_2	7	I		-	2	2	-
	8	am		-	2	1	·-
I think therefore I am.	9	what		-	1	-	
Do be do be do.	10	think		-	-	1	-
	11	therefore		-	-	1	-
d_3	12	da		-	-	-	2.585
	13	let		-	-	-	2
Do do do, da da da.	14	it		-	-	-	2
Let it be, let it be.	<u>н</u>						

Inverse Document Frequency

- We call **document exhaustivity** the number of index terms assigned to a document
- The more index terms are assigned to a document, the higher is the probability of retrieval for that document
 - If too many terms are assigned to a document, it will be retrieved by queries for which it is not relevant
- **Optimal exhaustivity**: we can circumvent this problem by optimizing the number of terms per document
- Another approach is by weighting the terms differently, by exploring the notion of term specificity

Inverse Document Frequency (cont.)

- **Specificity** is a property of the term semantics
 - Term is more or less specific depending on its meaning
 - To exemplify, the term beverage is less specific than the terms tea and beer
 - We could expect that the term beverage occurs in more documents than the terms tea and beer
- Term specificity should be interpreted as a statistical rather than semantic property of the term
- Statistical term specificity: the inverse of the number of documents in which the term occurs

Inverse Document Frequency : Derivation

- Terms are distributed in a text according to **Zipf's Law**
- Thus, if we sort the vocabulary terms in decreasing order of document frequencies we have

$$n(r) \propto r^{-\alpha}$$

There is an inverse relationship between n(r) and r

- Where *n*(*r*) refers to the *r*-th largest **document frequency** and *α* is an empirical constant
- That is, the **document frequency** of term *k_i* is an exponential function of its rank

$$n(r) = Cr^{-\alpha}$$

- where C is a second empirical constant

Inverse Document Frequency : Derivation

Setting α = 1 (simple approximation for English collections) and taking logs we have

$$\log n(r) = \log C - \log r$$

- For r = 1, we have C = n(1), i.e., the value of C is the largest document frequency
 - This value (i.e., C's value) works as a normalization constant
- An alternative is to do the normalization assuming C = N, where N is the number of documents in the collection

$$\log r \approx \log N - \log n(r) = \log \frac{N}{n(r)}$$

Inverse Document Frequency : Derivation

• Let *k*^{*i*} be the term with the *r*-th largest document frequency, i.e., $n(r) = n_i$. Then,

$$IDF_i = \log \frac{N}{n_i}$$
 Sparck Jones

- where *id* is called the **inverse document frequency** of term ki

 IDF provides a foundation for modern term weighting schemes and is used for ranking in almost all IR systems

Inverse Document Frequency : An Example

• IDF values for example collection

To do is to be. To be is to do.		term	n_i	$idf_i = \log(N/n_i)$
	1	to	2	1
d_1	2	do	3	0.415
	3	is	1	2
To be or not to be.	4	be	4	0
I am what I am.	5	or	1	2
	6	not	1	2
d_2	7	l l	2	1
I think therefore Lam	8	am	2	1
I think therefore I am. Do be do be do.	9	what	1	2
Do be do be do.	10	think	1	2
d_3	11	therefore	1	2
	12	da	1	2
Do do do, da da da.	13	let	1	2
Let it be, let it be.	14	it	1	2
d_4				

More on Inverse Document Frequency

- In a large real collection, we expect the most selective (discriminative) terms to be nouns or noun groups (a noun composed of various words)
- The least selective terms are usually article, conjunctions, and prepositions which are frequently referred to as stop words
- IDF weights provide a foundation for modern term weighting schemes and are used by almost any modern IR system

TF-IDF weighting scheme

Salton and Yang, 1973

- The best known term weighting schemes use weights that combine IDF factors with term frequencies
- Let *w*_{*i*,*j*} be the term weight associated with the term *k*_{*i*} and the document *d*_{*j*}
- Then, we define

$$w_{i,j} = \begin{cases} \left(1 + \log f_{i,j}\right) \times \log \frac{N}{n_i} & \text{if } f_{i,j} > 0\\ 0 & \text{otherwise} \end{cases}$$

