Commonly Used Distributions and Parameter Estimation

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

1. W. Navidi. Statistics for Engineering and Scientists. Chapter 4 \& Teaching Material

How to Estimate Population (Distribution) Parameters ?

The Bernoulli Distribution

- We use the Bernoulli distribution when we have an experiment which can result in one of two outcomes
- One outcome is labeled "success," and the other outcome is labeled "failure"
- The probability of a success is denoted by p. The probability of a failure is then $1-p$
- Such a trial is called a Bernoulli trial with success probability p

Examples

1. The simplest Bernoulli trial is the toss of a coin. The two outcomes are heads and tails. If we define heads to be the success outcome, then p is the probability that the coin comes up heads. For a fair coin, $p=1 / 2$
2. Another Bernoulli trial is a selection of a component from a population of components, some of which are defective. If we define "success" to be a defective component, then p is the proportion of defective components in the population

$X \sim \operatorname{Bernoulli}(p)$

- For any Bernoulli trial, we define a random variable X as follows:
- If the experiment results in a success, then $X=1$. Otherwise, X $=0$. It follows that X is a discrete random variable, with probability mass function $p(x)$ defined by

$$
\begin{aligned}
& p(0)=P(X=0)=1-p \\
& p(1)=P(X=1)=p \\
& p(x)=0 \text { for any value of } x \text { other than } 0 \text { or } 1
\end{aligned}
$$

Mean and Variance of Bernoulli

- If $X \sim \operatorname{Bernoulli}(p)$, then

$$
\begin{aligned}
& -\mu_{x}=0(1-p)+1(p)=p \\
& -\sigma_{x}^{2}=(0-p)^{2}(1-p)+(1-p)^{2}(p)=p(1-p)
\end{aligned}
$$

The Binomial Distribution

- If a total of n Bernoulli trials are conducted, and
- The trials are independent
- Each trial has the same success probability p
- X is the number of successes in the n trials

Then X has the binomial distribution with parameters n and p, denoted $X \sim \operatorname{Bin}(n, p)$

Probability Histogram

Another Use of the Binomial

- Assume that a finite population contains items of two types, successes and failures, and that a simple random sample is drawn from the population. Then if the sample size is no more than 5% of the population, the binomial distribution may be used to model the number of successes
- Sample items can be therefore assumed to be independent of each other
- Each sample item is a Bernoulli trial

pmf, Mean and Variance of Binomial

- If $X \sim \operatorname{Bin}(n, p)$, the probability mass function of X is

$$
\begin{aligned}
& p(x)=P(X=x)=\left\{\begin{array}{l}
\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}, x=0,1, \ldots, n \\
0, \quad \text { otherwise }
\end{array}\right. \\
& \binom{n}{x}=\frac{n!}{x!(n-x)!}
\end{aligned}
$$

- Mean: $\mu_{X}=n p$
- Variance: $\sigma_{x}^{2}=n p(1-p)$

More on the Binomial

- Assume n independent Bernoulli trials are conducted
- Each trial has probability of success p
- Let Y_{1}, \ldots, Y_{n} be defined as follows: $Y_{i}=1$ if the $t^{\text {th }}$ trial results in success, and $Y_{i}=0$ otherwise (Each of the Y_{i} has the $\operatorname{Bernoulli}(p)$ distribution)
- Now, let X represent the number of successes among the n trials. So, $X=Y_{1}+\ldots+Y_{n}$

This shows that a binomial random variable can be expressed as a sum of Bernoulli random variables

Estimate of p

- If $X \sim \operatorname{Bin}(n, p)$, then the sample proportion $\hat{p}=X / n$

$$
\hat{p}=\frac{\text { number of successes }}{\text { number of trials }}=\frac{X}{n}\left(=\frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{n}\right)
$$

is used to estimate the success probability p

- Note:
- Bias is the difference $\mu_{\hat{p}}-p$.
$-\hat{p}$ is unbiased $\left(\mu_{\hat{p}}-p=0\right)$
- The uncertainty in \hat{p} is

$$
\sigma_{\hat{p}}=\sigma_{\left(Y_{1}+Y_{2}+\cdots+Y_{n}\right) / n}=\sqrt{\frac{p(1-p)}{n}}
$$

- In practice, when computing σ, we substitute \hat{p} for p, since p is unknown

The Poisson Distribution

- One way to think of the Poisson distribution is as an approximation to the binomial distribution when n is large and p is small
- It is the case when n is large and p is small the mass function depends almost entirely on the mean $n p$, very little on the specific values of n and p
- We can therefore approximate the binomial mass function with a quantity $\lambda=n p$; this λ is the parameter in the Poisson distribution

pmf, Mean and Variance of Poisson

- If $X \sim \operatorname{Poisson}(\lambda)$, the probability mass function of X is

$$
p(x)=P(X=x)=\left\{\begin{array}{l}
\frac{e^{-\lambda} \lambda^{x}}{x!}, \text { for } x=0,1,2, \ldots \\
0, \quad \text { otherwise }
\end{array}\right.
$$

