Quick Review of Probability

Berlin Chen______ Department of Computer Science & Information Engineering National Taiwan Normal University

References:

- 1. W. Navidi. *Statistics for Engineering and Scientists*. Chapter 2 & Teaching Material
- 2. D. P. Bertsekas, J. N. Tsitsiklis. *Introduction to Probability*.

Sample Statistics and Population Parameters

Statistics-Berlin Chen 2

Basic Ideas

- Definition: An experiment is a process that results in an outcome that cannot be predicted in advance with certainty
	- Examples:
		- Rolling a die
		- Tossing a coin
		- Weighing the contents of a box of cereal
- Definition: The set of all possible outcomes of an experiment is called the sample space for the experiment
	- Examples:
		- For rolling a fair die, the sample space is $\{1, 2, 3, 4, 5, 6\}$
		- For a coin toss, the sample space is {heads, tails}
		- For weighing a cereal box, the sample space is (0, ∞), a more reasonable sample space is (12, 20) for a 16 oz. box (with an infinite number of outcomes)

More Terminology

Definition: A subset of a sample space is called an **event**

- The empty set \varnothing is an event
- The entire sample space is also an event
- A given event is said to have occurred if the outcome of the experiment is one of the outcomes in the event. For example, if a die comes up 2, the events $\{2, 4, 6\}$ and $\{1, 6\}$ $2, 3$ have both occurred, along with every other event that contains the outcome "2"

Combining Events

- The union of two events *A* and *B*, denoted *A* [∪] *B*, is the set of outcomes that belong either to *A*, to *B*, or to both
	- In words, *A* [∪] *B* means "*A* or *B*". So the event "*A* or *B*" occurs whenever either *A* or *B* (or both) occurs
- Example: Let $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$ $\textsf{Then } A \cup B$ = $\{1, \, 2, \, 3, \, 4\}$

Intersections

- The intersection of two events A and B, denoted by *A* ∩ *B*, is the set of outcomes that belong to *A* and to *B*
	- In words, A [∩] *B* means "*A* and *B*". Thus the event "A and B" occurs whenever both *A* and *B* occur
- Example: Let $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$ Then $A \cap B$ = {2, 3}

Complements

- The complement of an event A, denoted A^c, is the set of outcomes that do not belong to *A*
	- In words, *A*^c means "not *A*". Thus the event "not *A*" occurs whenever *A* does not occur
- Example: Consider rolling a fair sided die.

Let A be the event: "rolling a six" = $\{6\}$. Then A^c = "not rolling a six" = $\{1, 2, 3, 4, 5\}$

Mutually Exclusive Events

- Definition: The events A and B are said to be mutually exclusive if they have no outcomes in common
	- $-$ More generally, a collection of events $A_{1}, A_{2},..., A_{n}$ is said to be mutually exclusive if no two of them have any outcomes in common
- Sometimes mutually exclusive events are referred to as disjoint events

Example

- When you flip a coin, you cannot have the coin come up heads and tails
	- The following Venn diagram illustrates mutually exclusive events

Probabilities

- Definition: Each event in the sample space has a probability of occurring. Intuitively, the probability is a quantitative measure of how likely the event is to occur
- Given any experiment and any event *A*:
	- The expression *P*(*A*) denotes the probability that the event *A* occurs
	- *P*(*A*) is the proportion of times that the event *A* would occur in the long run, if the experiment were to be repeated over and over again

Axioms of Probability

- 1. Let *S* be a sample space. Then $P(S)$ = 1
- 2. For any event A, $0 \leq P(A) \leq 1$
- 3. If *A* and *B* are mutually exclusive events, then $P(A \cup B) = P(A) + P(B)$

More generally, if $\;\; A_1, A_2,$ are mutually exclusive ${\sf events, \, then } \quad \, P(A_{\!1}\cup A_{\!2}\cup....) \,{=}\, P(A_{\!1}) \,{+}\, P(A_{\!2}) \,{+}\, ...$