Which is referred to as a TF-IDF weighting scheme

TF-IDF weighting scheme: An Example

• TF-IDF weights of all terms present in our example document collection

To do is to be. To be is to do.			d_1	d_2	d_3	d_4
			•	•		
	1	to	3	2	-	-
d_1	2	do	0.830	-	1.073	1.073
	3	is	4	-	-	-
To be or not to be.	4	be	-	-	-	-
I am what I am.	5	or	-	2	-	-
	6	not	-	2	-	-
d_2	7	I.	-	2	2	-
l think therefore I am. Do be do be do.	8	am	-	2	1	-
	9	what	-	2	-	-
	10	think	-	-	2	-
d_3	11	therefore	-	-	2	-
	12	da	-	-	-	5.170
Do do do, da da da. Let it be, let it be.	13	let	-	-	-	4
	14	it	-	-	-	4
d_1						

 d_4

Variants of TF-IDF

- Several variations of the above expression for TF-IDF weights are described in the literature
- For TF weights, five distinct variants are illustrated below

		tf weight
	binary	{0,1}
(frequency count)	raw frequency	$f_{i,j}$
	log normalization	$1 + \log f_{i,j}$
	double normalization 0.5	$0.5 + 0.5 \frac{f_{i,j}}{\max_i f_{i,j}}$
	double normalization K	$K + (1 - K) \frac{f_{i,j}}{\max_i f_{i,j}}$

Variants of TF-IDF (Cont.)

• Five distinct variants of **IDF weights**

	idf weight
unary	1
inverse frequency	$\log \frac{N}{n_i}$
inv frequency smooth	$\log(1 + \frac{N}{n_i})$
inv frequeny max	$\log(1 + \frac{\max_i n_i}{n_i})$
probabilistic inv frequency	$\log \frac{N-n_i}{n_i}$

- The log normalization variant uses the logarithm to assign diminishing increases to the weight (as the frequency increases), analogously to IDF weights
- The probabilistic inverse frequency variant (would have negative values) arises from the classic probabilistic model, as discussed later on

Variants of TF-IDF (Cont.)

- Distinct combinations of TF variants and IDF variants yield various forms of TF-IDF weights
 - Recommended TF-IDF weighting schemes proposed by Salton and his colleague

weighting scheme	document term weight	query term weight	
1	$f_{i,j} * \log \frac{N}{n_i}$	$\left(0.5 + 0.5 \frac{f_{i,q}}{\max_i f_{i,q}}\right) * \log \frac{N}{n_i}$	Salton & Buckley
2	$1 + \log f_{i,j}$	$\log(1 + \frac{N}{n_i})$	
3	$(1 + \log f_{i,j}) * \log \frac{N}{n_i}$	$(1 + \log f_{i,q}) * \log \frac{N}{n_i}$	

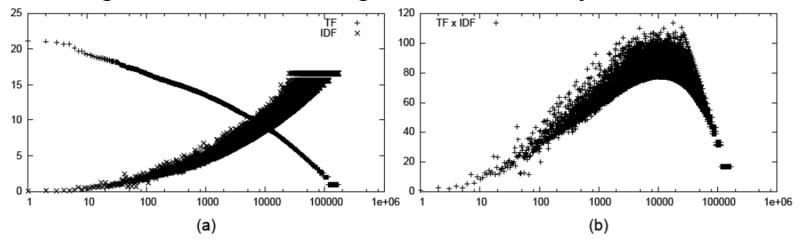
TF-IDF Properties

- Consider the TF, IDF, and TF-IDF weights for the Wall Street Journal reference collection
- To study their behavior, we would like to plot them together
- While IDF is computed over all the collection, TF is computed on a per document basis
 - Thus, we need a representation of TF based on all the collection, which is provided by the term collection frequency *TFi*
- This reasoning leads to the following TF and IDF term weight

$$TF_i = 1 + \sum_{j=1}^N f_{i,j} \qquad IDF_i = \frac{N}{n_i}$$

TF-IDF Properties (Cont.)