> Probability Histogram

- Mean: $\mu_{X}=\lambda$
- Variance: $\sigma_{X}^{2}=\lambda$

Poisson(1)

Poisson(10)

- Note: X must be a discrete random variable and λ must be a positive constant

Relationship between Binomial and Poisson

- The Poisson PMF with parameter λ is a good approximation for a binomial PMF with parameters n and p, provided that $\lambda=n p, n$ is very large and p is very small

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{(n-k)!k!} p^{k}(1-p)^{n-k} \quad\left(\because \lambda=n p \Rightarrow p=\frac{\lambda}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k+1)}{k!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{\lambda^{k}}{k!} \frac{n(n-1) \cdots(n-k+1)}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{\lambda^{k}}{k!}\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right) \cdots\left(\frac{n-k+1}{n}\right)\left(1-\frac{\lambda}{n}\right)^{-k}\left(1-\frac{\lambda}{n}\right)^{n} \\
& \left(\because \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\lambda^{k}}{k!} e^{-\lambda} \\
& \text { TABLE 4.1 An example of the Poisson approximation to the binomial probability mass function* } \\
& \begin{array}{l}
\text { *When } n \text { is large and } p \text { is small, the } \operatorname{Bin}(n, p) \text { probability mass function is well approximated by the Poisson }(\lambda) \text { probability mas } \\
\text { function (Equation 4.9), with } \lambda=n p \text {. Here } X \sim \operatorname{Bin}(10,000,0.0002) \text { and } Y \sim \operatorname{Bin}(5000,0.0004) \text {, so } \lambda=n p=2 \text {, and the Poisso }
\end{array} \\
& \text { approximation is Poisson(2) }
\end{aligned}
$$

Poisson Distribution to Estimate Rate

- Let λ denote the mean number of events that occur in one unit of time or space. Let X denote the number of events that are observed to occur in t units of time or space
- If $X \sim \operatorname{Poisson}(\lambda t)$, we estimate λ with $\hat{\lambda}=\frac{X}{t}$
- Note:
- $\hat{\lambda}$ is unbiased $\left(\mu_{\hat{\lambda}}=\mathbf{E}[\hat{\lambda}]=\mathbf{E}\left[\frac{X}{t}\right]=\frac{1}{t} \mathbf{E}[X]=\frac{1}{t} \cdot \lambda \cdot t=\lambda\right)$
- The uncertainty in $\hat{\lambda}$ is $\sigma_{\hat{\lambda}}=\sigma_{\frac{X}{t}}=\sqrt{\frac{1}{t^{2}} \sigma_{X}^{2}}=\sqrt{\frac{1}{t^{2}} \lambda t}=\sqrt{\frac{\lambda}{t}}$
- In practice, we substitute $\hat{\lambda}$ for λ, since λ is unknown

Some Other Discrete Distributions

- Consider a finite population containing two types of items, which may be called successes and failures
- A simple random sample is drawn from the population
- Each item sampled constitutes a Bernoulli trial
- As each item is selected, the probability of successes in the remaining population decreases or increases, depending on whether the sampled item was a success or a failure
- For this reason the trials are not independent, so the number of successes in the sample does not follow a binomial distribution
- The distribution that properly describes the number of successes is the hypergeometric distribution

pmf of Hypergeometric

- Assume a finite population contains N items, of which R are classified as successes and $N-R$ are classified as failures
- Assume that n items are sampled from this population, and let X represent the number of successes in the sample
- Then X has a hypergeometric distribution with parameters N, R, and n, which can be denoted $X \sim \mathrm{H}(N, R, n)$. The probability mass function of X is

$$
p(x)=P(X=x)=\left\{\begin{array}{l}
\frac{\binom{R}{x}\binom{N-R}{n-x}}{\binom{N}{n}}, \text { if } \max (0, R+n-N) \leq x \leq \min (n, R) \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Mean and Variance of Hypergeometric

- If $X \sim \mathrm{H}(N, R, n)$, then
- Mean of $x: \mu_{x}=\frac{n R}{N}$
- Variance of $X: \sigma_{X}^{2}=n\left(\frac{R}{N}\right)\left(1-\frac{R}{N}\right)\left(\frac{N-n}{N-1}\right)$

Geometric Distribution

- Assume that a sequence of independent Bernoulli trials is conducted, each with the same probability of success, p
- Let X represent the number of trials up to and including the first success
- Then X is a discrete random variable, which is said to have the geometric distribution with parameter p.
- We write $X \sim \operatorname{Geom}(p)$.

