Data Analysis and Dimension Reduction
 - PCA, LDA and LSA

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

References:

1. Introduction to Machine Learning , Chapter 6
2. Data Mining: Concepts, Models, Methods and Algorithms, Chapter 3

Introduction (1/3)

- Goal: discover significant patterns or features from the input data
- Salient feature selection or dimensionality reduction

- Compute an input-output mapping based on some desirable properties

Introduction (2/3)

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Latent Semantic Analysis (LSA)

Bivariate Random Variables

- If the random variables X and Y have a certain joint distribution that describes a bivariate random variable

$$
\begin{aligned}
& Z=\left[\begin{array}{l}
X \\
Y
\end{array}\right] \\
& \Rightarrow \mu_{Z}=\left[\begin{array}{l}
\mu_{X} \\
\mu_{Y}
\end{array}\right] \quad \text { bivariate random variable } \\
& \Rightarrow \Sigma_{Z}=\left[\begin{array}{ll}
\sigma_{X, X} & \sigma_{X, Y} \\
\sigma_{X, Y} & \sigma_{Y, Y}
\end{array}\right] \quad \text { mean vector }
\end{aligned}
$$

$$
\begin{aligned}
& \text { variance } \sigma_{X, X}=\sigma_{X}^{2}=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \\
& \operatorname{covariance} \sigma_{X, Y}=\sigma_{Y, X}=\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]=\mathbf{E}[X Y]-\mathbf{E}[X] \mathbf{E}[Y]
\end{aligned}
$$

Multivariate Random Variables

- If the random variables $X_{1}, X_{2}, \ldots, X_{n}$ have a certain joint distribution that describes a multivariate random variable

$$
\begin{aligned}
& X=\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right] \\
& \Rightarrow \mu_{X}=\left[\begin{array}{c}
\mu_{X_{1}} \\
\vdots \\
\mu_{X_{n}}
\end{array}\right] \quad \text { multivariate random variable } \\
& \Rightarrow \Sigma_{Z}=\left[\begin{array}{ccc}
\sigma_{X_{1}, X_{1}} & \cdots & \sigma_{X_{1}, X_{n}} \\
\vdots & \vdots & \vdots \\
\sigma_{X_{n}, X_{1}} & \cdots & \sigma_{X_{n}, X_{n}}
\end{array}\right] \quad \text { mean vector }
\end{aligned}
$$

$$
\begin{aligned}
& \text { variance } \sigma_{X_{i}, X_{i}}=\sigma_{X_{i}}^{2}=\mathbf{E}\left[\left(X_{i}-\mathbf{E}\left[X_{i}\right]\right)^{2}\right]=\mathbf{E}\left[X_{i}^{2}\right]-\left(\mathbf{E}\left[X_{i}\right]\right)^{2} \\
& \text { covariance } \sigma_{X_{i}, X_{j}}=\sigma_{X_{j}, X_{i}}=\mathbf{E}\left[\left(X_{i}-\mathbf{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbf{E}\left[X_{j}\right)\right]\right)=\mathbf{E}\left[X_{i} X_{j}\right]-\mathbf{E}\left[X_{i}\right] \mathbf{E}\left[X_{j}\right]
\end{aligned}
$$

Introduction (3/3)

- Formulation for feature extraction and dimension reduction
- Model-free (nonparametric)
- Without prior information: e.g., PCA
- With prior information: e.g., LDA
- Model-dependent (parametric), e.g.,
- HLDA with Gaussian cluster distributions
- PLSA with multinomial latent cluster distributions

Principal Component Analysis (PCA) (1/2)

- Known as Karhunen-Loẻve Transform $(1947,1963)$
- Or Hotelling Transform (1933)
- A standard technique commonly used for data reduction in statistical pattern recognition and signal processing
- A transform by which the data set can be represented by reduced number of effective features and still retain the most intrinsic information content
- A small set of features to be found to represent the data samples accurately
- Also called "Subspace Decomposition", "Factor Analysis" ..

