
Quick Review of Probability

Berlin ChenBerlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

References:
1. W. Navidi. Statistics for Engineering and Scientists. Chapter 2 & Teaching Material
2. D. P. Bertsekas, J. N. Tsitsiklis. Introduction to Probability.



Sample Statistics and Population Parameters

Population SamplePopulation Sample

S i i

Inference

StatisticsParameters

Statistics-Berlin Chen 2



Basic Ideas

• Definition:  An experiment is a process that results in an p p
outcome that cannot be predicted in advance with certainty
– Examples:

• Rolling a die
• Tossing a coin
• Weighing the contents of a box of cereal• Weighing the contents of a box of cereal

• Definition:  The set of all possible outcomes of an 
i t i ll d th l f th i texperiment is called the sample space for the experiment

– Examples:
• For rolling a fair die the sample space is {1 2 3 4 5 6}For rolling a fair die, the sample space is {1, 2, 3, 4, 5, 6}
• For a coin toss, the sample space is {heads, tails}
• For weighing a cereal box, the sample space is (0,     ), a more ∞
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reasonable sample space is (12, 20) for a 16 oz. box (with an 
infinite number of outcomes)



More Terminologygy

Definition:  A subset of a sample space is called an eventp p
– The empty set Ø is an event
– The entire sample space is also an event

• A given event is said to have occurred if the outcome of 
the experiment is one of the outcomes in the event Forthe experiment is one of the outcomes in the event.  For 
example, if a die comes up 2, the events {2, 4, 6} and {1, 
2, 3} have both occurred, along with every other event2, 3} have both occurred, along with every other event 
that contains the outcome “2”
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Combining Eventsg

• The union of two events A and B, denoted A ∪ B, is the , ,
set of outcomes that belong either to A, to B, or to both

– In words, A ∪ B means “A or B”.  So the event “A or B” occurs 
whenever either A or B (or both) occurs

• Example: Let A = {1, 2, 3} and B = {2, 3, 4} 
Th A B {1 2 3 4}Then A ∪ B = {1, 2, 3, 4}
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Intersections

• The intersection of two events A and B, denoted by , y
A ∩ B, is the set of outcomes that belong to A and to B

– In words, A ∩ B means “A and B”. Thus the event “A and B” 
occurs whenever both A and B occur

• Example: Let A = {1, 2, 3} and B = {2, 3, 4}
Th A B {2 3}Then A ∩ B = {2, 3}
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Complements

• The complement of an event A, denoted Ac, is the set of p , ,
outcomes that do not belong to A

– In words, Ac means “not A”.  Thus the event “not A” occurs 
whenever A does not occur

• Example:  Consider rolling a fair sided die.  
Let A be the event: “rolling a six” = {6}Let A be the event: rolling a six  = {6}.  
Then Ac = “not rolling a six” = {1, 2, 3, 4, 5}
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Mutually Exclusive Eventsy

• Definition:  The events A and B are said to be mutually y
exclusive if they have no outcomes in common  

– More generally, a collection of events                       is said to 1 2, ,...,A A Ag y,
be mutually exclusive if no two of them have any outcomes in 
common  

1 2, ,..., nA A A

• Sometimes mutually exclusive events are referred to as 
disjoint eventsdisjoint events
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Example

• When you flip a coin, you cannot have the coin come up y p , y p
heads and tails  
– The following Venn diagram illustrates mutually exclusive events
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Probabilities

• Definition:  Each event in the sample space has a p p
probability of occurring.  Intuitively, the probability is a 
quantitative measure of how likely the event is to occur  

• Given any experiment and any event A:
– The expression P(A) denotes the probability that the event A

occurs
– P(A) is the proportion of times that the event A would occur inP(A) is the proportion of times that the event A would occur in 

the long run, if the experiment were to be repeated over and over 
again
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Axioms of Probabilityy