pmf, Mean and Variance of Geometric

- If $X \sim \operatorname{Geom}(p)$, then
- The pmf of X is $\quad p(x)=P(X=x)=\left\{\begin{array}{l}p(1-p)^{x-1}, x=1,2, \ldots \\ 0, \quad \text { otherwise }\end{array}\right.$
- The mean of X is $\mu_{X}=\frac{1}{p}$
- The variance of X is $\sigma_{X}^{2}=\frac{1-p}{p^{2}}$

Negative Binomial Distribution

- The negative binomial distribution is an extension of the geometric distribution. Let r be a positive integer. Assume that independent Bernoulli trials, each with success probability p, are conducted, and let X denote the number of trials up to and including the $r^{\text {th }}$ success
- Then X has the negative binomial distribution with parameters r and p. We write $X \sim \mathrm{NB}(r, p)$
- Note: If $X \sim \mathrm{NB}(r, p)$, then $X=Y_{1}+\ldots+Y_{r}$ where Y_{1}, \ldots, Y_{r} are independent random variables, each with $\operatorname{Geom}(p)$ distribution

pmf, Mean and Variance of Negative Binomial

- If $X \sim \mathrm{NB}(r, p)$, then
- The pmf of X is $p(x)=P(X=x)=\left\{\begin{array}{l}\binom{x-1}{r-1} p^{r}(1-p)^{x-r}, x=r, r+1, \ldots \\ 0, \quad \text { otherwise }\end{array}\right.$
- The mean of X is $\mu_{X}=\frac{r}{p}$
- The variance of X is $\sigma_{X}^{2}=\frac{r(1-p)}{p^{2}}$

Multinomial Distribution

- A Bernoulli trial is a process that results in one of two possible outcomes. A generalization of the Bernoulli trial is the multinomial trial, which is a process that can result in any of k outcomes, where $k \geq 2$. We denote the probabilities of the k outcomes by $p_{1}, \ldots, p_{k} \quad\left(p_{1}+\ldots+p_{k}=1\right)$
- Now assume that n independent multinomial trials are conducted each with k possible outcomes and with the same probabilities p_{1}, \ldots, p_{k}. Number the outcomes 1 , $2, \ldots, k$. For each outcome i, let X_{i} denote the number of trials that result in that outcome. Then X_{1}, \ldots, X_{k} are discrete random variables. The collection X_{1}, \ldots, X_{k} is said to have the multinomial distribution with parameters n, p_{1}, \ldots, p_{k}. We write $X_{1}, \ldots, X_{k} \sim \operatorname{MN}\left(n, p_{1}, \ldots, p_{k}\right)$

pmf of Multinomial

- If $X_{1}, \ldots, X_{k} \sim \operatorname{MN}\left(n, p_{1}, \ldots, p_{k}\right)$, then the pmf of X_{1}, \ldots, X_{k} is

Can be viewed as a joint probability mass function of X_{1}, \ldots, X_{k}

- Note that if $X_{1}, \ldots, X_{k} \sim \operatorname{MN}\left(n, p_{1}, \ldots, p_{k}\right)$, then for each i, $X_{i} \sim \operatorname{Bin}\left(n, p_{i}\right)$

The Normal Distribution

- The normal distribution (also called the Gaussian distribution) is by far the most commonly used distribution in statistics. This distribution provides a good model for many, although not all, continuous populations
- The normal distribution is continuous rather than discrete. The mean of a normal population may have any value, and the variance may have any positive value

pmf, Mean and Variance of Normal

- The probability density function of a normal population with mean μ and variance σ^{2} is given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}},-\infty<x<\infty
$$

- If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, then the mean and variance of X are given by

$$
\begin{aligned}
\mu_{x} & =\mu \\
\sigma_{x}^{2} & =\sigma^{2}
\end{aligned}
$$

68-95-99.7\% Rule

- The above figure represents a plot of the normal probability density function with mean μ and standard deviation σ. Note that the curve is symmetric about μ, so that μ is the median as well as the mean. It is also the case for the normal population
- About 68% of the population is in the interval $\mu \pm \sigma$
- About 95% of the population is in the interval $\mu \pm 2 \sigma$
- About 99.7% of the population is in the interval $\mu \pm 3 \sigma$

Standard Units

- The proportion of a normal population that is within a given number of standard deviations of the mean is the same for any normal population
- For this reason, when dealing with normal populations, we often convert from the units in which the population items were originally measured to standard units
- Standard units tell how many standard deviations an observation is from the population mean

Standard Normal Distribution

- In general, we convert to standard units by subtracting the mean and dividing by the standard deviation. Thus, if x is an item sampled from a normal population with mean μ and variance σ^{2}, the standard unit equivalent of x is the number z, where

$$
z=(x-\mu) / \sigma
$$

- The number z is sometimes called the " z-score" of x. The z-score is an item sampled from a normal population with mean 0 and standard deviation of 1 . This normal distribution is called the standard normal distribution