A Few Useful Things

- For any event A , $P(A^c)$ = 1 $P(A)$
- Let \emptyset denote the empty set. Then $P(\emptyset)$ = 0
- If *A* is an event, and \pmb{A} = $\{E_{1}, E_{2},..., E_{n}\}$ (and $E_{1}, E_{2},..., E_{n}$ are mutually exclusive), then *P*(*A*) ⁼ *P*(*E*1) ⁺ *P*(*E*2) +….+ *P*(*En*). ….
- Addition Rule (for when A and B are not mutually exclusive):

$$
P(A \cup B) = P(A) + P(B) - P(A \cap B)
$$

Conditional Probabilit y and Independence

- Definition: A probability that is based on a part of the sample space is called a conditional probability
	- E.g., calculate the probability of an event given that the outcomes from a certain part of the sample space occur

Let *A* and *B* be events with $P(B) \neq 0$. The conditional probability of *A* given *B* is

More Definitions

- Definition: Two events *A* and *B* are independent if the probability of each event remains the same whether or not the other occurs
- If $P(B) \neq 0$ and $P(B) \neq 0$, then A and B are independent if $P(B|A) = P(B)$ or, equivalently, $P(A|B) = P(A)$
- If either $P(A) = 0$ or $P(B) = 0$, then A and B are independent

The Multiplication (Chain) Rule

- If A and B are two events and $P(B) \neq 0$, then $P(A \cap B) = P(B)P(A|B)$
- If A and B are two events and $P(A) \neq 0$, then *P*(*A* ∩ *B*) = *P(A)P(B*|*A*)
- If $P(A) \neq 0$, and $P(B) \neq 0$, then both of the above hold
- If A and B are two independent events, then $P(A \cap B) = P(A)P(B)$
- \bullet This result can be extended to more than two events

Law of Total Probabilit y

 \bullet If $A_{\jmath},...,$ A_{\jmath} are mutually exclusive and exhaustive events, and *B* is any event, then

$$
P(B) = P(A_1 \cap B) + ... + P(A_n \cap B)
$$

- Exhaustive events:
	- The union of the events cover the sample space

$$
S = A_1 \cup A_2 \dots \cup A_n
$$

•Or equivalently, if $P(A_i) \neq 0$ for each A_i ,

$$
P(B) = P(B|A_1)P(A_1) + ... + P(B|A_n)P(A_n)
$$

Example

• Customers who purchase a certain make of car can order an engine in any of three sizes. Of all the cars sold, 45% have the smallest engine, 35% have a medium-sized engine, and 20% have the largest. Of cars with smallest engines, 10% fail an emissions test within two years of purchase, while 12% of those with the medium size and 15% of those with the largest engine fail. What is the probability that a randomly chosen car will fail an emissions test within two years?

Solution

• Let *B* denote the event that a car fails an emissions test within two years. Let \mathcal{A}_1 denote the event that a car has a small engine, A_2 the event that a car has a medium size engine, and A_3 the event that a car has a large engine. Then $P(A_1) = 0.45$, $P(A_2) = 0.35$, and $P(A_3) = 0.35$ 0.20. Also, $P(B|A_1) = 0.10$, $P(B|A_2) = 0.12$, and $P(B|A_3) = 0.20$. 0.15. By the law of total probability,

 $P(B) = P(B|A_1) P(A_1) + P(B|A_2) P(A_2) + P(B|A_3) P(A_3)$ $= 0.10(0.45) + 0.12(0.35) + 0.15(0.20) = 0.117$

Bayes' Rule

• Let A_1, \ldots, A_n be mutually exclusive and exhaustive events, with $P(A_i) \neq 0$ for each A_i . Let *B* be any event with $P(B) \neq 0$. Then

$$
P(A_k | B) = \frac{P(A_k \cap B)}{P(B)}
$$

=
$$
\frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}
$$

Example

• The proportion of people in a given community who have a certain disease (*D*) is 0.005. A test is available to diagnose the disease. If a person has the disease, the probability that the test will produce a positive signal $(+)$ is 0.99. If a person does not have the disease, the probability that the test will produce a positive signal is 0.01. If a person tests positive, what is the probability that the person actually has the disease?