1. Let S be a sample space.  Then P(S) = 1p p ( )

2. For any event A,                    0 ( ) 1P A≤ ≤y ,

3. If A and B are mutually exclusive events, then

0 ( ) 1P A≤ ≤

3. If A and B are mutually exclusive events, then           
( ) ( ) ( )P A B P A P B∪ = +

More generally, if                     are mutually exclusive  
events, then 

1 2, ,.....A A
1 2 1 2( ....) ( ) ( ) ...P A A P A P A∪ ∪ = + +1 2 1 2( ) ( ) ( )
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A Few Useful Thingsg

• For any event A, P(Ac) = 1 – P(A)y , ( ) ( )

• Let Ø denote the empty set. Then P(Ø) = 0 p y ( )

• If A is an event, and A = { } (and1 2, ,...,E E E 1 2, ,..., nE E EIf A is an event, and A  {                     } (and 
are mutually exclusive), then 

P(A) = P(E1) + P(E2) +….+ P(En).

1 2, ,..., nE E E 1 2, , , n

P(A)  P(E1)  P(E2) ….  P(En).

• Addition Rule (for when A and B are not mutuallyAddition Rule (for when A and B are not mutually 
exclusive):

( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩
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( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩



Conditional Probability and Independencey

• Definition:  A probability that is based on a part of the p y p
sample space is called a conditional probability
– E.g., calculate the probability of an event given that the 

t f t i t f th loutcomes from a certain part of the sample space occur

Let A and B be e ents ith P(B) 0 TheLet A and B be events with P(B) ≠ 0.  The                     
conditional probability of A given B is

( )P A B( )( | )
( )

P A BP A B
P B
∩

=

Venn diagram
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More Definitions

• Definition: Two events A and B are independent if the p
probability of each event remains the same whether or 
not the other occurs

• If P(B) ≠ 0 and P(B) ≠ 0, then A and B are independent if 
( | ) ( ) ( | ) ( )P(B|A) = P(B) or, equivalently, P(A|B) = P(A)

• If either P(A) = 0 or P(B) = 0, then A and B are 
independent

Are A and B independent (?)
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The Multiplication (Chain) Rule( )

• If A and B are two events and P(B) ≠ 0, then ( ) ,
P(A ∩ B) = P(B)P(A|B)

• If A and B are two events and P(A) ≠ 0, then  
P(A ∩ B) = P(A)P(B|A)P(A ∩ B)  P(A)P(B|A)

• If P(A) ≠ 0, and P(B) ≠ 0, then both of the above holdIf P(A) ≠ 0, and P(B) ≠ 0, then both of the above hold

• If A and B are two independent events thenIf A and B are two independent events, then        
P(A ∩ B) = P(A)P(B) 
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• This result can be extended to more than two events



Law of Total Probability y

• If A1,…, An are mutually exclusive and exhaustive events, 1, , n y ,
and B is any event, then

P(B) = P(A1 ∩ B) +…+ P(An ∩ B)

• Exhaustive events:
– The union of the events cover the sample space

S= A1 ∪ A2 … ∪ An

• Or equivalently, if P(Ai) ≠ 0 for each Ai ,

P(B) P(B|A )P(A ) P(B|A )P(A )
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P(B) = P(B|A1)P(A1)+…+ P(B|An)P(An)



Example

• Customers who purchase a certain make of car can p
order an engine in any of three sizes.  Of all the cars 
sold, 45% have the smallest engine, 35% have a 

di i d i d 20% h th l t Ofmedium-sized engine, and 20% have the largest.  Of 
cars with smallest engines, 10% fail an emissions test 
within two years of purchase while 12% of those withwithin two years of purchase, while 12% of those with 
the medium size and 15% of those with the largest 
engine fail.  What is the probability that a randomly g p y y
chosen car will fail an emissions test within two years?
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Solution
• Let B denote the event that a car fails an emissions test 

within two years.  Let A1 denote the event that a car has y 1
a small engine, A2 the event that a car has a medium 
size engine, and A3 the event that a car has a large 

i Th P(A ) 0 45 P(A ) 0 35 d P(A )engine. Then P(A1) = 0.45, P(A2) = 0.35, and P(A3) = 
0.20.  Also, P(B|A1) = 0.10, P(B|A2) = 0.12, and P(B|A3) = 
0 15 By the law of total probability0.15.  By the law of total probability, 