Principal Component Analysis (PCA) (2/2)

FIGURE 8.4 A cloud of data points is shown in two dimensions, and the density plots formed by projecting this cloud onto each of two axes, 1 and 2 , are indicated. The projection onto axis 1 has maximum variance, and clearly shows the bimodal, or clustered character of the data.

PCA Derivations (1/13)

- Suppose \boldsymbol{x} is an n-dimensional zero mean random vector, $\mu=\mathbf{E}\{\boldsymbol{x}\}=\boldsymbol{0}$
- If \boldsymbol{x} is not zero-mean, we can subtract the mean before processing the following analysis
- \boldsymbol{x} can be represented without error by the summation of n linearly independent vectors

PCA Derivations (2/13)

PCA Derivations (3/13)

- Further assume the column (basis) vectors of the matrix $\boldsymbol{\Phi}$ form an orthonormal set

$$
\varphi_{i}^{T} \varphi_{j}= \begin{cases}1 & \text { if } \quad i=j \\ 0 & \text { if } \quad i \neq j\end{cases}
$$

- Such that y_{i} is equal to the projection of \boldsymbol{x} on $\boldsymbol{\varphi}_{i}$

$$
\forall_{i} \quad y_{i}=\boldsymbol{x}^{T} \varphi_{i}=\varphi_{i}^{T} \boldsymbol{x}
$$

$$
\begin{aligned}
& y_{1}=\|\boldsymbol{x}\| \cos \theta_{1}=\|\boldsymbol{x}\| \frac{\varphi_{1}^{T} \boldsymbol{x}}{\|\boldsymbol{x}\|\left\|\boldsymbol{\varphi}_{1}\right\|}=\varphi_{1}^{T} x \\
& \text { where }\left\|\boldsymbol{\varphi}_{1}\right\|=1
\end{aligned}
$$

PCA Derivations (4/13)

- Further assume the column (basis) vectors of the matrix Φ form an orthonormal set
- y_{i} also has the following properties
- Its mean is zero, too

$$
\mathbf{E}\left\{y_{i}\right\}=\mathbf{E}\left\{\varphi_{i}^{T} \boldsymbol{x}\right\}=\varphi_{i}^{T} \mathbf{E}\{\boldsymbol{x}\}=\varphi_{i}^{T} \boldsymbol{0}=0 \quad \boldsymbol{R}=\mathbf{E}\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \approx \frac{1}{N} \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}
$$

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\mathbf{E}\left\{(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{T}\right\} \\
& \approx\left(\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right) \\
\boldsymbol{R} & =\mathbf{E}\left\{\boldsymbol{x}^{T}\right\} \approx \frac{1}{N} \sum_{i}^{T} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}
\end{aligned}
$$

- Its variance is

$$
\begin{aligned}
\sigma_{i}^{2} & =\mathbf{E}\left\{y_{i}^{2}\right\}-[\mathbf{E}\{y\}]^{2}=\mathbf{E}\left\{y_{i}^{2}\right\}=\mathbf{E}\left\{\varphi_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \varphi_{i}\right\}=\varphi_{i}^{T} \mathbf{E}\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \varphi_{i} \\
& =\varphi_{i}^{T} \boldsymbol{R} \varphi_{i} \quad[\boldsymbol{R} \text { is the (auto-)correlationmatrix of } \boldsymbol{x}]
\end{aligned}
$$

- The correlation between two projections y_{i} and y_{j} is

$$
\begin{aligned}
\mathbf{E}\left\{y_{i} y_{j}\right\} & =\mathbf{E}\left\{\left(\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x}\right)\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{x}\right)^{T}\right\}=\mathbf{E}\left\{\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{\varphi}_{j}\right\} \\
& =\boldsymbol{\varphi}_{i}^{T} \mathbf{E}\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \boldsymbol{\varphi}_{j}=\boldsymbol{\varphi}_{i}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}
\end{aligned}
$$

PCA Derivations (5/13)