Solution

- Let *D* represent the event that a person actually has the disease
- Let + represent the event that the test gives a positive signal
- We wish to find *P*(*D*|+)
- We know *P*(*D*) = 0.005, *P*(+|*D*) = 0.99, and *P*(+|*DC*) = 0.01
- Using Bayes' rule

$$
P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + P(+ \mid D^{C})P(D^{C})}
$$

$$
= \frac{0.99(0.005)}{0.99(0.005) + 0.01(0.995)} = 0.332.
$$

Random Variables

- Definition: A random variable assigns a numerical value to each outcome in a sample space
	- We can say a random variable is a real-valued function of the experimental outcome
- Definition: A random variable is discrete if its possible values form a discrete set

Example

- The number of flaws in a 1-inch length of copper wire manufactured by a certain process varies from wire to wire. Overall, 48% of the wires produced have no flaws, 39% have one flaw, 12% have two flaws, and 1% have three flaws. Let X be the number of flaws in a randomly selected piece of wire
- \bullet Then,
	- *P*(*X* = 0) = 0.48, *P*(*X* = 1) = 0.39, *P*(*X* = 2) = 0.12, and $P(X = 3) = 0.01$
	- The list of possible values 0, 1, 2, and 3, along with the probabilities of each, provide a complete description of the population from which *X* was drawn population

Probability Mass Function

- The description of the possible values of X and the probabilities of each has a name:
	- The probability mass function
- Definition: The **probability mass function** (denoted as pmf) of a discrete random variable X is the function $p(x)$ $P(X = x)$. The probability mass function is sometimes called the **probability distribution**

Cumulative Distribution Function

- \bullet The probability mass function specifies the probability that a random variable is equal to a given value
- A function called the **cumulative distribution function**(cdf) specifies the probability that a random variable is less than or equal to a given value
- The cumulative distribution function of the random variable X is the function $F(x) = P(X \le x)$

Example

• Recall the example of the number of flaws in a randomly chosen piece of wire. The following is the pdf:

– *P*(*X* = 0) = 0.48, *P*(*X* = 1) = 0.39, *P*(*X* = 2) = 0.12, and *P*(*X* ⁼ 3) ⁼ 0.01

• For any value *^x*, we compute *F*(*x*) by summing the probabilities of all the possible values of x that are less than or equal to *^x*

$$
- F(0) = P(X \le 0) = 0.48
$$

$$
- F(1) = P(X \le 1) = 0.48 + 0.39 = 0.87
$$

$$
- F(2) = P(X \le 2) = 0.48 + 0.39 + 0.12 = 0.99
$$

$$
- F(3) = P(X \le 3) = 0.48 + 0.39 + 0.12 + 0.01 = 1
$$

More on Discrete Random Variables

- Let *X* be a discrete random variable. Then
	- The probability mass function (cmf) of *X* is the function $p(x) = P(X = x)$
	- The cumulative distribution function (cdf) of *X* is the function $F(x) = P(X \leq x)$

$$
F(x) = \sum_{t \leq x} p(t) = \sum_{t \leq x} P(X = t)
$$

where the sum is over all the possible $\sum p(x) = \sum P(X = x) = 1$, where the sum is over all th values of *X x x*

Mean and Variance for Discrete Random Variables

• The mean (or expected value) of X is given by

 $\mu_X = \sum xP(X = x)$, also denoted as $\mathbf{E}[X]$ here the sum is over all possible values of X *x* w here the sum is over all possible values o

- The variance o f *X* is given by $\sum_{X}^{2} = \sum (x - \mu_{X})^{2} P(X = x)$ *x* $\sigma_X^2 = \sum (x - \mu_X)^2 P(X = x)$, also denoted as $\mathbf{E}\left[(X - \mu_X)^2\right]$] , also denoted as $\mathbf{E} |(X - \mu_X)^2$ $= \sum x^2 P(X = x) - \mu_X^2.$ *x*= $\sum x^2 P(X = x) - \mu_X^2$, also denoted as $\mathbf{E}[X^2] - (\mathbf{E}[X])$ |
|
|-, also denoted as $\mathbf{E}|X^2| - (\mathbf{E}[X])^2$
- \bullet The standard deviation is the square root of the variance
- \bullet Mean, variance, standard deviation provide summary information for a random variable (probability distribution)