P(B) = P(B|A1) P(A1) + P(B|A2)P(A2) + P(B|A3) P(A3) 
= 0.10(0.45) + 0.12(0.35) + 0.15(0.20) = 0.117
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Bayes’ Ruley

• Let A1,…, An be mutually exclusive and exhaustive 1, , n y
events, with P(Ai) ≠ 0 for each Ai. Let B be any event 
with P(B) ≠ 0.  Then
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Example

• The proportion of people in a given community who have p p p p g y
a certain disease (D) is 0.005.  A test is available to 
diagnose the disease.  If a person has the disease, the 

b bilit th t th t t ill d iti i l ( )probability that the test will produce a positive signal (+) 
is 0.99.  If a person does not have the disease, the 
probability that the test will produce a positive signal isprobability that the test will produce a positive signal is 
0.01.  If a person tests positive, what is the probability 
that the person actually has the disease?p y
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Solution

• Let D represent the event that a person actually has the p p y
disease

• Let + represent the event that the test gives a positive 
signal

• We wish to find P(D|+)
• We know P(D) = 0.005, P(+|D) = 0.99, and P(+|DC) = 

0.01

• Using Bayes’ rule
)()|(+ DPDP

3320)005.0(99.0
)()|()()|(

)()|()|(
+++

+
=+ CC DPDPDPDP

DPDPDP
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Random Variables

• Definition:  A random variable assigns a numerical value g
to each outcome in a sample space
– We can say a random variable is a real-valued function of the 

i t l texperimental outcome

• Definition: A random variable is discrete if its possible• Definition:  A random variable is discrete if its possible 
values form a discrete set
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Example

• The number of flaws in a 1-inch length of copper wire g pp
manufactured by a certain process varies from wire to 
wire.  Overall, 48% of the wires produced have no flaws, 
39% h fl 12% h t fl d 1% h39% have one flaw, 12% have two flaws, and 1% have 
three flaws.  Let X be the number of flaws in a randomly 
selected piece of wireselected piece of wire

• Then• Then,
– P(X = 0) = 0.48, P(X = 1) = 0.39, P(X = 2) = 0.12, 

and P(X = 3) = 0.01
– The list of possible values 0, 1, 2, and 3, along with the 

probabilities of each, provide a complete description of the 
population from which X was drawn
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population from which X was drawn



Probability Mass Functiony

• The description of the possible values of X and the p p
probabilities of each has a name: 
– The probability mass function

• Definition:  The probability mass function (denoted as 
f) f di t d i bl X i th f ti ( )pmf) of a discrete random variable X is the function p(x) 

= P(X = x).  The probability mass function is sometimes 
called the probability distributioncalled the probability distribution
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Cumulative Distribution Function

• The probability mass function specifies the probability p y p p y
that a random variable is equal to a given value

• A function called the cumulative distribution function
(cdf)  specifies the probability that a random variable is 
less than or equal to a given value

• The cumulative distribution function of the random 
variable X is the function F(x) = P(X ≤ x)
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Example

• Recall the example of the number of flaws in a randomly 
h i f i Th f ll i i th dfchosen piece of wire.  The following is the pdf:
– P(X = 0) = 0.48, P(X = 1) = 0.39, P(X = 2) = 0.12, 

and P(X = 3) = 0.01and P(X  3)  0.01

• For any value x, we compute F(x) by summing the 
probabilities of all the possible values of x that are less p p
than or equal to x
– F(0) = P(X ≤ 0) = 0.48
– F(1) = P(X ≤ 1) = 0.48 + 0.39 = 0.87
– F(2) = P(X ≤ 2) = 0.48 + 0.39 + 0.12 = 0.99