- Minimum Mean-Squared Error Criterion

- We want to choose only m of $\boldsymbol{\varphi}_{i}{ }^{\prime} \mathrm{S}$ that we still can approximate \boldsymbol{x} well in mean-squared error criterion
original vector

$$
\boldsymbol{x}=\sum_{i=1}^{n} y_{i} \boldsymbol{\varphi}_{\boldsymbol{i}}=\sum_{i=1}^{m} y_{i} \boldsymbol{\varphi}_{\boldsymbol{i}}+\sum_{j=m+1}^{n} y_{j} \boldsymbol{\varphi}_{j}
$$

reconstructed vector $\hat{\boldsymbol{x}}(m)=\sum_{i=1}^{m} y_{i} \boldsymbol{\varphi}_{\boldsymbol{i}}$

$$
\bar{\varepsilon}(m)=\mathbf{E}\left\{\|\hat{\boldsymbol{x}}(m)-\boldsymbol{x}\|^{2}\right\}=\mathbf{E}\left\{\left(\sum_{j=m+1}^{n} y_{j} \boldsymbol{\varphi}_{j}^{T}\right)\left(\sum_{k=m+1}^{n} y_{k} \boldsymbol{\varphi}_{k}\right)\right\}
$$

$$
=\mathbf{E}\left\{\sum_{j=m+1}^{n} \sum_{k=m+1}^{n} y_{j} y_{k} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{\varphi}_{k}\right\}
$$

$$
\begin{aligned}
& E\left\{y_{j}\right\}=0 \\
& \sigma_{j}^{2}=E\left\{y_{j}^{2}\right\}-\left[E\left\{y_{j}\right\}\right]^{2}
\end{aligned}=\sum_{j=m+1}^{n} \mathbf{E}\left\{y_{j}^{2}\right\} \quad \because \boldsymbol{\varphi}_{j}^{T} \boldsymbol{\varphi}_{k}= \begin{cases}1 & \text { if } j=k \\
0 & \text { if } j \neq k\end{cases}
$$

$$
=E\left\{y_{j}^{2}\right\} \quad \perp \sum_{j=m+1}^{n} \sigma_{j}^{2}=\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}
$$

We should discard the bases where the projections have lower variances

PCA Derivations (6/13)

- Minimum Mean-Squared Error Criterion

- If the orthonormal (basis) set $\varphi_{i}{ }^{\prime} \mathrm{s}$ is selected to be the eigenvectors of the correlation matrix \boldsymbol{R}, associated with eigenvalues λ_{i} 's
- They will have the property that:

$$
\boldsymbol{R} \varphi_{j}=\lambda_{j} \boldsymbol{\varphi}_{j}
$$

is real and symmetric, therefore its eigenvectors \boldsymbol{R} form a orthonormal set

- Such that the mean-squared error mentioned above will be

$$
\begin{aligned}
\overline{\mathcal{E}}(m) & =\sum_{j=m+1}^{n} \boldsymbol{\sigma}_{j}^{2} \\
& =\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \lambda_{j} \boldsymbol{\varphi}_{j}=\sum_{j=m+1}^{n} \lambda_{j}
\end{aligned}
$$

PCA Derivations (7/13)

- Minimum Mean-Squared Error Criterion
- If the eigenvectors are retained associated with the m largest eigenvalues, the mean-squared error will be

$$
\bar{\varepsilon}_{\text {eigen }}(m)=\sum_{j=m+1}^{n} \lambda_{j} \quad\left(\text { where } \lambda_{1} \geq \ldots \geq \lambda_{m} \geq \ldots \geq \lambda_{n} \geq 0\right)
$$

- Any two projections y_{i} and y_{j} will be mutually uncorrelated

$$
\begin{aligned}
E\left\{y_{i} y_{j}\right\} & =E\left\{\left(\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x}\right)\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{x}\right)^{T}\right\}=E\left\{\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{\varphi}_{j}\right\} \\
& =\boldsymbol{\varphi}_{i}^{T} E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \boldsymbol{\varphi}_{j}=\boldsymbol{\varphi}_{i}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\lambda_{\mathrm{j}} \boldsymbol{\varphi}_{i}^{T} \boldsymbol{\varphi}_{j}=0
\end{aligned}
$$

