Confidence Intervals

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

1. W. Navidi. Statistics for Engineering and Scientists. Chapter 5 \& Teaching Material

Introduction

- We have discussed point estimates:
$-\hat{p}$ as an estimate of a success probability, $p \quad$ (Bernoulli trials)
- \bar{X} as an estimate of population mean, μ
- These point estimates are almost never exactly equal to the true values they are estimating
- In order for the point estimate to be useful, it is necessary to describe just how far off from the true value it is likely to be
- Remember that one way to estimate how far our estimate is from the true value is to report an estimate of the standard deviation, or uncertainty, in the point estimate
- In this chapter, we can obtain more information about the estimation precision by computing a confidence interval when the estimate is normally distributed

Revisit: The Central Limit Theorem

- The Central Limit Theorem
- Let X_{1}, \ldots, X_{n} be a random sample from a population with mean μ and variance σ^{2} (n is large enough)
- Let $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$ be the sample mean
- Let $S_{n}=X_{1}+\cdots+X_{n}$ be the sum of the sample observations. Then if n is sufficiently large,
- $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \quad$ sample mean is approximately normal!
- And $S_{n} \sim N\left(n \mu, n \sigma^{2}\right)$ approximately

Example

- Assume that a large number of independent unbiased measurements, all using the same procedure, are made on the diameter of a piston. The sample mean \bar{X} of the measurements is 14.0 cm (coming from a normal population due to the Central Limit Theorem), and the uncertainty in this quantity, which is the standard deviation $\sigma_{\bar{X}}$ of the sample mean \bar{X}, is 0.1 cm
- So, we have a high level of confidence that the true diameter is in the interval $(13.7,14.3)$. This is because it is highly unlikely that the sample mean will differ from the true diameter by more than three standard deviations

Measured Value $=$ True Value + Bias + Random Error
random variable

Large-Sample Confidence Interval for a Population Mean

- Recall the previous example: Since the population mean will not be exactly equal to the sample mean of 14 , it is best to construct a confidence interval around 14 that is likely to cover the population mean
- We can then quantify our level of confidence that the population mean is actually covered by the interval
- To see how to construct a confidence interval, let μ represent the unknown population mean and let σ^{2} be the unknown population variance. Let X_{1}, \ldots, X_{100} be the 100 diameters of the pistons. The observed value of \bar{X} is the mean of a large sample, and the Central Limit Theorem specifies that it comes from a normal distribution with mean μ and whose standard deviation is

$$
\sigma_{\bar{X}}=\sigma / \sqrt{100}
$$

Illustration of Capturing True Mean

- Here is a normal curve, which represents the distribution of \bar{X}. The middle 95% of the curve, extending a distance of $1.96 \sigma_{\bar{X}}$ on either side of the population mean μ, is indicated. The following illustrates what happens if \bar{X} lies within the middle 95\% of the distribution:

Illustration of Not Capturing True Mean

- If the sample mean lies outside the middle 95% of the curve: Only 5% of all the samples that could have been drawn fall into this category. For those more unusual samples the 95% confidence interval $\bar{X} \pm 1.96 \sigma_{\bar{X}}$ fails to cover the true population mean μ

Computing a 95\% Confidence Interval

- The 95% confidence interval (Cl) is $\bar{X} \pm 1.96 \sigma_{\bar{X}}$
- So, a $95 \% \mathrm{Cl}$ for the mean is 14 ± 1.96 (0.1). We can use the sample standard deviation as an estimate for the population standard deviation, since the sample size is large
- We can say that we are 95% confident, or confident at the 95% level, that the population mean diameter for pistons lies, between 13.804 and 14.196
- Warning: The methods described here require that the data be a random sample from a population. When used for other samples, the results may not be meaningful

Question?