Examples

1. $Q:$ Aluminum sheets used to make beverage cans have thicknesses that are normally distributed with mean 10 and standard deviation 1.3. A particular sheet is 10.8 thousandths of an inch thick. Find the z-score:

$$
\text { Ans.: } z=(10.8-10) / 1.3=0.62
$$

2. Q: Use the same information as in 1. The thickness of a certain sheet has a z-score of -1.7. Find the thickness of the sheet in the original units of thousandths of inches:

$$
\text { Ans.: }-1.7=(x-10) / 1.3 \quad x=-1.7(1.3)+10=7.8
$$

Finding Areas Under the Normal Curve

- The proportion of a normal population that lies within a given interval is equal to the area under the normal probability density above that interval. This would suggest integrating the normal pdf; this integral have no closed form solution
- So, the areas under the curve are approximated numerically and are available in Table A. 2 (Z-table).
This table provides area under the curve for the standard normal density. We can convert any normal into a standard normal so that we can compute areas under the curve
- The table gives the area in the left-hand tail of the curve
- Other areas can be calculated by subtraction or by using the fact that the total area under the curve is 1

Z-Table (1/2)

TABLE A. 2 Cumulative normal distribution (z table)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.6	. 0002	. 0002	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001
-3.5	. 0002	. 0002	. 0002	. 0002	. 0002	. 0002	. 0002	. 0002	. 0002	. 0002
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 0007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	. 0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	. 1131	. 1112	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	. 1271	. 1251	. 1230	. 1210	. 1190	. 1170
-1.0	. 1587	. 1562	. 1539	. 1515	. 1492	. 1469	. 1446	. 1423	. 1401	. 1379
-0.9	. 1841	. 1814	. 1788	. 1762	. 1736	. 1711	. 1685	. 1660	. 1635	. 1611
-0.8	. 2119	. 2090	. 2061	. 2033	. 2005	. 1977	. 1949	. 1922	. 1894	. 1867
-0.7	. 2420	. 2389	. 2358	. 2327	. 2296	. 2266	. 2236	. 2206	. 2177	. 2148
-0.6	. 2743	. 2709	. 2676	. 2643	. 2611	. 2578	. 2546	. 2514	. 2483	. 2451
-0.5	. 3085	. 3050	. 3015	. 2981	. 2946	. 2912	. 2877	. 2843	. 2810	. 2776
-0.4	. 3446	. 3409	. 3372	. 3336	. 3300	. 3264	. 3228	. 3192	. 3156	. 3121
-0.3	. 3821	. 3783	. 3745	. 3707	. 3669	. 3632	. 3594	. 3557	. 3520	. 3483
-0.2	. 4207	. 4168	. 4129	. 4090	. 4052	. 4013	. 3974	. 3936	. 3897	. 3859
-0.1	. 4602	. 4562	. 4522	. 4483	. 4443	. 4404	. 4364	. 4325	. 4286	. 4247
-0.0	. 5000	. 4960	. 4920	. 4880	. 4840	. 4801	. 4761	. 4721	. 4681	. 4641

Statistics-Berlin Chen 32

Z-Table (2/2)

TABLE A. 2 Cumulative normal distribution (continued)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998
3.5	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998
3.6	. 9998	. 9998	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999

Statistics-Berlin Chen 33

Examples

1. Q: Find the area under normal curve to the left of $z=$ 0.47

Ans.: From the z table, the area is 0.6808

2. Q: Find the area under the curve to the right of $z=1.38$

Ans.: From the z table, the area to the left of 1.38 is 0.9162 . Therefore the area to the right is $1-0.9162=0.0838$

More Examples

1. Q: Find the area under the normal curve between $z=$ 0.71 and $z=1.28$.

Ans.: The area to the left of $z=1.28$ is 0.8997 . The area to the left of $z=0.71$ is 0.7611 . So the area between is $0.8997-$ $0.7611=0.1386$

2. Q: What z-score corresponds to the $75^{\text {th }}$ percentile of a normal curve?

Ans.: To answer this question, we use the z table in reverse.
We need to find the z-score for which 75% of the area of curve is to the left. From the body of the table, the closest area to 75% is 0.7486 , corresponding to a z-score of 0.67

Linear Combinations of Independent Normal RVs

- The linear combinations of independent normal random variables are still normal random variables
- Let $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right) \ldots, 11 X_{n} \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)$ are independent, then
$Y=c_{1} X_{1}+\cdots+c_{n} X_{n} \quad$ is normal with
- Mean $\mu_{Y}=c_{1} \mu_{1}+\cdots+c_{n} \mu_{n}$
- Variance $\sigma_{Y}^{2}=c_{1}^{2} \sigma_{1}^{2}+\cdots+c_{n}^{2} \sigma_{n}^{2}$
- We have to distinguish the meaning of $Y=c_{1} X_{1}+\cdots+c_{n} X_{n}$ from that of $f_{Y}(y)=c_{1} f_{X_{1}}(y)+\cdots+c_{n} f_{X_{n}}(y) \quad \sum_{i=1}^{n} c_{i}=1$