The Probability Histogram

- When the possible values of a discrete random variable are evenly spaced, the probability mass function can be represented by a histogram, with rectangles centered at the possible values of the random variable
- The area of the rectangle centered at a value *^x* is equal to $P(X = x)$
- Such a histogram is called a probability histogram, because the areas represent probabilities

Example

• The following is a probability histogram for the example with number of flaws in a randomly chosen piece of wire

$$
- P(X = 0) = 0.48, P(X = 1) = 0.39, P(X = 2) = 0.12,
$$

and P(X = 3) = 0.01

•Figure 2.8

Continuous Random Variables

- A random variable is continuous if its probabilities are given by areas under a curve
- The curve is called a probability density function (pdf) for the random variable. Sometimes the pdf is called the probability distribution
- Let *X* be a continuous random variable with probability density function *f*(*x*). Then

$$
\int_{-\infty}^{\infty} f(x)dx = 1.
$$

 $c \neq \lambda$

Computing Probabilities

• Let X be a continuous random variable with probability density function *f*(*x*). Let *a* and *b* be any two numbers, with *a* < *b*. Then

$$
P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = \int_a^b f(x) \, dx.
$$

• In addition,

$$
P(X \le a) = P(X < a) = \int_{-\infty}^{a} f(x) \, dx
$$
\n
$$
P(X \ge a) = P(X > a) = \int_{a}^{\infty} f(x) \, dx.
$$

More on Continuous Random Variables

• Let *X* be a continuous random variable with probability density function *f*(*^x*). The cumulative distribution function (cdf) of *X* is the function

$$
F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt.
$$

• The mean of *X* is given by

$$
\mu_X = \int_{-\infty}^{\infty} x f(x) dx.
$$
, also denoted as $E[X]$

• The variance of X is given by

$$
\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx
$$
, also denoted as $\mathbf{E}[(X - \mu_X)^2]$
= $\int_{-\infty}^{\infty} x^2 f(x) dx - \mu_X^2$, also denoted as $\mathbf{E}[X^2] - (\mathbf{E}[X])^2$
statistics-Berlin Chen 33

Median and Percentiles

- Let X be a continuous random variable with probability mass function *f*(*^x*) and cumulative distribution function *F* (*^x*)
	- The median of *X* is the point *xm* that solves the equation

$$
F(x_m) = P(X \le x_m) = \int_{-\infty}^{x_m} f(x) dx = 0.5.
$$

 If *p* is any number between 0 and 100, the *p*th percentile is the point *xp* that solves the equation

$$
F(x_p) = P(X \le x_p) = \int_{-\infty}^{x_p} f(x) dx = p/100.
$$

The median is the 50th percentile

Linear Functions of Random Variables

• If *X* is a random variable, and *a* and *b* are constants, then

$$
\mu_{aX+b} = a\mu_X + b
$$

$$
\sigma_{aX+b}^2 = a^2 \sigma_X^2
$$

$$
\sigma_{aX+b} = |a| \sigma_X
$$

More Linear Functions

• If *X* and *Y* are random variables, and *a* and *b* are constants, then

$$
\mu_{aX+bY} = \mu_{aX} + \mu_{bY} = a\mu_X + b\mu_Y.
$$

• More generally, if X_1, \ldots, X_n are random variables and c_1 , ..., c_n are constants, then the mean of the linear combination $c_1 X_1, \ldots, c_n X_n$ is given by

$$
\mu_{c_1X_1+c_2X_2+\ldots+c_nX_n}=c_1\mu_{X_1}+c_2\mu_{X_2}+\ldots+c_n\mu_{X_n}.
$$

Two Independent Random Variables

• If *X* and *Y* are **independent** random variables, and *S* and *T* are sets of numbers, then

 $P(X \in S \text{ and } Y \in T) = P(X \in S)P(Y \in T)$.