- Does this 95\% confidence interval actually cover the population mean μ ?
- It depends on whether this particular sample happened to be one whose mean (i.e. sample mean) came from the middle 95\% of the distribution or whether it was a sample whose mean (i.e. sample mean) was unusually large or small, in the outer 5% of the population
- There is no way to know for sure into which category this particular sample falls
- In the long run, if we repeated these confidence intervals over and over, then 95% of the samples will have means (i.e. sample mean) in the middle 95% of the population. Then 95% of the confidence intervals will cover the population mean

Extension

- We are not always interested in computing 95\% confidence intervals. Sometimes, we would like to have a different level of confidence
- We can use this reasoning to compute confidence intervals with various confidence levels
- Suppose we are interested in 68% confidence intervals, then we know that the middle 68% of the normal distribution is in an interval that extends $1.0 \sigma_{\bar{X}}$ on either side of the population mean μ
- It follows that an interval of the same length around \bar{X} specifically, will cover the population mean for 68% of the samples that could possibly be drawn
- For our example, a $68 \% \mathrm{Cl}$ for the diameter of pistons is $14.0 \pm$ 1.0(0.1), or (13.9, 14.1)

100(1- α) $\% \mathrm{Cl}$

- Let X_{1}, \ldots, X_{n} be a large ($n>30$) random sample from a population with mean μ and standard deviation σ, so that is approximately normal. Then a level 100(1- α)\% confidence interval for μ is

$$
\bar{X} \pm z_{\alpha / 2} \sigma_{\bar{X}}
$$

$-z_{\alpha / 2}$ is the z-score that cuts off an area of $\alpha / 2$ in the right-hand tail

- where $\sigma_{\bar{X}}=\sigma / \sqrt{n}$. When the value of σ is unknown, it can be replaced with the sample standard deviation s

Z-Table

TABLE A. 2 Cumulative normal distribution (continued)
E.g., $\bar{X} \pm z_{\alpha / 2} \sigma_{\bar{X}}$ and $\alpha=0.05$

$$
=>z_{\alpha / 2}=1.96
$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	. 07	0.08	0.0
0.0	. 5000	. 5040	. 5080	. 5120	. 516	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 853	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998
3.5	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998
3.6	. 9998	. 9998	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999

Particular Cl's

- $\bar{X} \pm \frac{s}{\sqrt{n}} \quad$ is a 68% interval for μ
- $\bar{X} \pm 1.645 \frac{s}{\sqrt{n}}$ is a 90% interval for μ
- $\bar{X} \pm 1.96 \frac{s}{\sqrt{n}}$ is a 95% interval for μ
- $\bar{X} \pm 2.58 \frac{s}{\sqrt{n}}$ is a 99% interval for μ
- $\bar{X} \pm 3 \frac{s}{\sqrt{n}}$ 就 a 99.7% interval for μ

Note that even for large samples, the distribution of \bar{X} is only approximately normal, rather than exactly normal. Therefore, the levels stated for confidence interval are approximate.

Example (CI Given a Level)

- Example 5.1: The sample mean and standard deviation for the fill weights of 100 boxes are $\bar{X}=12.05$ and $s=0.1$. Find an 85% confidence interval for the mean fill weight of the boxes.

Answer: To find an $85 \% \mathrm{Cl}$, set $1-\alpha=.85$, to obtain $\alpha=0.15$ and $\alpha / 2=0.075$. We then look in the table for $z_{0.075}$, the z-score that cuts off 7.5% of the area in the right-hand tail. We find $z_{0.075}=1.44$. We approximate $\sigma_{\bar{X}} \approx s / \sqrt{n}=0.01$.
So the $85 \% \mathrm{Cl}$ is $12.05 \pm(1.44)(0.01)$ or (12.0356, 12.0644).

Another Example (The Level of Cl)

- Question: There is a sample of 50 micro-drills with an average lifetime (expressed as the number of holes drilled before failure) was 12.68 with a standard deviation of 6.83 . Suppose an engineer reported a confidence interval of (11.09, 14.27) but neglected to specify the level. What is the level of this confidence interval?
Answer: The confidence interval has the form $\bar{X} \pm z_{\alpha / 2} s / \sqrt{n}$. We will solve for $z_{\alpha / 2}$, and then consult the z table to determine the value of α. The upper confidence limit of 14.27 therefore satisfies the equation $14.27=12.68+$ $z_{\alpha / 2}(6.83 / \sqrt{50})$. Therefore, $z_{\alpha / 2}=1.646$. From the z table, we determine that $\alpha / 2$, the area to the right of 1.646 , is approximately 0.05 . The level is $100(1-\alpha) \%$, or 90%.