• Plotting TF and IDF in logarithmic scale yields



- Statistics are gathered from the Wall Street Journal collection
- The horizontal axis corresponding the rank of each term according to TF
- We observe that TF and IDF weights present **power-law** behaviors that balance each other
- The terms of intermediate IDF values display maximum TF-IDF weights and are most interesting for ranking

In statistics, a power law is a functional relationship between two quantities, where one quantity varies as a power of another.

TF-IDF Properties (Cont.)

 Common terms (such as stopwords) and rare terms (such as foreign words or misspellings) are not of great value for ranking

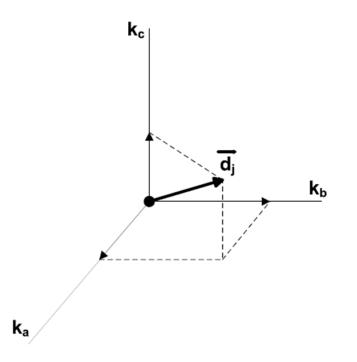
Document Length Normalization

- Document sizes might vary widely
- This is a problem because longer documents are more likely to be retrieved by a given query
- To compensate for this undesired effect, we can divide the rank of each document by its length
- This procedure consistently leads to better ranking, and it is called **document length normalization**

- Methods of document length normalization depend on the representation adopted for the documents:
 - Size in bytes: consider that each document is represented simply as a stream of bytes
 - Number of words: each document is represented as a single string, and the document length is the number of words in it (compute document lengths at a syntactic level, which includes more semantics)
 - Vector norms: documents are represented as vectors of weighted terms $\vec{d_j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$
 - The weights of the various terms are taken into consideration)

$$|\vec{d_j}| = \sqrt{\sum_{i}^{t} w_{i,j}^2}$$

- Documents represented as vectors of weighted terms
 - Each term of a collection is associated with an orthonormal unit vector k_i in a t-dimensional space
 - For each term k_i of a document d_j is associated the term vector
 - component $w_{i,j} \times \vec{k_i}$



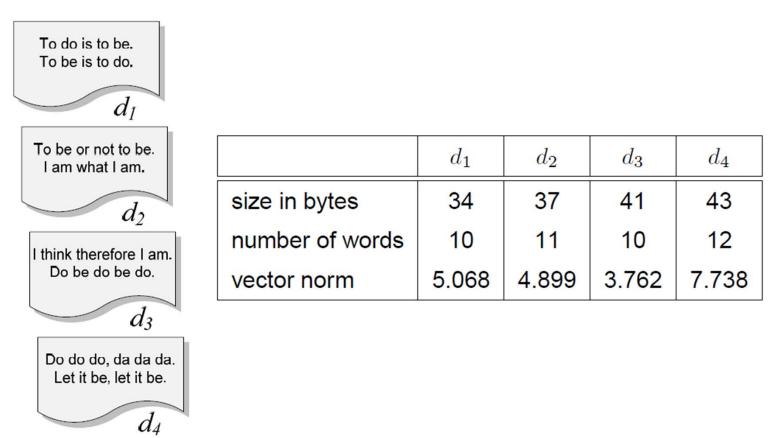
• The document representation $\vec{d_j}$ is a vector composed of all its term vector components

$$\vec{d}_{j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

• The document length is given by the norm of this vector, which is computed as follows