• More generally, if $X_1, ..., X_n$ are independent random variables, and *S 1*, …, *S n* are sets, then

 $P(X_1 \in S_1, X_2 \in S_2, ..., X_n \in S_n) = P(X_1 \in S_1)P(X_2 \in S_2)...P(X_n \in S_n).$

Variance Properties

• If X_1, \ldots, X_n are *independent* random variables, then the variance of the sum X_1^+ …+ X_n^+ is given by

$$
\sigma_{X_1+X_2+\ldots+X_n}^2 = \sigma_{X_1}^2 + \sigma_{X_2}^2 + \ldots + \sigma_{X_n}^2.
$$

• If X_1, \ldots, X_n are *independent* random variables and c_1, \ldots, c_n *c n* are constants, then the variance of the linear combination $c_1 X_1 + ... + c_n X_n$ is given by

$$
\sigma_{c_1X_1+c_2X_2+\ldots+c_nX_n}^2 = c_1^2 \sigma_{X_1}^2 + c_2^2 \sigma_{X_2}^2 + \ldots + c_n^2 \sigma_{X_n}^2.
$$

More Variance Properties

• If X and Y are *independent* random variables with variances σ_X^2 and σ_Y^2 , then the variance of the sum *X + Y* is

$$
\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2.
$$

The variance of the difference *X – Y* is

$$
\sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2.
$$

Independence and Simple Random Samples

- Definition: If $X_1, ..., X_n$ is a simple random $\textbf{sample}, \text{ then } X_1, \text{ ...}, X_n \text{ may be treated as } \text{}$ independent random variables, all from the same population
	- –Phrased another way, $X_1, ..., X_n$ are independent, and identically distributed (i.i.d.)

Properties of \overline{X} (1/4)

• If X_1, \ldots, X_n is a simple random sample from a population with mean μ and variance $\sigma^{\!2}$, then the sample mean $\,X$ is a random variable with

mean of sample mean
$$
\mu_{\overline{X}} = \mu
$$
 $\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$
variance of sample mean $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$.
The standard deviation of \overline{X} is

$$
\sigma_{\overline{X}}=\frac{\sigma}{\sqrt{n}}.
$$

Properties of *X* (2/4)

Statistics-Berlin Chen 42

Properties of *X* (4/4)

Jointly Distributed Random Variables

- If X and Y are jointly discrete random variables:
	- The joint probability mass function of *X* and *Y* is the function

$$
p(x, y) = P(X = x \text{ and } Y = y)
$$

 The marginal probability mass functions of *X* and *Y* can be obtained from the joint probability mass function as follows:

$$
p_X(x) = P(X = x) = \sum_{y} p(x, y) \quad p_Y(y) = P(Y = y) = \sum_{x} p(x, y)
$$

where the sums are taken over all the possible values of *Y* and of *X*, respectively (marginalization)

The joint probability mass function has the property that

$$
\sum_{x} \sum_{y} p(x, y) = 1
$$

where the sum is taken over all the possible values of *X* and *Y*

Jointly Continuous Random Variables

• If X and Y are jointly continuous random variables, with joint probability density function $f(x, y)$, and $a < b$, $c < d$, then

$$
P(a \le X \le b \text{ and } c \le Y \le d) = \int_a^b \int_c^d f(x, y) dy dx.
$$

The joint probability density function has the property that

$$
\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dydx=1.
$$

Marginals of *X* and *Y*

• If X and Y are jointly continuous with joint probability density function *f*(*^x*,*y*), then the marginal probability density functions of *X* and *Y* are given, respectively, by

$$
f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy
$$

$$
f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx.
$$

Such a process is called "marginalization"