More About Cl's (1/2)

- The confidence level of an interval measures the reliability of the method used to compute the interval
- A level $100(1-\alpha) \%$ confidence interval is one computed by a method that in the long run will succeed in in covering the population mean a proportion $1-\alpha$ of all the times that it is used
- In practice, there is a decision about what level of confidence to use
- This decision involves a trade-off, because intervals with greater confidence are less precise

More About Cl's (2/2)

68\% confidence intervals 95% confidence intervals 99.7% confidence intervals

Probability vs. Confidence

- In computing Cl , such as the one of diameter of pistons: (13.804, 14.196), it is tempting to say that the probability that μ lies in this interval is 95%
- The term probability refers to random events, which can come out differently when experiments are repeated
- 13.804 and 14.196 are fixed not random. The population mean is also fixed. The mean diameter is either in the interval or not
- There is no randomness involved
- So, we say that we have 95% confidence that the population mean is in this interval

Determining Sample Size

- Back to the example of diameter of pistons: We had a Cl of (13.804, 14.196).
- This interval specifies the mean to within ± 0.196. Now assume that the interval is too wide to be useful

Question: Assume that it is desirable to produce a 95% confidence interval that specifies the mean to within ± 0.1

- To do this, the sample size must be increased. The width of a Cl is specified by $\pm z_{\alpha / 2} \sigma / \sqrt{n}$. If we know α and σ is specified, then we can find the n needed to get the desired width
- For our example, the $z_{\alpha / 2}=1.96$ and the estimated standard deviation of the population is 1 . So, $0.1=1.96(1) / \sqrt{n}$, then the n accomplishes this is 385 (always round up)

One-Sided Confidence Intervals (1/2)

- We are not always interested in Cl's with an upper and lower bound
- For example, we may want a confidence interval on battery life. We are only interested in a lower bound on the battery life. There is not an upper bound on how long a battery can last (confidence interval =(low bound, ∞))
- With the same conditions as with the two-sided CI , the level $100(1-\alpha) \%$ lower confidence bound for μ is

$$
\bar{X}-z_{\alpha} \sigma_{\bar{X}}
$$

and the level $100(1-\alpha) \%$ upper confidence bound for μ is

$$
\bar{X}+z_{\alpha} \sigma_{\bar{X}}
$$

One-Sided Confidence Intervals (2/2)

- Example: One-sided Confidence Interval (for Low Bound)

$$
\left(\bar{X}-1.645 \sigma_{\bar{X}}, \infty\right)
$$

Confidence Intervals for Proportions

- The method that we discussed in the last section (Sec. 5.1) was for mean from any population from which a large sample is drawn
- When the population has a Bernoulli distribution Y, this expression takes on a special form (the mean is equal to the success probability)
- If we denote the success probability as p and the estimate for p as \hat{p} which can be expressed by

$$
\hat{p}=\frac{X}{n} \quad \begin{gathered}
n: \text { the sample size } \\
X: \text { number of sample items } Y_{i} \\
X=Y_{1}+Y_{2}+\cdots+Y_{n}
\end{gathered} \text { that success }
$$

- A 95\% confidence interval (CI) for p is

$$
\hat{p}-1.96 \sqrt{\frac{p(1-p)}{n}}<p<\hat{p}+1.96 \sqrt{\frac{p(1-p)}{n}} .
$$

Comments

- The limits of the confidence interval contain the unknown population proportion p
- We have to somehow estimate this (p)
- E.g., using \hat{p}
- Recent research shows that a slight modification of n and an estimate of p improve the interval
- Define

$$
\tilde{n}=n+4
$$

- And

$$
\tilde{p}=\frac{X+2}{\tilde{n}}
$$

Cl for p

- Let X be the number of successes in n independent Bernoulli trials with success probability p , so that $X \sim \operatorname{Bin}(n, p)$
- Then a $100(1-\alpha) \%$ confidence interval for p is

$$
\widetilde{p} \pm z_{\alpha / 2} \sqrt{\frac{\widetilde{p}(1-\widetilde{p})}{\widetilde{n}}} .
$$