$$\left|\vec{d}_{j}\right| = \sqrt{\sum_{i=1}^{t} w_{i,j}^{2}}$$

- Three variants of document lengths for the example
- collection



The Vector Model

SMART system Cornell U., 1968

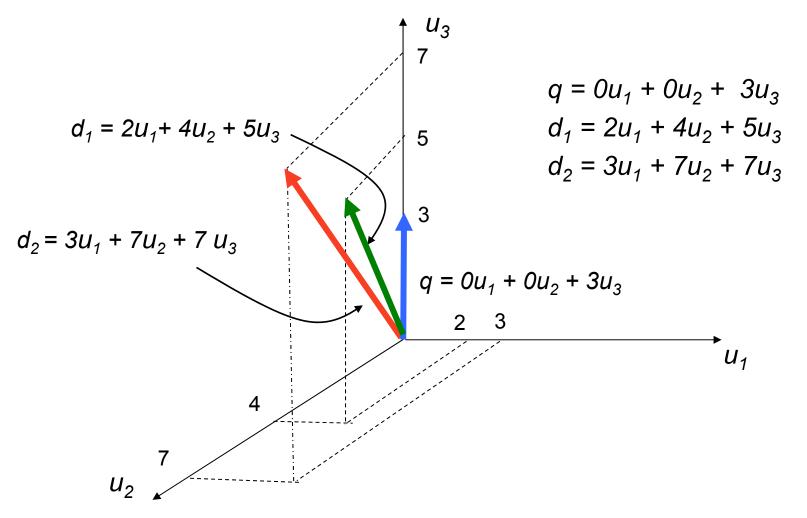
- Also called Vector Space Model (VSM)
- Some perspectives
 - Use of binary weights is too limiting
 - Non-binary weights provide consideration for partial matches
 - These term weights are used to compute a degree of similarity between a query and each document
 - Ranked set of documents provides better matching for user information need

- Definition:
 - $w_{ij} > = 0$ whenever $k_i \in d_j$
 - $w_{iq} \ge 0$ whenever $k_i \in q$

totally t terms in the vocabulary

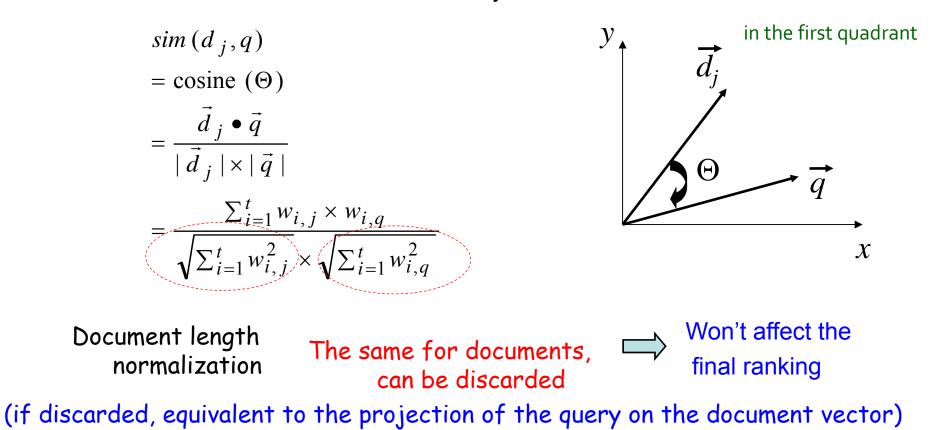
- document vector $\vec{d_j} = (w_{1j}, w_{2j}, ..., w_{tj})$
- query vector $\overrightarrow{q} = (w_{1q}, w_{2q}, ..., w_{tq})$
- To each term k_i is associated a unitary (basis) vector \vec{u}_i
- The unitary vectors $\vec{u_i}$ and $\vec{u_s}$ are assumed to be **orthonormal** (i.e., index terms are assumed to occur independently within the documents)
- The *t* unitary vectors $\vec{u_i}$ form an orthonormal basis for a *t*-dimensional space
 - Queries and documents are represented as weighted vectors

- How to measure the degree of similarity
 - Distance, angle or projection?



IR-Berlin Chen 64

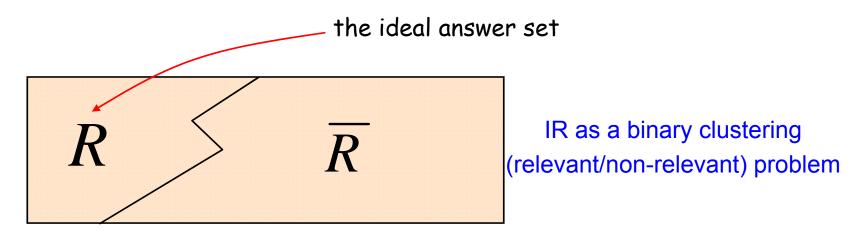
• The similarity of a document d_i to the query q



- Establish a threshold on $sim(d_j,q)$ and retrieve documents with a degree of similarity above the threshold