Evaluating an Estimator : Bias and Variance (1/3)

- The mean square error of the estimator d can be further decomposed into two parts respectively composed of bias and variance

$$
\begin{aligned}
r(d, \theta) & =E\left[(d-\theta)^{2}\right] \quad \text { (Mean Squared Error, MSE-- mean of the squared error) } \\
& =E\left[(d-E[d]+E[d]-\theta)^{2}\right] \\
& =E\left[(d-E[d])^{2}+(E[d]-\theta)^{2}+2(d-E[d])(E[d]-\theta)\right] \\
& \left.=E\left[(d-E[d])^{2}\right]+E \frac{(E[d]-\theta)^{2}}{\text { constant }}\right]+2 E\left[(d - E [d]) \left(\frac{E[d]-\theta)]}{\text { constant }}\right.\right. \\
& =E\left[(d-E[d])^{2}\right]+(E[d]-\theta)^{2}+2 E[(d-E[d])](E[d]-\theta) \\
& =\frac{E\left[(d-E[d])^{2}\right]}{\text { variance }}+\frac{(E[d]-\theta)^{2}}{\text { bias }^{2}}
\end{aligned}
$$

Evaluating an Estimator: Bias and Variance

 (2/3)

Figure 4.1: θ is the parameter to be estimated. d_{i} are several estimates (denoted by ' \times ') over different samples. Bias is the difference between the expected value of d and θ. Variance is how much d_{i} are scattered around the expected value. We would like both to be small.

Evaluating an Estimator: Bias and Variance (3/3)

- Bias and Variance: An Example

Estimating the Parameters of Normal

- If X_{1}, \ldots, X_{n} are a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution, μ is estimated with the sample mean \bar{X} and σ^{2} is estimated with the sample variance s^{2}

$$
\begin{array}{cc}
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
\text { unbiased estimator } & \text { asymptotically unbiased estimator? }
\end{array}
$$

- As with any sample mean, the uncertainty in \bar{X} is σ / \sqrt{n} which we replace with s / \sqrt{n}, if σ is unknown. The mean is an unbiased estimator of μ.

Sample Variance is an Asymptotically Unbiased Estimator (1/1)

- Sample variance s^{2} is an asymptotically unbiased estimator of the population variance σ^{2}

$$
\begin{array}{rlrl}
E\left[s^{2}\right] & =E\left[\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right] & s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
& =E\left[\frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left(X_{i}^{2}-2 X_{i} \cdot \bar{X}\right.\right. \\
& \left.=E\left[\frac{\left(\sum_{i=1}^{n}\right)}{n} X_{i}^{2}\right)-\frac{2 n \cdot \bar{X}^{2}}{n}+n \bar{X}^{2}\right] & \sum_{i=1}^{n} X_{i}=n \cdot \bar{X} \\
& =E\left[\frac{\left(\sum_{i=1}^{n} X_{i}^{2}\right)-n \cdot \bar{X}^{2}}{n}\right] \\
& =\frac{\left(\sum_{i=1}^{n} E\left[X_{i}^{2}\right]\right)-n \cdot E\left[\bar{X}^{2}\right]}{n}
\end{array}
$$

Sample Variance is an Asymptotically Unbiased Estimator (2/2)

$$
\begin{aligned}
& \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}=E\left[\bar{X}^{2}\right]-(E[\bar{X}])^{2} \\
& \Rightarrow E\left[\bar{X}^{2}\right]=\frac{\sigma^{2}}{n}+(E[\bar{X}])^{2}=\frac{\sigma^{2}}{n}+\mu^{2} \\
& \mathbf{E}\left[S^{2}\right]=\frac{\left(\sum_{i=1}^{n} \mathbf{E}\left[X_{i}^{2}\right]\right)-n \cdot \mathbf{E}\left[\bar{X}^{2}\right]}{n} \\
& \xrightarrow{\sim} \frac{n\left(\sigma^{2}+\mu^{2}\right)-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)}{n} \\
& \begin{array}{l}
\operatorname{Var}\left(X_{i}\right)=\sigma^{2}=\mathbf{E}\left[X_{i}^{2}\right]-\left(\mathbf{E}\left[X_{i}\right]\right)^{2} \\
\Rightarrow \mathbf{E}\left[X_{i}^{2}\right]=\sigma^{2}+\left(\mathbf{E}\left[X_{i}\right]\right)^{2}=\sigma^{2}+\mu^{2}
\end{array} \\
& =\frac{(n-1)}{n} \sigma^{2}-\frac{n=\infty}{n} \rightarrow \sigma^{2} \\
& \text { The size of the observed sample }
\end{aligned}
$$