F(3) = P(X ≤ 3) = 0 48 + 0 39 + 0 12 + 0 01 = 1– F(3) = P(X ≤ 3) = 0.48 + 0.39 + 0.12 + 0.01 = 1
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More on Discrete Random Variables

• Let X be a discrete random variable.  Then

– The probability mass function (cmf) of X is the function
p(x) = P(X = x)

– The cumulative distribution function (cdf) of X is the function 
F(x) = P(X ≤ x)

where the sum is over all the possible

( ) ( ) ( )
t x t x

F x p t P X t
≤ ≤

= = =∑ ∑

( ) ( ) 1P X∑ ∑– , where the sum is over all the possible
values of X

( ) ( ) 1
x x
p x P X x= = =∑ ∑
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Mean and Variance for Discrete Random Variables

• The mean (or expected value) of X is given by ( p ) g y

,
h th i ll ibl l f X

( )X
x
xP X xμ = =∑ [ ]XE as denoted also

where the sum is over all possible values of X

f• The variance of X is given by
2 2( ) ( )X X

x
x P X xσ μ= − =∑ ( )[ ]2 as denoted also, XX μ−E

2 2     ( ) .
x

X
x
x P X x μ= = −∑ [ ] [ ]( )22 as denoted also, XX EE −

• The standard deviation is the square root of the variance

• Mean variance standard deviation provide summary
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• Mean, variance, standard deviation provide summary 
information for a random variable (probability distribution)



The Probability Histogramy g

• When the possible values of a discrete random variable p
are evenly spaced, the probability mass function can be 
represented by a histogram, with rectangles centered at 
th ibl l f th d i blthe possible values of the random variable

f• The area of the rectangle centered at a value x is equal 
to P(X = x)

• Such a histogram is called a probability histogram, 
because the areas represent probabilitiesbecause the areas represent probabilities
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Example

• The following is a probability histogram for the example g p y g p
with number of flaws in a randomly chosen piece of wire
– P(X = 0) = 0.48, P(X = 1) = 0.39, P(X = 2) = 0.12, 

and P(X = 3) = 0.01

Figure 2 8• Figure 2.8 

Statistics-Berlin Chen 30



Continuous Random Variables

• A random variable is continuous if its probabilities are p
given by areas under a curve

• The curve is called a probability density function (pdf) forThe curve is called a probability density function (pdf) for 
the random variable.  Sometimes the pdf is called the 
probability distribution

• Let X be a continuous random variable with probability 
d it f ti f( ) Thdensity function f(x).  Then

( ) 1f x dx
∞

=∫ ( ) 1.f x dx
−∞

=∫
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Computing Probabilitiesg

• Let X be a continuous random variable with probability p y
density function f(x).  Let a and b be any two numbers, 
with a < b.  Then

( ) ( ) ( ) ( ) .
b

a
P a X b P a X b P a X b f x dx≤ ≤ = ≤ < = < ≤ = ∫

• In addition,

( ) ( ) ( )
a

P X a P X a f x dx
−∞

≤ = < = ∫
( ) ( ) ( ) .

a
P X a P X a f x dx

∞
≥ = > = ∫
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More on Continuous Random Variables

• Let X be a continuous random variable with 
probability density function f(x).  The cumulative 
distribution function (cdf) of X is the function

( ) ( ) ( ) .
x

F x P X x f t dt
−∞

= ≤ = ∫
• The mean of X is given by

∞

∫
Th i f X i i b

( ) .X xf x dxμ
∞

−∞
= ∫ [ ]XE as denoted also ,

• The variance of X is given by
2 2( ) ( )X Xx f x dxσ μ

∞

−∞
= −∫ ( )[ ]2asdenotedalso XX μ−E
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2 2     ( ) .Xx f x dx μ