- Degree of similarity \implies Relevance
 - Usually, $w_{ij} > = 0 \& w_{iq} > = 0$
 - Cosine measure ranges between 0 and 1
 - $sim(d_j,q) \approx 1 \implies highly relevant !$
 - $sim(d_j, q) \approx 0 \implies almost irrelevant !$

• The role of index terms



Document collection

- Which index terms (features) better describe the relevant class
 - Intra-cluster similarity (TF-factor)
 - Inter-cluster dissimilarity (IDF-factor)

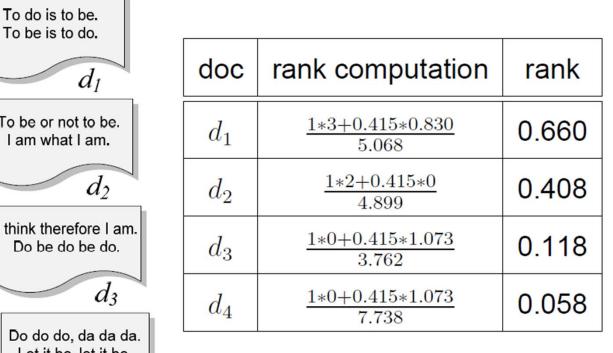
balance between these two factors

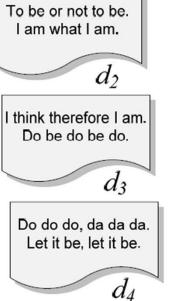
• The vector model with **TF-IDF** weights is a good ranking strategy with general collections, for example

$$w_{i,q} = \left(1 + \log f_{i,q}\right) \times \log\left(\frac{N}{n_i}\right)$$
$$w_{i,j} = \left(1 + \log f_{i,j}\right) \times \log\left(\frac{N}{n_i}\right)$$

- These equations should only be applied for values of term frequency greater than zero
- If the term frequency is zero, the respective weight is also zero
- The vector model is usually as good as the known ranking alternatives. It is also simple and fast to compute

- Document ranks computed by the Vector model for the ullet
- query "to do" (see TF-IDF weight values in Slide 49) \bullet





- Experimental Results on TDT Chinese collections
 - Mandarin Chinese broadcast news
 - Measured in *mean* Average Precision (*m*AP)
 - ACM TALIP (2004)

Retrieval Results for the Vector Space Model

		Word	l-level	Syllable-level		
Average Precision		S(N), N=1	S(N), N=1~2	S(N), N=1	S(N), N=1~2	
TDT-2	TD	0.5548	0.5623	0.3412	0.5254	
(Dev.)	SD	0.5122	0.5225	0.3306	0.5077	
TDT-3	TD	0.6505	0.6531	0.3963	0.6502	
(Eval.)	SD	0.6216	0.6233	0.3708	0.6353	

$$R(q,d) = \sum_{j} w_j \cdot R_j(\vec{q}_j, \vec{d}_j),$$

types of index terms

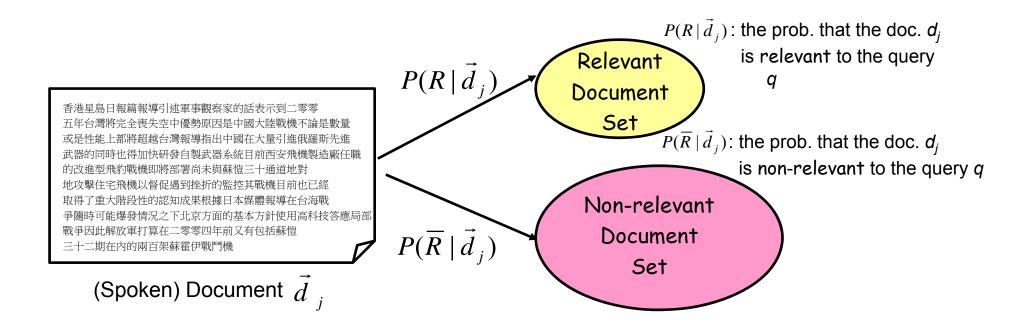
- Advantages
 - Term-weighting improves quality of the answer set
 - Partial matching allows retrieval of docs that approximate the query conditions
 - Cosine ranking formula sorts documents according to degree of similarity to the query
 - Document normalization is naturally built-in into the ranking
- Disadvantages
 - Assumes mutual independence of index terms
 - Not clear that this is bad though (??): leveraging term dependencies is challenging and might lead to poor results, if not done appropriately