- If the lower limit is less than 0 , replace it with 0 .
- If the upper limit is greater than 1 , replace it with 1

Small Sample CI for a Population Mean

- The methods that we have discussed for a population mean previously require that the sample size be large
- When the sample size is small, there are no general methods for finding Cl's
- If the population is approximately normal, a probability distribution called the Student's t distribution can be used to compute confidence intervals for a population mean

$$
\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \neq \frac{\bar{X}-\mu}{s / \sqrt{n}}
$$

More on Cl's

- What can we do if \bar{X} is the mean of a small sample?
- If the sample size is small, s may not be close to σ, and \bar{X} may not be approximately normal. If we know nothing about the population from which the small sample was drawn, there are no easy methods for computing Cl's
- However, if the population is approximately normal, \bar{X} will be approximately normal even when the sample size n is small. It turns out that we can use the quantity $(\bar{X}-\mu) /(s / \sqrt{n})$, but since s may not be close to σ, this quantity instead has a Student's t distribution with $n-1$ degrees of freedom, which we denote t_{n-1}

Student's t Distribution (1/2)

- Let X_{1}, \ldots, X_{n} be a small $(n<30)$ random sample from a normal population with mean μ. Then the quantity

$$
\frac{(\bar{X}-\mu)}{s / \sqrt{n}} .
$$

has a Student's t distribution with $n-1$ degrees of freedom (denoted by t_{n-1}).

- When n is large, the distribution of the above quantity is very close to normal, so the normal curve can be used, rather than the Student's t

Student's t Distribution (2/2)

- Plots of probability density function of student's t curve for various of dearees

- The normal curve with mean 0 and variance 1 (z curve) is plotted for comparison
- The t curves are more spread out than the normal, but the amount of extra spread out decreases as the number of degrees of freedom increases

More on Student's t

- Table A. 3 called a \boldsymbol{t} table, provides probabilities associated with the Student's t distribution

				$\boldsymbol{\alpha}$						
\boldsymbol{v}	$\mathbf{0 . 4 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2 5}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 0 5}$	
$\mathbf{1}$	0.325	1.000	3.078	6.314	$\mathbf{1 2 . 7 0 6}$	31.821	63.657	318.309	636.619	
$\mathbf{2}$	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599	
$\mathbf{3}$	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924	
$\mathbf{4}$	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
$\mathbf{5}$	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869	
$\mathbf{6}$	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959	
$\mathbf{7}$	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408	
$\mathbf{8}$	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041	
$\mathbf{9}$	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781	
$\mathbf{1 0}$	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
$\mathbf{1 1}$	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4.437	
$\mathbf{1 2}$	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.930	4.318	
$\mathbf{1 3}$	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.852	4.221	
$\mathbf{1 4}$	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.787	4.140	
$\mathbf{1 5}$	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
$\mathbf{1 6}$	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.686	4.015	
$\mathbf{1 7}$	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.646	3.965	
$\mathbf{1 8}$	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.610	3.922	
$\mathbf{1 9}$	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.579	3.883	
$\mathbf{2 0}$	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850	
$\mathbf{2 1}$	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.527	3.819	
$\mathbf{2 2}$	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.505	3.792	
$\mathbf{2 3}$	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.485	3.768	
$\mathbf{2 4}$	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.467	3.745	
$\mathbf{2 5}$	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.450	3.725	
$\mathbf{2 6}$	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.435	3.707	
$\mathbf{2 7}$	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.421	3.690	
$\mathbf{2 8}$	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.408	3.674	
$\mathbf{2 9}$	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.396	3.659	
$\mathbf{3 0}$	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646	
$\mathbf{3 5}$	0.255	0.682	1.306	1.690	2.030	2.438	2.724	3.340	3.591	
$\mathbf{4 0}$	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3.307	3.551	
$\mathbf{6 0}$	0.254	0.679	1.296	1.671	2.000	2.390	2.660	3.232	3.460	
$\mathbf{1 2 0}$	0.254	0.677	1.289	1.658	1.980	2.358	2.617	3.160	3.373	
$\boldsymbol{\infty}$	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.090	3.291	