∞

∞

−∞
= −

∫
∫

( )[ ]asdenotedalso, XX μE

[ ] [ ]( )22 as denoted also, XX EE −



Median and Percentiles

• Let X be a continuous random variable with probability p y
mass function f(x) and cumulative distribution function 
F(x)  

– The median of X is the point xm that solves the equation

( ) ( ) ( ) 0 5mxF P X f d≤ ∫
– If p is any number between 0 and 100, the pth percentile is the 

( ) ( ) ( ) 0.5.m mF x P X x f x dx
−∞

= ≤ = =∫

point xp that solves the equation 

( ) ( ) ( ) /100.px

p pF x P X x f x dx p
−∞

= ≤ = =∫

– The median is the 50th percentile

∞∫
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Linear Functions of Random Variables

• If  X  is a random variable, and a and b are constants, , ,
then

a bμ μ= +aX b Xa bμ μ+ = +
2 2 2
X b Xaσ σ+ =aX b Xaσ σ+

aX b Xaσ σ+ =
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More Linear Functions

• If X and Y are random variables, and a and b are ,
constants, then

.aX bY aX bY X Ya bμ μ μ μ μ+ = + = +

• More generally, if X1, …, Xn are random variables and 
c1, …, cn are constants, then the mean of the linear 
combination c1 X1, …, cn Xn is given by 

1 1 2 2 1 2... 1 2 ... .
n n nc X c X c X X X n Xc c cμ μ μ μ+ + + = + + +
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Two Independent Random Variables

• If X and Y are independent random variables,If X and Y are independent random variables, 
and S and T are sets of numbers, then 

M ll if X X i d d t d

(  and ) ( ) ( ).P X S Y T P X S P Y T∈ ∈ = ∈ ∈

• More generally, if X1, …, Xn are independent random 
variables, and S1, …, Sn are sets, then

1 1 2 2 1 1 2 2( , ,..., ) ( ) ( )... ( ).n n n nP X S X S X S P X S P X S P X S∈ ∈ ∈ = ∈ ∈ ∈
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Variance Properties

• If X1, …, Xn are independent random variables, then the 1, , n p ,
variance of the sum X1+ …+ Xn is given by

1 2 1 2

2 2 2 2
... .... .

n nX X X X X Xσ σ σ σ+ + + = + + +

• If X1, …, Xn are independent random variables and c1, …, 
cn are constants, then the variance of the linear 
combination c1 X1+ …+ cn Xn is given by

1 1 2 2 1 2

2 2 2 2 2 2 2
... 1 2 .... .

n n nc X c X c X X X n Xc c cσ σ σ σ+ + + = + + +
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More Variance Properties

• If X and Y are independent random variables with p
variances                    , then the variance of the 
sum X + Y is 

2 2and X Yσ σ

2 2 2.X Y X Yσ σ σ+ = +

The variance of the difference X – Y is

2 2 2.X Y X Yσ σ σ− = +
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Independence and Simple Random 
SamplesSamples

• Definition: If X1, …, Xn is a simple randomDefinition:  If X1, …, Xn is a simple random 
sample, then X1, …, Xn may be treated as 
independent random variables, all from theindependent random variables, all from the 
same population

– Phrased another way, X1, …, Xn are independent, and 
identically distributed (i i d )identically distributed (i.i.d.)
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Properties of      (1/4) X ( )

• If X1, …, Xn is a simple random sample from a population 1, , n p p p p
with mean μ and variance σ2, then the sample mean 
is a random variable with 

X

Xμ μ=mean of sample mean n
XXXX n+++

=
L21

X
2

2 .X n
σσ =variance of sample mean

n

The standard deviation of       is

n

X

.X n
σσ =
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Properties of      (2/4) X ( )