The Lognormal Distribution

- For data that contain outliers (on the right of the axis), the normal distribution is generally not appropriate. The lognormal distribution, which is related to the normal distribution, is often a good choice for these data sets
- If $X \sim N\left(\mu, \sigma^{2}\right)$, then the random variable $Y=e^{X}$ has the lognormal distribution with parameters μ and σ^{2}
- If Y has the lognormal distribution with parameters μ and σ^{2}, then the random variable $X=\ln Y$ has the $N\left(\mu, \sigma^{2}\right)$

Probability Density Function

pdf, Mean and Variance of Lognormal

- The pdf of a lognormal random variable with parameters μ and σ^{2} is

$$
f(y)=\left\{\begin{array}{l}
\frac{1}{\sigma y \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(\ln y-\mu)^{2}\right], \quad y>0 \\
0, \quad \text { Otherwise }
\end{array}\right.
$$

- The mean $E(Y)$ and variance $V(Y)$ are given by

$$
E(Y)=e^{\mu+\sigma^{2} / 2} \quad V(Y)=e^{2 \mu+2 \sigma^{2}}-e^{2 \mu+\sigma^{2}}
$$

- Can be shown by advanced methods

pdf, Mean and Variance of Lognormal

- Recall "Derived Distributions"

$$
\begin{aligned}
& Y=e^{X}, X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \\
& \begin{aligned}
& F_{Y}(y)=P(Y \leq y)=P\left(e^{X} \leq y\right)=P(x \leq \log y)=F_{X}(\log y) \\
& \Rightarrow \\
& f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{d F_{X}(\log y)}{d \log y} \frac{\log y}{d y} \\
& \quad=f_{X}(\log y) \cdot \frac{1}{y} \\
& \quad=\frac{1}{y \sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2 \sigma^{2}}(\log y-\mu)^{2}\right]
\end{aligned}
\end{aligned}
$$

Test of "Lognormality"

- Transform the data by taking the natural logarithm (or any logarithm) of each value
- Plot the histogram of the transformed data to determine whether these logs come from a normal population

Probability Histogram

taking the natural logarithm on the values of the data

The Exponential Distribution

- The exponential distribution is a continuous distribution that is sometimes used to model the time that elapses before an event occurs
- Such a time is often called a waiting time
- The probability density of the exponential distribution involves a parameter, which is a positive constant λ whose value determines the density function's location and shape
- We write $X \sim \operatorname{Exp}(\lambda)$

pdf, cdf, Mean and Variance of Exponential

- The pdf of an exponential r.v. is

$$
f(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, x>0 \\
0, \text { otherwise }
\end{array}\right.
$$

Probability Density Function

- The cdf of an exponential r.v. is

$$
F(x)=\left\{\begin{array}{l}
0, x \leq 0 \\
1-e^{-\lambda x}, x>0
\end{array} .\right.
$$

- The mean of an exponential r.v. is

$$
\mu_{X}=1 / \lambda .
$$

- The variance of an exponential r.v. is

$$
\sigma_{x}^{2}=1 / \lambda^{2}
$$

Lack of Memory Property for Exponential

- The exponential distribution has a property known as the lack of memory property: If $T \sim \operatorname{Exp}(\lambda)$, and t and s are positive numbers, then

$$
P(T>t+s \mid T>s)=P(T>t)
$$

$$
\begin{aligned}
P(T>t+s \mid T>s) & =\frac{P((T>t+s) \cap(T>s))}{P(T>s)} \\
& =\frac{P(T>t+s)}{P(T>s)}=\frac{1-F_{T}(t+s)}{1-F_{T}(s)} \\
& =\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t}=1-F_{T}(t) \\
& =P(T>t)
\end{aligned}
$$

Estimating the Parameter of Exponential

- If X_{1}, \ldots, X_{n} are a random sample from $\operatorname{Exp}(\lambda)$, then the parameter λ is estimated with $\hat{\lambda}=1 / \bar{X}$. This estimator is biased. This bias is approximately equal to λ / n (specifically, $\mu_{\hat{\lambda}} \approx \lambda+\lambda / n$). The uncertainty in $\hat{\lambda}$ is estimated with

$$
\sigma_{\hat{\lambda}}=1 / \bar{X} \sqrt{n} .
$$

$$
\begin{aligned}
& \quad \sigma_{\hat{\lambda}} \approx\left|\frac{d}{d \bar{X}}\left(\frac{1}{\bar{X}}\right)\right| \sigma_{\bar{X}}=\frac{1}{\bar{X}^{2}} \cdot \sigma_{\bar{X}} \\
& \text { and } \sigma_{\bar{X}}=\frac{\sigma_{X}}{\sqrt{n}}=\frac{1}{\lambda} \cdot \frac{1}{\sqrt{n}} \approx \frac{\bar{X}}{\sqrt{n}}
\end{aligned}
$$

- This uncertainty estimate is reasonably good when the sample size n is more than 20

The Gamma Distribution (1/2)