- Good news for most statistical modeling approaches
- Gaussians and diagonal matrices

$$
\begin{aligned}
& \boldsymbol{\Sigma}=E\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{T}\right] \\
& \approx\left(\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right)-\boldsymbol{\mu} \boldsymbol{\mu}^{T} \\
& \boldsymbol{R}=E\left\{\boldsymbol{x x}^{T}\right\}=\frac{1}{N} \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \\
& {\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdot & \sigma_{1 n} \\
\sigma_{22} & \sigma_{22} & \cdot & \vdots \\
\cdot & \cdot & \cdot & \vdots \\
\sigma_{n 1} & \sigma_{n 2} & \cdots & \sigma_{n n}
\end{array}\right]}
\end{aligned}
$$

PCA Derivations (8/13)

- A Two-dimensional Example of Principle Component Analysis

PCA Derivations (9/13)

- Minimum Mean-Squared Error Criterion

- It can be proved that $\bar{\varepsilon}_{\text {eigen }}(m)$ is the optimal solution under the mean-squared error criterion

Objective function

To be minimized

Constraints
Define: $J=\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j} \sum_{j=m+1}^{\sum_{k=m+1}^{n}} \sum_{j k}^{n}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{\varphi}_{k}-\delta_{j k}\right) \quad \frac{\partial \varphi^{T} \boldsymbol{R} \varphi}{\partial \varphi}=2 \boldsymbol{R} \varphi$
Partial Differentiation

$$
\begin{aligned}
& \Rightarrow \forall_{m+1 \leq j \leq n} \frac{\partial J}{\partial \boldsymbol{\varphi}_{j}}=2 \boldsymbol{R} \boldsymbol{\varphi}_{j}-\sum_{k=m+1}^{n} u_{j k} \boldsymbol{\varphi}_{k}=\boldsymbol{0}\left(\text { where } \boldsymbol{u}_{j}^{T}=\left[u_{j+1} \ldots . . u_{j n}\right)\right. \\
& \Rightarrow \forall_{m+1 \leq j \leq n} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\boldsymbol{\Phi}_{n-m} \boldsymbol{u}_{j}\left(\text { where } \boldsymbol{\Phi}_{n-m}=\left[\boldsymbol{\varphi}_{m+1} \ldots \ldots \boldsymbol{\varphi}_{n}\right]\right) \\
& \Rightarrow \boldsymbol{R}\left[\varphi_{m+1} \ldots . \boldsymbol{\varphi}_{n}\right]=\boldsymbol{\Phi}_{n-m}\left[\boldsymbol{u}_{m+1} \ldots . \boldsymbol{u}_{n}\right] \\
& \Rightarrow \boldsymbol{R} \boldsymbol{\Phi}_{n-m}=\boldsymbol{\Phi}_{n-m} \boldsymbol{U}_{n-m}\left(\text { where } \boldsymbol{U}_{n-m}=\left[\boldsymbol{u}_{m+1} \ldots . . \boldsymbol{u}_{n}\right]\right)
\end{aligned}
$$

Have a particular solution if \boldsymbol{U}_{n-m} is a diagonal matrix and its diagonal elements is the eigenvalues $\lambda_{m+1} \cdots \lambda_{n}$ of \boldsymbol{R} and $\boldsymbol{\varphi}_{m+1} \cdots \varphi_{n}$ is their corresponding eigenvectors

PCA Derivations (10/13)

- Given an input vector \boldsymbol{x} with dimension m
- Try to construct a linear transform $\boldsymbol{\Phi}^{\prime}\left(\boldsymbol{\Phi}^{\prime}\right.$ is an $n \times m$ matrix $m<n$) such that the truncation result, $\boldsymbol{\Phi}^{, \top} \boldsymbol{x}$, is optimal in meansquared error criterion

minimize $E_{x}\left((\hat{x}-x)^{T}(\hat{x}-x)\right)$

PCA Derivations (11/13)