The Probabilistic Model

Roberston & Sparck Jones 1976

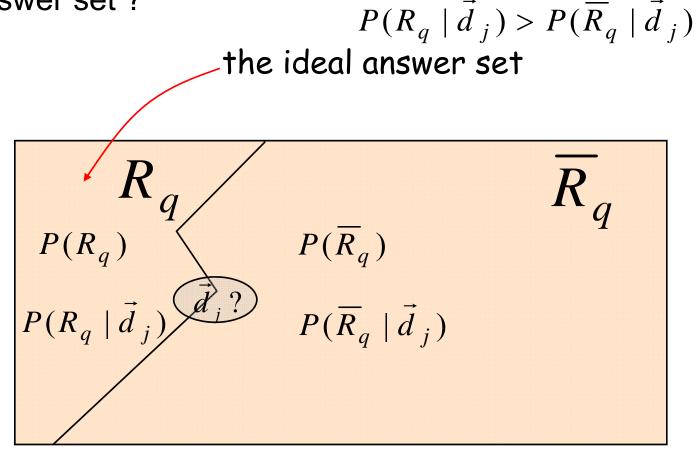
- Known as the Binary Independence Retrieval (BIR) model
 - "Binary": all weights of index terms are binary (0 or 1)
 - "Independence": index terms are independent !
- Capture the IR problem using a probabilistic framework
 - Bayes' decision rule

- Retrieval is modeled as a classification process
 - Two classes for each query: the relevant or non-relevant documents



- Given a user query, there is an ideal answer set
 - Contain exactly the relevant documents and no others
 - The querying process as a specification of the properties of this ideal answer set (R_q)
- Problem: what are these properties?
 - Only the semantics of index terms can be used to characterize these properties
- Guess at the beginning what they could be
 - I.e., an initial guess for the preliminary probabilistis description of ideal answer set
- Improve/Refine the probabilistic description of the answer set by iterations/interations
 - Without (or with) the assistance from a human subject

• How to improve the probabilistic description of the ideal answer set ? $P(R + \vec{d}) > P(\overline{R} + \vec{d})$



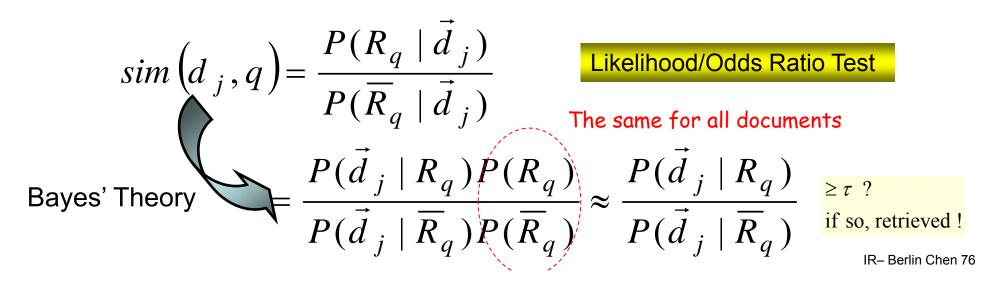
Document Collection

 Given a particular document d_j, calculate the probability of belonging to the relevant class, retrieve if greater than probability of belonging to non-relevant class

$$P(R_q \mid \vec{d}_j) > P(\overline{R}_q \mid \vec{d}_j)$$

Bayes' Decision Rule

• The similarity of a document d_i to the query q



- Explanation
 - $P(R_q)$: the prob. that a doc randomly selected form the entire collection is relevant to the query q
 - = $P(d_j | R_q)$: the prob. that the doc d_j is relevant to the query q (selected from the relevant doc set R)
- Further assume independence of index terms