More Than Two Random Variables

• If the random variables X_1, \ldots, X_n are jointly discrete, the joint probability mass function is

$$
p(x_1, ..., x_n) = P(X_1 = x_1, ..., X_n = x_n).
$$

• If the random variables X_1, \ldots, X_n are jointly continuous, they have a joint probability density function $f(x_1, x_2, \ldots, x_n)$ x_n), where

$$
P(a_1 \leq X_1 \leq b_1, ..., a_n \leq X_n \leq b_n) = \int_{a_n}^{b_n} \cdots \int_{a_1}^{b_1} f(x_1, ..., x_n) dx_1...dx_n.
$$

for any constants $a_1 \le b_1, \ldots, a_n \le b_n$

Means of Functions of Random Variables (1/2)

• If the random variables X_1, \ldots, X_n are jointly discrete, the joint probability mass function is

$$
p(x_1, ..., x_n) = P(X_1 = x_1, ..., X_n = x_n).
$$

• If the random variables $X_1, ..., X_n$ are jointly continuous, they have a joint probability density function $f(x_1, x_2, \ldots, x_n)$ (x_n) , where

$$
P(a_1 \leq X_1 \leq b_1, ..., a_n \leq X_n \leq b_n) = \int_{a_n}^{b_n} \cdots \int_{a_1}^{b_1} f(x_1, ..., x_n) dx_1...dx_n.
$$

for any constants $a_1 \leq b_1, \ldots, a_n \leq b_n$.

Means of Functions of Random Variables (2/2)

- Let X be a random variable, and let $h(X)$ be a function of *X*. Then:
	- $-$ If X is a discrete with probability mass function $p(x)$, then mean of *h* (*X*) is given by

$$
\mu_{h(x)} = \sum h(x) p(x)
$$
, also denoted as $E[h(X)]$

where the sum is taken over all the possible values of *X x*

– If *X* is continuous with probability density function *f*(*^x*), the mean of *h* (*^x*) is given by

$$
\mu_{h(x)} = \int_{-\infty}^{\infty} h(x) f(x) dx
$$
, also denoted as $E[h(X)]$

Functions of Joint Random Variables

- If X and Y are jointly distributed random variables, and *h* (*X,Y*) is a function of *X* and *Y*, then
	- If *X* and *Y* are jointly discrete with joint probability mass function *p* (*^x*,*y*),

$$
\mu_{h(X,Y)} = \sum_{x} \sum_{y} h(x,y) p(x,y).
$$

where the sum is taken over all possible values of X and \boldsymbol{Y}

– If *X* and *Y* are jointly continuous with joint probability mass function *f*(*^x*,*y*),

$$
\mu_{h(X,Y)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) dx dy.
$$

Discrete Conditional Distributions

- Let X and Y be jointly discrete random variables, with joint probability density function $p(x,y)$, let $p_x(x)$ denote the marginal probability mass function of *X* and let *x* be any number for which ρ_χ (*x*) > 0.
	- The conditional probability mass function of *Y* given *X = x* is

$$
p_{Y|X}(y | x) = \frac{p(x, y)}{p(x)}
$$
.

 Note that for any particular values of *x* and *y,* the value of $p_{\gamma|X}(y|x)$ is just the conditional probability $P(Y{=}y|X{=}x)$

Continuous Conditional Distributions

- Let X and Y be jointly continuous random variables, with joint probability density function $f(x,y)$. Let $f_\chi(x)$ denote the marginal density function of *X* and let *x* be any number for which $f_\chi(x) > 0$.
	- The conditional distribution function of *Y* given *X = x* is

$$
f_{Y|X}(y \mid x) = \frac{f(x, y)}{f(x)}.
$$

Conditional Expectation

- Expectation is another term for mean
- A **conditional expectation** is an expectation, or mean, calculated using the conditional probability mass function or conditional probability density function
- The conditional expectation of *Y* given *X = x* is denoted by $E(Y|X=x)$ or $\mu_{Y|X}$

Independence (1/2)