- Let's consider the gamma function
- For $r>0$, the gamma function is defined by

$$
\Gamma(r)=\int_{0}^{\infty} t^{r-1} e^{-t} d t
$$

- The gamma function has the following properties:
- If r is any integer, then $\Gamma(r)=(r-1)$!
- For any $r, \Gamma(r+1)=r \Gamma(r)$
- $\Gamma(1 / 2)=\sqrt{\pi}$

The Gamma Distribution (2/2)

- The pdf of the gamma distribution with parameters $r>0$ and $\lambda>0$ is

$$
f(x)=\left\{\begin{array}{l}
\frac{\lambda x^{r-1} e^{-\lambda x}}{\Gamma(r)}, x>0 \\
0, \quad x \leq 0
\end{array} .\right.
$$

- The mean and variance of Gamma distribution are given by
- $\mu_{x}=r / \lambda$ and $\sigma_{x}^{2}=r / \lambda^{2}$, respectively
- If X_{1}, \ldots, X_{r} are independent random variables, each distributed as $\operatorname{Exp}(\lambda)$, then the sum $X_{1}+\ldots+X_{r}$ is distributed as a gamma random variable with parameters r and λ, denoted as $\Gamma(r, \lambda)$

The Weibull Distribution (1/2)

- The Weibull distribution is a continuous random variable that is used in a variety of situations
- A common application of the Weibull distribution is to model the lifetimes of components
- The Weibull probability density function has two parameters, both positive constants, that determine the location and shape. We denote these parameters α and β
- If $\alpha=1$, the Weibull distribution is the same as the exponential distribution with parameter $\lambda=\beta$

The Weibull Distribution (2/2)

- The pdf of the Weibull distribution is

$$
f(x)=\left\{\begin{array}{l}
\alpha \beta^{\alpha} x^{\alpha-1} e^{-(\beta x)^{\alpha}}, x>0 \\
0, \quad x \leq 0
\end{array}\right.
$$

- The mean of the Weibull is

$$
\mu_{X}=\frac{1}{\beta} \Gamma\left(1+\frac{1}{\alpha}\right)
$$

- The variance of the Weibull is

$$
\sigma_{x}^{2}=\frac{1}{\beta^{2}}\left\{\Gamma\left(1+\frac{2}{\alpha}\right)-\left[\Gamma\left(1+\frac{1}{\alpha}\right)\right]^{2}\right\} .
$$

Probability (Quantile-Quantile) Plots for Finding a Distribution

- Scientists and engineers often work with data that can be thought of as a random sample from some population
- In many cases, it is important to determine the probability distribution that approximately describes the population
- More often than not, the only way to determine an appropriate distribution is to examine the sample to find a sample distribution that fits

Finding a Distribution (1/4)

- Probability plots are a good way to determine an appropriate distribution
- Here is the idea: Suppose we have a random sample X_{1}, \ldots, X_{n}
- We first arrange the data in ascending order
- Then assign increasing, evenly spaced values between 0 and 1 to each X_{i}
- There are several acceptable ways to this; the simplest is to assign the value $(i-0.5) / n$ to $X_{i} \quad$ order statistics
- The distribution that we are comparing the X 's to should have a mean and variance that match the sample mean and variance
- We want to plot $\left(X_{i}, F\left(X_{i}\right)\right.$), if this plot resembles the cdf of the distribution that we are interested in, then we conclude that that is the distribution the data came from

Finding a Distribution (2/4)

- Example: Given a sample X_{i}^{\prime} s arranged in increasing order

$$
3.01,3.35,4.79,5.96,7.89
$$

\boldsymbol{i}	$\boldsymbol{X}_{\boldsymbol{i}}$	$\boldsymbol{(i - 0 . 5) / 5}$
1	3.01	0.1
2	3.35	0.3
3	4.79	0.5
4	5.96	0.7
5	7.89	0.9

sample mean $\bar{X}=5.00$
sample standard deviation $\mathrm{s}=2.00$

The curve is the cdf of $N\left(5,2^{2}\right)$. If the sample points Xi's came from the distribution, they are likely to lie close to the curve.

Finding a Distribution (3/4)

- When you use a software package, then it takes the ($i-$ $0.5) / n$ assigned to each $X i$ and calculates the quantile (Qi) corresponding to that number from the distribution of interest. Then it plots each (Xi, Qi), or (Empirical quantile, quantile)
- E.g., for the previous example (normal probability plot)

\boldsymbol{i}	$\boldsymbol{X}_{\boldsymbol{i}}$	$\boldsymbol{Q}_{\boldsymbol{i}}$
1	3.01	2.44
2	3.35	3.95
3	4.79	5.00
4	5.96	6.05
5	7.89	7.56

- If this plot is a reasonably straight line then you may conclude that the sample came from the distribution that we used to find quantiles

Finding a Distribution (4/4)

- A good rule of thumb is to require at least 30 points before relying on a probability plot
- E.g., a plot of the monthly productions of 255 gas wells

monthly productions

natural logs of monthly productions
- The monthly productions follow a lognormal distribution!