- Data compression in communication

- PCA is an optimal transform for signal representation and dimensional reduction, but not necessary for classification tasks, such as speech recognition ? (To be discussed later on)
- PCA needs no prior information (e.g. class distributions of output information) of the sample patterns

PCA Derivations (12/13)

- Scree Graph
- The plot of variance as a function of the number of eigenvectors kept
- Select m such that $\frac{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}}{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}+\cdots+\lambda_{n}} \geq$ Threshold

- Or select those eigenvectors with eigenvalues larger than the average input variance (average eivgenvalue)

$$
\lambda_{m} \geq \frac{1}{n} \sum_{i=1}^{n} \lambda_{i}
$$

PCA Derivations (13/13)

- PCA finds a linear transform \boldsymbol{W} such that the sum of average between-class variation and average withinclass variation is maximal

$$
\begin{array}{ll}
J(\boldsymbol{W})=|\widetilde{\boldsymbol{S}}| \stackrel{?}{=}\left|\widetilde{\boldsymbol{S}}_{w}+\widetilde{\boldsymbol{S}}_{b}\right|=\left|\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W}+\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right| \\
\boldsymbol{S}=\frac{1}{N} \sum_{i \times}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T} \\
\text { sample index } & \\
\boldsymbol{S}_{w}=\frac{1}{N} \sum_{j} N_{j} \boldsymbol{\Sigma}_{j} \\
\text { class index } & \\
\boldsymbol{S}_{b}=\frac{1}{N} \sum_{j} N_{j}\left(\overline{\boldsymbol{x}}_{j}-\overline{\boldsymbol{x}}\right)\left(\overline{\boldsymbol{x}}_{j}-\overline{\boldsymbol{x}}\right)^{T} & \\
\widetilde{\boldsymbol{S}}_{w}=\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W} & \text { Try toshow that: } \\
\widetilde{\boldsymbol{S}}_{b}=\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W} & \mathbf{S}=\mathbf{S}_{w}+\mathbf{S}_{b}
\end{array}
$$

PCA Examples: Data Analysis

- Example 1: principal components of some data points

PCA Examples: Feature Transformation

- Example 2: feature transformation and selection

Correlation matrix for old feature		Feature 1	Feature 2	Feature 3	Feature 4
	Feature 1	1.0000	-0.1094	0.8718	0.8180
dimensions	Feature 2	-0.1094	1.0000	-0.4205	-0.3565
	Feature 3	0.8718	-0.4205	1.0000	0.9628
	Feature 4	0.8180	-0.3565	0.9628	1.0000

TABLE 3.3 The eigenvalues for Iris data
New feature dimensions

Feature	Eigenvalue
Feature 1	2.91082
Feature 2	0.92122
Feature 3	0.14735
Feature 4	0.02061

```
R}=(2.91082+0.92122)/(2.91082+0.92122+0.14735+0.02061
    =0.958>0.95
threshold for information content reserved
```


PCA Examples: Image Coding (1/2)

- Example 3: Image Coding

PCA Examples: Image Coding (2/2)

- Example 3: Image Coding (cont.)

FIGURE 8.9 (a) An image of parents used in the image coding experiment. (b) 8×8 masks representing the synaptic weights learned by the GHA. (c) Reconstructed image of parents obtained using the dominant 8 principal components without quantization. (d) Reconstructed image of parents with 15 to 1 compression ratio using quantization.

PCA Examples: Eigenface (1/4)

- Example 4: Eigenface in face recognition (Turk and Pentland, 1991)
- Consider an individual image to be a linear combination of a small number of face components or "eigenfaces" derived from a set of reference images
- Steps

- Convert each of the L reference images into a vector of floating point numbers representing light intensity in each pixel
- Calculate the coverance/correlation matrix between these reference vectors
- Apply Principal Component Analysis (PCA) find the eigenvectors of the matrix: the eigenfaces
- Besides, the vector obtained by averaging all images are called "eigenface 0". The other eigenfaces from "eigenface 1" onwards model the variations from this average face

PCA Examples: Eigenface (2/4)