Examples

- Question 1: A random sample of size 10 is to be drawn from a normal distribution with mean 4. The Student's t statistic $t=(\bar{X}-4) /(s / \sqrt{10})$ is to be computed. What is the probability that $t>1.833$?
- Answer: This t statistic has $10-1=9$ degrees of freedom.

From the t table, $P(t>1.833)=0.05$

- Question 2: Find the value for the t_{14} distribution whose lower-tail probability is 0.01
- Answer: Look down the column headed with " 0.01 " to the row corresponding to 14 degrees of freedom. The value for $t=2.624$. This value cuts off an area, or probability, of 1% in the upper tail. The value whose lower-tail probability is 1% is -2.624

Student's $t \mathrm{Cl}$

- Let X_{1}, \ldots, X_{n} be a small random sample from a normal population with mean μ. Then a level $100(1-\alpha) \% \mathrm{Cl}$ for μ is

$$
\bar{X} \pm t_{n-1, \alpha / 2} \frac{s}{\sqrt{n}} .
$$

Two-sided CI

- To be able to use the Student's t distribution for calculation and confidence intervals, you must have a sample that comes from a population that it approximately normal

Other Student's t Cl's

- Let X_{1}, \ldots, X_{n} be a small random sample from a normal population with mean μ
- Then a level 100(1- α)\% upper confidence bound for $\mu \mathrm{i}$

$$
\bar{X}+t_{n-1, \alpha} \frac{s}{\sqrt{n}} . \quad \quad \text { one-sided } \mathrm{Cl}
$$

- Then a level $100(1-\alpha) \%$ lower confidence bound for μ is

$$
\bar{X}-t_{n-1, \alpha} \frac{s}{\sqrt{n}}
$$

one-sided Cl

- Occasionally a small sample may be taken from a normal population whose standard deviation σ is known. In these cases, we do not use the Student's t curve, because we are not approximating σ with s. The Cl to use here, is the one using the z table, that we discussed in the first section $\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$

Determine the Appropriateness of Using t Distribution (1/2)

- We have to decide whether a population is approximately normal before using t distribution to calculate Cl
- A reasonable way is construct a boxplot or dotplot of the sample
- If these plots do not reveal a strong asymmetry or any outliers, the it most cast the Student's t distribution will be reliable
- Example 5.9: Is it appropriate to use t distribution to calculate the Cl for a population mean given a a random sample with 15 items shown below

580, 400, 428, 825, 850,
875, 920, 550, 575, 750,
636, 360, 590, 735, 950.

Determine the Appropriateness of Using t Distribution (2/2)

- Example 5.20: Is it appropriate to use t distribution to calculate the Cl for a population mean given a a random sample with 11 items shown below
38.43, 38.43, 38.39, 38.83, 38.45, $38.35,38.43,38.31,38.32,38.38$, 38.50 .

CI for the Difference in Two Means (1/2)

- We also can estimate the difference between the means μ_{X} and μ_{Y} of two populations X and Y
- We can draw two independent random samples, one from X and the other one from Y, each of which respectively has sample means \bar{X} and \bar{Y}
- Then construct the Cl for $\mu_{X}-\mu_{Y}$ by determining the distribution of $\bar{X}-\bar{Y}$
- Recall the probability theorem:

Let X and Y be independent, with $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ Then

$$
X+Y \sim N\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)
$$

- And

$$
X-Y \sim N\left(\mu_{X}-\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)
$$

CI for the Difference in Two Means (2/2)