The Central Limit Theorem (1/3)

- The Central Limit Theorem
- Let X_{1}, \ldots, X_{n} be a random sample from a population with mean μ and variance σ^{2} (n is large enough)
- Let $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$ be the sample mean
- Let $S_{n}=X_{1}+\ldots+X_{n}$ be the sum of the sample observations. Then if n is sufficiently large,
- $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
sample mean is approximately normal!
- And $S_{n} \sim N\left(n \mu, n \sigma^{2}\right)$ approximately

The Central Limit Theorem (2/3)

- Example

- Rule of Thumb
- For most populations, if the sample size is greater than 30, the Central Limit Theorem approximation is good

The Central Limit Theorem (3/3)

- Example 4.64: Let X denotes the flaws in an 1 in . length of copper wire, and its corresponding pmf, mean and variance are

x	$P(X=x)$	
0	0.48	$\mu=0.66$
1	0.39	
2 3	0.12 0.01	$\sigma^{2}=0.5244$

- One hundred wires are sampled from this population. What is the probability that the average number of flow per wire in this sample is less than 0.5 ?
\Rightarrow Following the central limit theorem, we know that
the sample mean $\bar{X} \sim N(0.66,0.005244)$
The z-score of $\bar{X}=0.5$ is
$z=\frac{0.5-0.66}{\sqrt{0.005244}}=-2.21 \quad \therefore P(\bar{X}<0.5)=P(Z<-2.21)=0.0136$

Law of Large Numbers

- Let X_{1}, \ldots, X_{n} be a sequence of independent random variables with $\mathbf{E}\left[X_{i}\right]=\mu$ and $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then, for any $\varepsilon>0$,

$$
P((\bar{X}-\mu) \geq \varepsilon) \leq \frac{\operatorname{var}(\bar{X})}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}} \quad \rightarrow 0, \quad \text { as } n \rightarrow 0
$$

$$
\mathbf{E}[\bar{X}]=\mathbf{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\mu
$$

$$
\left.\operatorname{var}(\bar{X})=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)=\frac{\sigma^{2}}{n} \quad \text { (since } X_{i} \text { are independent }\right)
$$

The desired result follows immediately from Chebyshev's inequality, which states that,

$$
P\left(\left(X-\mu_{X}\right) \geq \varepsilon\right) \leq \frac{\sigma_{X}^{2}}{\varepsilon^{2}} \text { for } \varepsilon>0
$$

Normal Approximation to the Binomial

- If $X \sim \operatorname{Bin}(n, p)$ and if $n p>10$, and $n(1-p)>10$, then
- $X \sim N(n p, n p(1-p))$ approximately
- And $\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$ approximately

$\operatorname{Bin}(100,0.2)$ approximated by $N(20,16)$
Recall that $X \sim \operatorname{Bin}(n, p)$, then can X be represented as

$$
X=Y_{1}+Y_{2}+\ldots+Y_{n}
$$

where Y_{1}, Y_{2}, \ldots, Y is a sample from $\operatorname{Bernoulli}(p)$
\Rightarrow Following the central limit theorem, if n is large enough then

$$
\hat{p}=\frac{X}{n}=\frac{Y_{1}+Y_{2}+\ldots+Y_{n}}{n} \text { be approximated by } N\left(p, \frac{p(1-p)}{n}\right)
$$

and
X can be approximated by $N(n p, n p(1-p))$

Normal Approximation to the Poisson

- Normal Approximation to the Poisson: If $X \sim \operatorname{Poisson}(\lambda)$, where $\lambda>10$, then $X \sim N(\lambda, \lambda)$
- The Poisson can be first approximated by Binomial and then by Normal

Note that variance of binomial :

$$
\sigma^{2}=n p(1-p)=\lambda(1-p) \approx \lambda \quad(\text { if } p \ll 1)
$$

Continuity Correction

- The binomial distribution is discrete, while the normal distribution is continuous
- The continuity correction is an adjustment, made when approximating a discrete distribution with a continuous one, that can improve the accuracy of the approximation
- If you want to include the endpoints in your probability calculation, then extend each endpoint by 0.5 . Then proceed with the calculation

$$
\text { e.g., } P(45 \leq X \leq 55)
$$

- If you want exclude the endpoints in your probability calculation, then include 0.5 less from each endpoint in the calculation

$$
\text { e.g., } P(45<X<55)
$$

Summary

- We considered various discrete distributions: Bernoulli, Binomial, Poisson, Hypergeometric, Geometric, Negative Binomial, and Multinomial
- Then we looked at some continuous distributions: Normal, Exponential, Gamma, and Weibull
- We learned about the Central Limit Theorem
- We discussed Normal approximations to the Binomial and Poisson distributions