- Example 4: Eigenface in face recognition (cont.)
- Steps
- Then the faces are then represented as eigenvoice 0 plus a linear combination of the remain $K(K \leq L)$ eigenfaces
- The Eigenface approach persists the minimum mean-squared error criterion
- Incidentally, the eigenfaces are not only themselves usually plausible faces, but also directions of variations between faces

$$
\begin{aligned}
& \hat{\mathbf{x}}_{i}=\overline{\mathbf{x}}+w_{i, 1} \mathbf{e}(1)+w_{i, 2} \mathbf{e}(2)+\ldots . .+w_{i, K} \mathbf{e}(K) \\
& \Rightarrow \mathbf{y}_{i}=\left[1, w_{i, 1}, w_{i, 2}, \ldots, w_{i, K}\right] \\
& \quad \text { Feature vector of a person } i
\end{aligned}
$$

PCA Examples: Eigenface (3/4)

Face images as the training set

The averaged face

PCA Examples: Eigenface (4/4)

Seven eigenfaces derived from the training set

A projected face image

$?$
(Indicate directions of variations between faces)

PCA Examples: Eigenvoice (1/3)

- Example 5: Eigenvoice in speaker adaptation (PSTL, 2000)
- Steps
- Concatenating the regarded parameters for each speaker r to form a huge vector a ${ }^{(r)}$ (a supervectors)
- SD HMM model mean parameters (μ)

PCA Examples: Eigenvoice (2/3)

- Example 4: Eigenvoice in speaker adaptation (cont.)

Fig. 1. Block diagram for eigenvoice speaker adaptation

PCA Examples: Eigenvoice (3/3)

- Example 5: Eigenvoice in speaker adaptation (cont.)
- Dimension 1 (eigenvoice 1):
- Correlate with pitch or sex
- Dimension 2 (eigenvoice 2):
- Correlate with amplitude
- Dimension 3 (eigenvoice 3):
- Correlate with second-formant movement

Note that:
Eigenface performs on feature space while eigenvoice performs
on model space

[^0]
Linear Discriminant Analysis (LDA) (1/2)

- Also called
- Fisher's Linear Discriminant Analysis, Fisher-Rao Linear Discriminant Analysis
- Fisher (1936): introduced it for two-class classification
- Rao (1965): extended it to handle multiple-class classification

Linear Discriminant Analysis (LDA) (2/2)

- Given a set of sample vectors with labeled (class) information, try to find a linear transform \boldsymbol{W} such that the ratio of average between-class variation over average within-class variation is maximal

Within-class distributions are assumed here to be Gaussians With equal variance in the two-dimensional sample space

Fig. 10-1 An example of feature extraction for classification.

LDA Derivations (1/4)

- Suppose there are N sample vectors \boldsymbol{x}_{i} with dimensionality n, each of them is belongs to one of the J classes $g\left(x_{i}\right)=j, \quad j \in\{1,2, \ldots ., J\}, g(\cdot)$ is class index
- The sample mean is: $\overline{\mathbf{x}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$
- The class sample means are: $\quad \overline{\boldsymbol{x}}_{j}=\frac{1}{N_{j}} g_{\left(x_{i}\right)=j} \boldsymbol{x}_{i}$
- The class sample covariances are: $\quad \Sigma_{j}=\frac{1}{N_{j}} \underset{g\left(x_{i}\right)=j}{\sum}\left(x_{i}-\bar{x}_{j}\right)\left(x_{i}-\bar{x}_{j}\right)^{T}$
- The average within-class variation before transform

$$
\boldsymbol{S}_{w}=\frac{1}{N} \sum_{j} N_{j} \boldsymbol{\Sigma}_{j}
$$

- The average between-class variation before transform

$$
\boldsymbol{S}_{b}=\frac{1}{N} \sum_{j} N_{j}\left(\overline{\boldsymbol{x}}_{j}-\overline{\boldsymbol{x}}\right)\left(\overline{\boldsymbol{x}}_{j}-\overline{\boldsymbol{x}}\right)^{T}
$$

LDA Derivations (2/4)