- Random variables X_1, \ldots, X_n are independent, provided that:
	- If X_1, \ldots, X_n are jointly discrete, the joint probability mass function is equal to the product of the marginals:

$$
p(x_1,...,x_n) = p_{X_1}(x_1)...p_{X_n}(x_n).
$$

If X_1 , …, X_n are jointly continuous, the joint probability density function is equal to the product of the marginals:

$$
f(x_1, ..., x_n) = f(x_1)...f(x_n).
$$

Independence (2/2)

- If X and Y are independent random variables, then:
	- If *X* and *Y* are jointly discrete, and *^x* is a value for which $p_x(x)$ > 0, then

$$
p_{Y|X}(y|x) = p_Y(y)
$$

– If *X* and *Y* are jointly continuous continuous, and *^x* is ^a value for which $f_X(x) > 0$, then

 $f_{Y|X}(y|x) = f_Y(y)$

Covariance

- Let *X* and *Y* be random variables with means μ_X and μ_Y
	- The covariance of *X* and *Y* is

$$
Cov(X,Y) = \mu_{(X-\mu_X)(Y-\mu_Y)}.
$$

– An alternative formula is

$$
Cov(X, Y) = \mu_{XY} - \mu_X \mu_Y.
$$

Correlation

- Let X and Y be jointly distributed random variables with standard deviations $\sigma_{\! \! \chi}$ and $\sigma_{\! \! \gamma}$
	- The correlation between X and Y is denoted $\rho_{\mathsf{X},\mathsf{Y}}$ and is given by

$$
\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}.
$$

Or, called "correlation coefficient"

• For any two random variables *X* and *Y*

$$
-1 \leq \rho_{X,Y} \leq 1.
$$

Covariance, Correlation, and Independence

- If Cov(*X, Y*) = $\rho_{X,Y}$ = 0, then *X* and *Y* are said to be uncorrelated
- If *X* and *Y* are independent, then *X* and *Y* are uncorrelated
- It is mathematically possible for *X* and *Y* to be uncorrelated without being independent. This rarely occurs in practice

Example

- The pair of random variables (*X, Y*) takes the values (1, 0), (0, 1), (−1, 0), and (0,−1), each with probability ¼ Thus, the marginal pmfs of *X* and *Y* are symmetric around 0, and $E[X] = E[Y] = 0$
- Furthermore, for all possible value pairs (x, y), either x or y is equal to 0, which implies that $XY = 0$ and $E[XY] = 0$. Therefore, $cov(X, Y) = E[(X – E[X])(Y – E[Y]]) = 0$, and *X* and *Y* are uncorrelated
- \bullet However, X and Y are not independent since, for example, a nonzero value of X fixes the value of Y to zero

Variance of a Linear Combination of Random Variables (1/2)

• If X_1, \ldots, X_n are random variables and c_1, \ldots, c_n are constants, then

$$
\mu_{c_1 X_1 + \dots + c_n X_n} = c_1 \mu_{X_1} + \dots + c_n \mu_{X_n}
$$

$$
\sigma_{c_1 X_1 + \dots + c_n X_n}^2 = c_1^2 \sigma_{X_1}^2 + \dots + c_n^2 \sigma_{X_n}^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n c_i c_j \text{Cov}(X_i, X_j).
$$

For the case of two random variables

$$
\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2 \cdot \text{Cov}(X, Y)
$$

Variance of a Linear Combination of Random Variables (2/2)

• If $X_1, \, ... , X_n$ are *independent* random variables and c_1 , ..., c_n are constants, then

$$
\sigma_{c_1X_1+\ldots+c_nX_n}^2 = c_1^2 \sigma_{X_1}^2 + \ldots + c_n^2 \sigma_{X_n}^2.
$$

In particular,

$$
\sigma_{X_1+\ldots+X_n}^2 = \sigma_{X_1}^2 + \ldots + \sigma_{X_n}^2.
$$

Summary (1/2)

- Probability and axioms (and rules)
- Counting techniques
- Conditional probability
- Independence
- Random variables: discrete and continuous
- Probability mass functions

Summary (2/2)

- Probability density functions
- Cumulative distribution functions
- Means and variances for random variables
- Linear functions of random variables
- Mean and variance of a sample mean
- Jointly distributed random variables