- Let $X_{1}, \ldots, X_{n_{X}}$ be a large random sample of size n_{X} from a population with mean μ_{X} and standard deviation σ_{X}, and let $Y_{1}, \ldots, Y_{n_{Y}}$ be a large random sample of size n_{Y} from a population with mean μ_{Y} and standard deviation σ_{Y}. If the two samples are independent, then a level $100(1-\alpha) \% \mathrm{Cl}$ for $\mu_{X}-\mu_{Y}$ is

$$
\bar{X}-\bar{Y} \pm z_{\alpha / 2} \sqrt{\frac{\sigma_{X}^{2}}{n_{X}}+\frac{\sigma_{Y}^{2}}{n_{Y}}}
$$

Two-sided Cl

$\alpha=0.05$

- When the values of σ_{X} and σ_{Y} are unknown, they can be replaced with the sample standard deviations s_{X} and s_{Y}

CI for Difference Between Two Proportions (1/3)

- Recall that in a Bernoulli population, the mean is equal to the success probability (population proportion) p
- Let X be the number of successes in n_{X} independent Bernoulli trials with success probability p_{X}, and let Y be the number of successes in n_{Y} independent Bernoulli trials with success probability p_{Y}, so that $X \sim \operatorname{Bin}\left(n_{X}, p_{X}\right)$ and $Y \sim \operatorname{Bin}\left(n_{Y}, p_{Y}\right)$
- The sample proportions

$$
\begin{aligned}
\hat{p}_{X} & =\frac{X}{n_{X}} \sim N\left(p_{X}, \frac{p_{X}\left(1-p_{X}\right)}{n_{X}}\right) \quad \begin{array}{l}
\text { following from the central } \\
\text { limit theorem (} n_{X} \text { and } n_{Y} \text { are large) } \\
\hat{p}_{Y}
\end{array}=\frac{Y}{n_{Y}} \sim N\left(p_{Y}, \frac{p_{Y}\left(1-p_{Y}\right)}{n_{Y}}\right) \\
\Rightarrow \hat{p}_{X}-\hat{p}_{Y} & =\frac{X}{n_{X}} \sim N\left(p_{X}-p_{Y}, \frac{p_{X}\left(1-p_{X}\right)}{n_{X}}+\frac{p_{Y}\left(1-p_{Y}\right)}{n_{Y}}\right)
\end{aligned}
$$

CI for Difference Between Two Proportions (2/3)

- The difference satisfies the following inequality for 95% of all possible samples

$$
\begin{aligned}
& \hat{p}_{X}-\hat{p}_{Y}-1.96 \sqrt{\frac{p_{X}\left(1-p_{X}\right)}{n_{X}}+\frac{p_{Y}\left(1-p_{Y}\right)}{n_{Y}}} \\
& \quad<p_{X}-p_{Y}< \\
& \hat{p}_{X}-\hat{p}_{Y}+1.96 \sqrt{\frac{p_{X}\left(1-p_{X}\right)}{n_{X}}+\frac{p_{Y}\left(1-p_{Y}\right)}{n_{Y}}}
\end{aligned}
$$

Two-sided CI

- Traditionally in the above inequality, p_{X} is replaced by \hat{p}_{X} and p_{Y} is replaced by \hat{p}_{Y}

Cl for Difference Between Two Proportions (3/3)

- Adjustment (In implementation):
- Define

$$
\widetilde{n}_{X}=n_{X}+2, \widetilde{n}_{Y}=n_{Y}+2, \widetilde{p}_{X}=(X+1) / \widetilde{n}_{X}, \text { and } \widetilde{p}_{Y}=(Y+1) / \tilde{n}_{Y}
$$

- The $100(1-\alpha) \% \mathrm{Cl}$ for the difference $p_{X}-p_{Y}$ is

$$
\tilde{p}_{X}-\widetilde{p}_{Y} \pm z_{\alpha / 2} \sqrt{\frac{\widetilde{p}_{X}\left(1-\widetilde{p}_{X}\right)}{n_{X}}+\frac{\widetilde{p}_{Y}\left(1-\widetilde{p}_{Y}\right)}{n_{Y}}} .
$$

- If the lower limit of the confidence interval is less than -1 , replace it with -1
- If the upper limit of the confidence interval is greater than 1 , replace it with 1