$$sim \left(d_{j}, q \right) \approx \frac{P\left(\vec{d}_{j} \mid R_{q} \right)}{P\left(\vec{d}_{j} \mid \overline{R}_{q} \right)} \begin{cases} P(k_{i} \mid R_{q}): \text{ prob. that } k_{i} \text{ is present in a doc} \\ randomly selected form the set R \\ P(\overline{k_{i}} \mid R_{q}): \text{ prob. that } k_{i} \text{ is not present in a doc} \\ randomly selected form the set R \\ P(k_{i} \mid R_{q}) : P(k_{i} \mid R_{q}) \\ \hline \Pi_{g_{i}}\left(\vec{d}_{j} \right) = 1 P\left(k_{i} \mid R_{q} \right) \\ \hline \Pi_{g_{i}}\left(\vec{d}_{j} \right) = 1 P\left(k_{i} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\vec{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\vec{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\vec{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\vec{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\vec{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \right) = 0 P\left(\overline{k_{i}} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \mid \overline{R}_{q} \right) \\ \hline \Pi_{g_{i}}\left(\overline{d}_{j} \mid \overline{R}_{q} \right)$$

- Further assume independence of index terms
 - Another representation

$$sim \left(d_{j}, q\right) \approx \frac{\prod_{i=1}^{t} \left[P\left(k_{i} \mid R_{q}\right)^{g_{i}}\left(\overline{d}_{j}\right)P\left(\overline{k_{i}} \mid R_{q}\right)^{1-g_{i}}\left(\overline{d}_{j}\right)\right]}{\prod_{i=1}^{t} \left[P\left(k_{i} \mid \overline{R_{q}}\right)^{g_{i}}\left(\overline{d}_{j}\right)P\left(\overline{k_{i}} \mid \overline{R_{q}}\right)^{1-g_{i}}\left(\overline{d}_{j}\right)\right]}$$

– Take logarithms

$$sim\left(d_{j},q\right) \approx \log \frac{\prod_{i=1}^{t} \left[P\left(k_{i} \mid R_{q}\right)^{g_{i}\left(\overline{d}_{j}\right)}P\left(\overline{k_{i}} \mid R_{q}\right)^{1-g_{i}\left(\overline{d}_{j}\right)}\right]}{\prod_{i=1}^{t} \left[P\left(k_{i} \mid \overline{R_{q}}\right)^{g_{i}\left(\overline{d}_{j}\right)}\left(P\left(\overline{k_{i}} \mid \overline{R_{q}}\right)\right)^{1-g_{i}\left(\overline{d}_{j}\right)}\right]}\right]}$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{j}\right)\log \frac{P\left(k_{i} \mid R_{q}\right)P\left(\overline{k_{i}} \mid \overline{R_{q}}\right)}{P\left(k_{i} \mid \overline{R_{q}}\right)P\left(\overline{k_{i}} \mid R_{q}\right)} + \sum_{i=1}^{t}\log \frac{P\left(\overline{k_{i}} \mid R_{q}\right)}{P\left(\overline{k_{i}} \mid \overline{R_{q}}\right)}$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{j}\right)\left[\log \frac{P\left(k_{i} \mid R_{q}\right)}{1-P\left(k_{i} \mid R_{q}\right)} + \log \frac{1-P\left(k_{i} \mid \overline{R_{q}}\right)}{P\left(k_{i} \mid \overline{R_{q}}\right)}\right]$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{j}\right)\left[\log \frac{P\left(k_{i} \mid R_{q}\right)}{1-P\left(k_{i} \mid R_{q}\right)} + \log \frac{1-P\left(k_{i} \mid \overline{R_{q}}\right)}{P\left(k_{i} \mid \overline{R_{q}}\right)}\right]$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{j}\right)\left[\log \frac{P\left(k_{i} \mid R_{q}\right)}{1-P\left(k_{i} \mid R_{q}\right)} + \log \frac{1-P\left(k_{i} \mid \overline{R_{q}}\right)}{P\left(k_{i} \mid \overline{R_{q}}\right)}\right]$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{i}\right)\left[\log \frac{P\left(k_{i} \mid R_{q}\right)}{1-P\left(k_{i} \mid R_{q}\right)} + \log \frac{1-P\left(k_{i} \mid \overline{R_{q}}\right)}{P\left(k_{i} \mid \overline{R_{q}}\right)}\right]$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{i}\right)\left[\log \frac{P\left(k_{i} \mid R_{q}\right)}{1-P\left(k_{i} \mid R_{q}\right)} + \log \frac{1-P\left(k_{i} \mid \overline{R_{q}}\right)}{P\left(k_{i} \mid \overline{R_{q}}\right)}\right]$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{i}\right)\left[\log \frac{P\left(k_{i} \mid R_{q}\right)}{1-P\left(k_{i} \mid R_{q}\right)} + \log \frac{1-P\left(k_{i} \mid \overline{R_{q}}\right)}{P\left(k_{i} \mid \overline{R_{q}}\right)}\right]$$