Population X
1X X 3X X

37 40 35 .... 39
sample mean

p

parameters (           ) 2 ,σμ
1X 1X 3X nX

simple random sample of size n
)8.37(1 == xX

)2.40(2 == xX41 38 42 .... 38.5 sample mean

simple random sample of size n

37.5 38 42 .... 40.2 sample mean
)638(X

sample mean cane be view nXXX ,,, 21 K are i.i.d

simple random sample of size n
)6.38(3 == xX

as a random variable           
with values

can be represented as

X
KK ,,,, 21 kxxx

X

( )1

and follow the same distribution X
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Properties of      (3/4) X ( )
[ ]

( )
μ

μ
=

=

+++

X

XXX

X

1

E

( )

μμμ +++=

+++

nnn n

n

XXX

XXX
n

111
21

21

L

L

XXX i i d

μμμ +++=
nnn

nnn
111

L

nXXX ,,, 21 K are i.i.d
and follow the same distribution       with mean  μX

μ=

( )X XX
22 μσ ⎥⎦
⎤

⎢⎣
⎡ −= E

( )nXXX
n

222

2
1

111
21

σ=

⎦⎣

+++ L nXXX ,,, 21 K are independent  

X
nnn nXXX

2
2

2
2

2
2

2
2

2
22

2
2

111

111
1

σσσ

σσσ

+++=

+++=

L

L
are identically distributed

(follow the same distribution         with variance
)

nXXX ,,, 21 K

2σ
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Properties of      (4/4)X ( )

f l ( l t l ti )mean of sample mean            (equal to population mean         )Xμ μ

sample mean sample mean ixX = jxX =

The spread of sample mean is determined by the variance of sample 
mean ( equal to where is the population variance)2σ 2 2mean                ( equal to            where        is the population variance)Xσ

n

2σ 2σ
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Jointly Distributed Random Variablesy

• If X and Y are jointly discrete random variables:j y
– The joint probability mass function of X and Y is the function

( ) ( and )p x y P X x Y y= = =

– The marginal probability mass functions of X and Y can be 
obtained from the joint probability mass function as follows:

( , ) (  and )p x y P X x Y y

obtained from the joint probability mass function as follows:

( ) ( ) ( , )   ( ) ( ) ( , )  X Y
y x

p x P X x p x y p y P Y y p x y= = = = = =∑ ∑
where the sums are taken over all the possible values of Y
and of X, respectively (marginalization)

– The joint probability mass function has the property that 

( , ) 1p x y =∑∑
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Jointly Continuous Random Variablesy

• If X and Y are jointly continuous random variables, with j y ,
joint probability density function f(x,y), and a < b, c < d, 
then

(  and ) ( , ) .
b d

a c
P a X b c Y d f x y dydx≤ ≤ ≤ ≤ = ∫ ∫

The joint probability density function has the property   
that

( ) 1f x y dydx
∞ ∞

∫ ∫ ( , ) 1.f x y dydx
−∞ −∞

=∫ ∫
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Marginals of X and Yg

• If X and Y are jointly continuous with joint probability j y j p y
density function f(x,y), then the marginal probability 
density functions of X and Y are given, respectively, by

( ) ( )f f d
∞

∫( ) ( , )Xf x f x y dy
−∞

= ∫
∞

∫( ) ( , ) .Yf y f x y dx
∞

−∞
= ∫

– Such a process is called “marginalization”
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More Than Two Random Variables

• If the random variables X1, …, Xn are jointly discrete, the 1, , n j y ,
joint probability mass function is 

( ) ( )p x x P X x X x= = =

• If the random variables X1, …, Xn are jointly continuous, 

1 1 1( ,..., ) ( ,..., ).n n np x x P X x X x= = =

1 n
they have a joint probability density function f(x1, x2,…, 
xn), where

1

1
1 1 1 1 1( ,...., ) ( ,..., ) ... .n

n

b b

n n n n na a
P a X b a X b f x x dx dx≤ ≤ ≤ ≤ = ∫ ∫L

for any constants a1 ≤ b1, …, an ≤ bn

Statistics-Berlin Chen 48



Means of Functions of Random Variables (1/2)( )

• If the random variables X1, …, Xn are jointly discrete, the 1, , n j y ,
joint probability mass function is 

1 1 1( ,..., ) ( ,..., ).n n np x x P X x X x= = =

• If the random variables X1, …, Xn are jointly continuous, 
they have a joint probability density function f(x1, x2,…, 
xn), where

1

1 1 1 1 1( ,...., ) ( ,..., ) ... .nb b

n n n n nP a X b a X b f x x dx dx≤ ≤ ≤ ≤ = ∫ ∫L

for any constants a1 ≤ b1, …, an ≤ bn.