Small-Sample CI for Difference Between Two Means (1/2)

- Let $X_{1}, \ldots, X_{n_{X}}$ be a random sample of size n_{X} from a normal population with mean μ_{X} and standard deviation σ_{X}, and let $Y_{1}, \ldots, Y_{n_{Y}}$ be a random sample of size n_{Y} from a normal population with mean μ_{Y} and standard deviation σ_{Y}. Assume that the two samples are independent. If the populations do not necessarily have the same variance, a level $100(1-\alpha) \% \mathrm{Cl}$ for $\mu_{X}-\mu_{Y}$ is

$$
\bar{X}-\bar{Y} \pm t_{v, \alpha / 2} \sqrt{\frac{s_{X}^{2}}{n_{X}}+\frac{s_{Y}^{2}}{n_{Y}}} . \quad \text { Two-sided } \mathrm{Cl}
$$

- The number of degrees of freedom, v, is given by (rounded down to the nearest integer)

$$
v=\frac{\left(\frac{s_{X}^{2}}{n_{X}}+\frac{s_{Y}^{2}}{n_{Y}}\right)^{2}}{\frac{\left(s_{X}^{2} / n_{X}\right)^{2}}{n_{X}-1}+\frac{\left(s_{Y}^{2} / n_{Y}\right)^{2}}{n_{Y}-1}}
$$

Small-Sample CI for Difference Between Two Means (2/2)

- If we further know the populations X and Y are known to have nearly the same variance. Then a $100(1-\alpha) \% \mathrm{Cl}$ for $\mu_{X}-\mu_{Y}$ is

$$
\bar{X}-\bar{Y} \pm t_{n_{X}+n_{Y}-2, \alpha / 2} s_{p} \sqrt{\frac{1}{n_{X}}+\frac{1}{n_{Y}}} . \quad \text { Two-sided Cl }
$$

- The quantity s_{p} is the pooled variance, given by

$$
s_{p}^{2}=\frac{\left(n_{X}-1\right) s_{X}^{2}+\left(n_{Y}-1\right) s_{Y}^{2}}{n_{X}+n_{Y}-2}
$$

- Don't assume the population variance are equal just because the sample variance are close

Cl for Paired Data (1/3)

- The methods discussed previously for finding Cl's on the basis of two samples have required the samples are independent
- However, in some cases, it is better to design an experiment so that each item in one sample is paired with an item in the other
- Example: Tread wear of tires made of two different materials

Cl for Paired Data (2/3)

- Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be sample pairs. Let $D_{i}=X_{i}-Y_{i}$. Let μ_{X} and μ_{Y} represent the population means for X and Y, respectively. We wish to find a Cl for the difference $\mu_{X}-\mu_{Y}$. Let μ_{D} represent the population mean of the differences, then $\mu_{D}=\mu_{X}-\mu_{Y}$. It follows that a Cl for μ_{D} will also be a Cl for $\mu_{X}-\mu_{Y}$
- Now, the sample D_{1}, \ldots, D_{n} is a random sample from a population with mean μ_{D}, we can use one-sample methods to find Cls for μ_{D}

Cl for Paired Data (3/3)

- Let D_{1}, \ldots, D_{n} be a small random sample ($n<30$) of differences of pairs. If the population of differences is approximately normal, then a level $100(1-\alpha) \% \mathrm{Cl}$ for μ_{D} is

$$
\bar{D} \pm t_{n-1, \alpha / 2} \frac{s_{D}}{\sqrt{n}}
$$

- If the sample size is large, a level $100(1-\alpha) \% \mathrm{Cl}$ for μ_{D} is

$$
\bar{D} \pm z_{\alpha / 2} \sigma_{\bar{D}}
$$

- In practice, $\sigma_{\bar{D}}$ is approximated with $\frac{s_{D}}{\sqrt{n}}$

Summary

- We learned about large and small Cl's for means
- We also looked at Cl's for proportions
- We discussed large and small Cl's for differences in means
- We explored Cl's for differences in proportions

