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Introduction

• Simple Linear Regression (introduced in Ch. 7)
– Fit a linear model relating the value of an dependent variable y to 

the value of a single independent variable x

• However, there are many situations when a single
independent variable is not enough
– In situations like this, there are several independent variables, 

x1,x2,…,xp, that are related to a dependent variable y
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Multiple Regression Model

• Assume that we have a sample of n items and that on 
each item we have measured a dependent variable y
and p independent variables, x1,x2,…,xp

– The i-th sampled item gives rise to the ordered set (yi,x1i,…,xpi)

• We can then fit the multiple regression model 

yi = β0 + β1x1i +…+ βpxpi + εi
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Various Multiple Linear Regression Models

• Polynomial regression model (the independent variables are 
all powers of a single variable)

• Quadratic model (polynomial regression of model of degree 2, 
and powers of several variables)

– A variable that is the product of two other variables is called an 
interaction

• These models are considered linear models, even 
though they contain nonlinear terms in the independent 
variables. The reason is that they are linear in the 
coefficients βi
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Estimating the Coefficients
• In any multiple regression model, the estimates                 

are computed by least-squares, just as in simple linear 
regression  
– The equation

is called the least-squares equation or fitted regression equation

• is defined to be the y coordinate of the least-squares 
equation corresponding to the x values (x1i,…,xpi)
– The residuals are the quantities                       ,which are the 

differences between the observed y values and the y values
given by the equation.

– We want to compute                     so as to minimize the sum of 
the squared residuals       . This is complicated and we rely on 
computers to calculated them
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Sums of Squares

• Much of the analysis in multiple regression is based on 
three fundamental quantities
– Regression sum of squares (SSR)

– Error sum of squares (SSE)

– Total sum of squares (SST)

• The analysis of variance identity is  SST = SSR + SSE
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Assumptions of the Error Terms

• Assumptions for Errors in Linear Models
– In the simplest situation, the following assumptions are satisfied:

1. The errors ε1,…,εn are random and independent.  In
particular, the magnitude of any error εi does not influence 
the value of the next error εi+1

2. The errors ε1,…,εn all have mean 0
3. The errors ε1,…,εn all have the same variance, which we 

denote by σ2

4. The errors ε1,…,εn are normally distributed
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Mean and Variance of yi

• In the multiple linear regression model
yi = β0 + β1x1i +…+ βpxpi + εI

– Under assumptions 1 through 4, the observations y1,…, yn are 
independent random variables that follow the normal distribution.  
The mean and variance of yi are given by

– Each coefficient represents the change in the mean of y
associated with an increase of one unit in the value of xi, when 
the other x variables are held constant
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Statistics (2/3)
• The three statistics most often used in multiple 

regression are 
– estimated error variance s2 (an estimate of the error variance σ2)
– coefficient of determination R2

– F statistic

• Estimated error variance s2

– We have to adjust the estimated standard deviation since we are 
estimating p + 1 coefficients

– The estimated variance       of each least-squares coefficient is a 
complicated calculation and we can find them on a computer 
based on the value      (multiplying by a rather complicated 
function of variables     )
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Statistics (2/3)

• In simple linear regression, the coefficient of 
determination, r2, measures the goodness of fit of the 
linear model.  The goodness of fit statistic in multiple 
regression denoted by R2 is also called the coefficient of 
determination
– The value of R2 is calculated in the same way as r2 in simple 

linear regression. That is, R2 = SSR/SST
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Statistics (3/3)
• Tests of Hypothesis (F-test)

– In simple linear regression, a test of the null hypothesis β1 = 0 is 
almost always made.  If this hypothesis is not rejected, then the 
linear model may not be useful

– The test is multiple linear regression is H0 = β1 = β2 = … = βp = 0.  
This is a very strong hypothesis.  It says that none of the 
independent variables has any linear relationship with the 
dependent variable

– The test statistic for this hypothesis is

• This is an F statistic and its null distribution is Fp,n-p-1.  Note 
that the denominator of the F statistic is s2. The subscripts p, 
n-p-1 are the degrees of freedom for the F statistic

• The smaller the test statistic, the more plausible the null 
hypothesis (H0)
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Confounding (1/3)

• Fitting separate models to each variable is not the 
same as fitting the multivariate model

• Example: There are 225 gas wells that received 
“fracture treatment” in order to increase production. 
In this treatment, fracture fluid, which consists of 
fluid mixed with sand, is pumped into the well.  The 
sand holds open the cracks in the rock, thus 
increasing the flow of gas. 
– Does increasing the volume of fluid pumped increase the 

production of the well?
– Does increasing the volume of sand pumped increase the 

production of the well?
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Confounding (3/3)
• We can use sand to predict production or fluid to 

predict production.  If we fit a simple model, then 
sand and fluid in their models show up as important 
predictors
– Scatterplots in “log” domains

– It is tempted to conclude immediately that increasing either 
the volume of fluid or sand will increase the production

ln_Fluid 0.7980.444ionln_Product +−= ln_Fluid 0.7480.778ionln_Product +−=
0value =−P 0value =−P
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Confounding (3/3)
• However, fluid and sand are pumped in together in a 

single mixture (the more fluid, the more sand)

• Multiple regression provides a way to solve this issue

– We can conclude that increasing the amount of fluid tends to 
increase production, but it is not clear whether sand has such an 
effect

ln_Sand 0.148ln_Fluid 0.6700.729ionln_Product ++−=
389.0value =−P0value =−P
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Collinearity (1/2)

• When two independent variables are very strongly 
correlated, multiple regression may not be able to 
determine which is the important one
– In this case, the variables are said to be collinear
– The word collinear means to lie on the same line, and when two 

variables are highly correlate, their scatterplot is approximately a 
straight line

– The word multicollinearity is sometimes used as well, meaning 
that multiple variables are highly correlated with each other

– When collinearity is present, the set of independent variables is 
sometimes said to be ill-conditioned
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Collinearity (2/3)

• Example: "x1" "x2" "y"
0.1 0.3 3.6
0.6 1.4 6.0
2.0 5.2 8.4
2.1 5.5 12.7
2.8 7.4 9.9
4.2 10.3 16.3
4.7 11.3 20.2
6.1 15.3 26.6
7.5 18.5 31.0
8.5 21.3 32.4
0.2 0.2 0.3
1.4 3.4 10.6
2.0 5.5 11.8
2.1 5.3 6.8
3.6 9.4 16.7
4.5 11.4 19.9
5.3 13.6 22.9
6.8 17.4 28.1
8.2 20.4 28.8
9.4 23.3 35.0

153.390.2 xy +=

242.190.2 xy +=

21 62.149.072.2 xxy +−=

0value =−P

0value =−P

914.0value =−P 379.0value =−PLarger P-values indicate that the 
coefficients are plausible to be 0
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Collinearity (3/3)

• Sometimes two variables are so correlated that multiple 
regression cannot determine which is responsible for the 
linear relationship with y

• In general, there is not much that can be done when 
variables are collinear

• The only way to fix the situation is to collect more data, 
including some values for the independent variables that 
are not on a straight line
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Summary

• In this chapter, we learned about
– Multiple regression models
– Estimating the coefficients
– Confounding and collinearity