1
1 1 1 1 1( , , ) ( , , )

n
n n n n na a

f∫ ∫
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Means of Functions of Random Variables (2/2)( )

• Let X be a random variable, and let h(X) be aLet X be a random variable, and let h(X) be a 
function of X.  Then:
– If X is a discrete with probability mass function p(x), then mean p y p( ),

of h(X) is given by

( ) ( ) ( ).h x h x p xμ =∑ ( )[ ]XhEasdenotedalso,

where the sum is taken over all the possible values of X

( ) ( ) ( )h x
x

pμ ∑ ( )[ ]

– If X is continuous with probability density function f(x), the mean 
of h(x) is given by

( ) ( ) ( ) .h x h x f x dxμ
∞

−∞
= ∫ ( )[ ]XhE as denoted also ,
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Functions of Joint Random Variables

• If X and Y are jointly distributed random variables, and j y ,
h(X,Y) is a function of X and Y, then

– If X and Y are jointly discrete with joint probability mass function 
p(x,y), 

( ) ( )h∑∑
where the sum is taken over all possible values of X and Y

( , ) ( , ) ( , ).h X Y
x y

h x y p x yμ =∑∑
where the sum is taken over all possible values of X and Y

– If X and Y are jointly continuous with joint probability mass– If X and Y are jointly continuous with joint probability mass 
function f(x,y), 

( ) ( ) ( )h h x y f x y dxdyμ
∞ ∞

= ∫ ∫
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Discrete Conditional Distributions

• Let X and Y be jointly discrete random variables, with j y ,
joint probability density function p(x,y), let pX(x) denote 
the marginal probability mass function of X and let x be 

b f hi h ( ) 0any number for which pX(x) > 0.

– The conditional probability mass function of Y given X = x is 

|
( , )( | ) .
( )Y X

p x yp y x
p x

=

– Note that for any particular values of x and y, the value of 
( | ) i j t th diti l b bilit P(Y |X )

| ( )p x

pY|X(y|x) is just the conditional probability P(Y=y|X=x)
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Continuous Conditional Distributions

• Let X and Y be jointly continuous random variables, with j y ,
joint probability density function f(x,y).  Let fX(x) denote the 
marginal density function of X and let x be any number 
f hi h f ( ) 0for which fX(x) > 0.  

– The conditional distribution function of Y given X = x isg

( , )( | ) f x yf |
( , )( | ) .
( )Y X

f yf y x
f x

=
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Conditional Expectation

• Expectation is another term for meanExpectation is another term for mean

A conditional expectation is an expectation or• A conditional expectation is an expectation, or 
mean, calculated using the conditional 
probability mass function or conditionalprobability mass function or conditional 
probability density function

• The conditional expectation of Y given X = x is 
denoted by E(Y|X = x) or μY|X
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Independence (1/2)( )

• Random variables X1, …, Xn are independent, provided 1, , n p , p
that: 
– If X1, …, Xn are jointly discrete, the joint probability mass 

f ti i l t th d t f th i lfunction is equal to the product of the marginals:

1 1( ,..., ) ( )... ( ).n X X np x x p x p x=

– If X1, …, Xn are jointly continuous, the joint probability density 

11 1( , , ) ( ) ( )
nn X X np p p

function is equal to the product of the marginals:

( ) ( ) ( )f f f1 1( ,..., ) ( )... ( ).n nf x x f x f x=
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Independence (2/2)( )