$$= \sum_{i=1}^{t} g_{i}\left(\overline{d}_{i}\right)\left[\log \frac{P\left(k_{i} \mid R_{q}\right)}{1-P\left(k_{i} \mid R_{q}\right)} + \log \frac{1-P\left(k_{i} \mid \overline{R_{q}}\right)}{P\left(k_{i} \mid \overline{R_{q}}\right)}\right]$$

- Further assume independence of index terms
 - Use term weighting $w_{i,q} \times w_{i,j}$ to replace $g_i(\vec{d}_j)$

$$sim(d_j, q) \approx \sum_{i=1}^t g_i(\overline{d}_j) \left[\log \frac{P(k_i \mid R_q)}{1 - P(k_i \mid R_q)} + \log \frac{1 - P(k_i \mid \overline{R}_q)}{P(k_i \mid \overline{R}_q)} \right]$$
$$\approx \sum_{i=1}^t w_{i,q} \times w_{i,j} \times \left[\log \frac{P(k_i \mid R_q)}{1 - P(k_i \mid R_q)} + \log \frac{1 - P(k_i \mid \overline{R}_q)}{P(k_i \mid \overline{R}_q)} \right]$$

Binary weights (0 or 1) are used here

 R_q is not known at the beginning \implies How to compute $P(k_i | R_q)$ and $P(k_i | \overline{R_q})$

- Initial Assumptions
 - $P(k_i | R_q) = 0.5$ is constant for all indexing terms
 - P(k_i | R
 _q) = n_i/N :approx. by distribution of index terms among all doc in the collection, i.e. the document frequency of indexing term k_i (Suppose that |R|>>|R|, N ≈ |R|))
 (n_i: no. of doc that contain k_i. N : the total doc no.)
- Re-estimate the probability distributions
 - Use the initially retrieved and ranked Top *D* documents

$$P(k_i \mid R_q) = \frac{D_i}{D}$$
$$P(k_i \mid \overline{R}_q) = \frac{n_i - D_i}{N - D}$$

- Handle the problem of "zero" probabilities
 - Add constants as the adjust constant

$$P(k_i \mid R_q) = \frac{D_i + 0.5}{D+1}$$
$$P(k_i \mid \overline{R}_q) = \frac{n_i - D_i + 0.5}{N - D + 1}$$

- Or use the information of document frequency

$$P(k_i \mid R_q) = \frac{D_i + \frac{n_i}{N}}{D+1}$$
$$P(k_i \mid \overline{R}_q) = \frac{n_i - D_i + \frac{n_i}{N}}{N-D+1}$$

- Advantages
 - Documents are ranked in decreasing order of probability of relevance (optimality)
- Disadvantages
 - Need to guess initial estimates for $P(k_i | R)$
 - Estimate the characteristics of the relevant class/set R through user-identified examples of relevant docs (without true training data)
 - All weights are binary: the method does not take into account *tf* and *idf* factors
 - Independence assumption of index terms
 - The lack of document length normalization

More advanced variations of the probabilistic models, such as the BM-25 model, correct these deficiencies to yield improved retrieval.

Brief Comparisons of Classic Models

- Boolean model does not provide for partial matches and is considered to be the weakest classic model
- Salton and Buckley did a series of experiments that indicated that, in general, the vector model outperforms the probabilistic model with general collections
 - This also seems to be the dominant thought among researchers and practitioners of IR
 - The vector model, whose weighting scheme is firmly grounded on information theory, provides a simple yet effective ranking formula for general collections