• If X and Y are independent random variables, then:p ,

– If X and Y are jointly discrete, and x is a value for which 
pX(x) > 0, then

p ( | ) p ( )pY|X(y|x)= pY(y)

If X and Y are jointly continuous and x is a value for which– If X and Y are jointly continuous, and x is a value for which 
fX(x) > 0, then

fY|X(y|x)= fY(y)Y|X(y| ) Y(y)
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Covariance

• Let X and Y be random variables with means μX and μYX Y

– The covariance of X and Y is 

( )( )Cov( , ) .
X YX YX Y μ μμ − −=

– An alternative formula isAn alternative formula is 

Cov( , ) .XY X YX Y μ μ μ= −Cov( , ) .XY X YX Y μ μ μ
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Correlation

• Let X and Y be jointly distributed random variables with j y
standard deviations σX and σY

– The correlation between X and Y is denoted ρX,Y and is given by

Cov( )X Y
,

Cov( , ) .X Y
X Y

X Yρ
σ σ

= Or, called “correlation coefficient”

• For any two random variables X and Y

-1 ≤ ρX,Y ≤ 1.
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Covariance, Correlation, and Independence

• If Cov(X,Y) = ρX Y = 0, then X and Y are said to be ( , ) ρX,Y ,
uncorrelated

• If X and Y are independent, then X and Y are 
uncorrelated

• It is mathematically possible for X and Y to be 
uncorrelated without being independent.  This rarely 
occurs in practice
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Example
• The pair of random variables (X, Y ) takes the values 

(1, 0), (0, 1), (−1, 0), and (0,−1), each with probability ¼ Thus, ( , ), ( , ), ( , ), ( , ), p y ,
the marginal pmfs of X and Y are symmetric around 0, and 
E[X] = E[Y ] = 0

f ( )• Furthermore, for all possible value pairs (x, y), either x or y is 
equal to 0, which implies that XY = 0 and E[XY ] = 0. 
Therefore, cov(X, Y ) = E[(X − E[X] )(Y − E[Y ])] = 0, andTherefore, cov(X, Y )  E[(X  E[X] )(Y  E[Y ])]  0, and 
X and Y are uncorrelated

• However, X and Y are not independent since, for example, a 
nonzero value of X fixes the value of Y to zero
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Variance of a Linear Combination of 
Random Variables (1/2)Random Variables (1/2)

• If X1, …, Xn are random variables and c1, …, cn are 1, , n 1, , n
constants, then

1 1 1... 1 ...
n n nc X c X X n Xc cμ μ μ+ + = + +

1
2 2 2 2 2

1 ... 2 Cov( , ).
n n

c X c X X n X i j i jc c c c X Xσ σ σ
−

+ + = + + + ∑ ∑1 1 1... 1
1 1

( , )
n n nc X c X X n X i j i j

i j i
+ +

= = +
∑ ∑

( )YXCov2

 variablesrandom  twoof case For the
222 ++σσσ
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Variance of a Linear Combination of Random 
Variables (2/2)Variables (2/2)

• If X1, …, Xn are independent random variables and1, , n p
c1, …, cn are constants, then 

2 2 2 2 2
1 1 1

2 2 2 2 2
... 1 ... .

n n nc X c X X n Xc cσ σ σ+ + = + +

– In particular,

1 1

2 2 2
... ... .

n nX X X Xσ σ σ+ + = + +
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Summary (1/2)y ( )

• Probability and axioms (and rules) y ( )

• Counting techniquesg q

• Conditional probabilityConditional probability

• IndependenceIndependence

• Random variables: discrete and continuousRandom variables: discrete and continuous

• Probability mass functions
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Summary (2/2)y ( )

• Probability density functionsy y

• Cumulative distribution functions

• Means and variances for random variablesMeans and variances for random variables

• Linear functions of random variablesLinear functions of random variables

• Mean and variance of a sample meanMean and variance of a sample mean

• Jointly distributed random variables
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Jointly distributed random variables