- If the transform $\boldsymbol{W}=\left[\boldsymbol{w}_{1} \boldsymbol{w}_{2} \ldots . \boldsymbol{w}_{m}\right]$ is applied
- The sample vectors will be $\boldsymbol{y}_{i}=\boldsymbol{W}^{T} \boldsymbol{x}_{i}$
- The sample mean will be $\quad \overline{\boldsymbol{y}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{W}^{T} \boldsymbol{x}_{i}=\boldsymbol{W}^{T}\left(\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}\right)=\boldsymbol{W}^{T} \overline{\boldsymbol{x}}$
- The class sample means will be $\overline{\boldsymbol{y}}_{j}=\frac{1}{N_{j}} \sum_{g\left(\boldsymbol{x}_{i}\right)=j} \boldsymbol{W}^{T} \boldsymbol{x}_{i}=\boldsymbol{W}^{T} \overline{\boldsymbol{x}}_{j}$
- The average within-class variation will be

$$
\begin{aligned}
& \widetilde{\boldsymbol{S}}_{w}=\frac{1}{N} \sum_{j} N_{j}\left\{\frac{1}{N_{j}} \cdot \sum_{g\left(\boldsymbol{x}_{i}\right)=j}\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}-\frac{1}{N_{j}} \sum_{g\left(\boldsymbol{x}_{i}\right)=j}\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}\right)\right)\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}-\frac{1}{N_{j}} \sum_{g\left(\boldsymbol{x}_{i}\right)=j}\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}\right)\right)^{T}\right\} \\
& =\boldsymbol{W}^{T}\left\{\frac{1}{N} \sum_{j} N_{j} \boldsymbol{\Sigma}_{j}\right\} \boldsymbol{W} \\
& =\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W} \\
& \begin{array}{llr}
\overline{\mathbf{x}} & \mathbf{W} & \overline{\mathbf{y}} \\
\mathbf{S}_{w} & & \widetilde{\mathbf{S}}_{w} \\
\mathbf{S}_{b} & & \widetilde{\mathbf{S}}_{b}
\end{array}
\end{aligned}
$$

LDA Derivations (3/4)

- If the transform $\boldsymbol{W}=\left[\boldsymbol{w}_{1} \boldsymbol{w}_{2} \ldots, \boldsymbol{w}_{m}\right]$ is applied
- Similarly, the average between-class variation will be

$$
\widetilde{\boldsymbol{S}}_{b}=\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}
$$

- Try to find optimal \boldsymbol{W} such that the following objective function is maximized

$$
J(\boldsymbol{W})=\frac{\left|\widetilde{\boldsymbol{S}}_{b}\right|}{\left|\widetilde{\boldsymbol{S}}_{w}\right|}=\frac{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right|}{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W}\right|}
$$

- A closed-form solution: the column vectors of an optimal matrix \boldsymbol{W} are the generalized eigenvectors corresponding to the largest eigenvalues in

$$
\boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{S}_{w} \boldsymbol{w}_{i}
$$

- That is, $\quad \boldsymbol{w}_{i}{ }^{\prime} \mathrm{S}$ are the eigenvectors corresponding to the largest eigenvalues of $\mathbf{S}_{w}^{-1} \mathbf{S}_{b}$

$$
\boldsymbol{S}_{w}^{-1} \boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{w}_{i}
$$

LDA Derivations (4/4)

- Proof:
$\because \hat{\boldsymbol{W}}=\underset{\hat{W}}{\arg \max } J(\boldsymbol{W})=\underset{\hat{W}}{\arg \max } \frac{\left|\widetilde{\boldsymbol{S}}_{b}\right|}{\left|\widetilde{\boldsymbol{S}}_{w}\right|}=\underset{\hat{W}}{\arg \max } \frac{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right|}{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W}\right|}$
Or equivalently, for each column vector \boldsymbol{w}_{i} of \boldsymbol{W}, we want to find that :
The qradtic form has optimal solution : $\lambda_{i}=\frac{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{b} \boldsymbol{w}_{i}}{\boldsymbol{w}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}}$

$$
\left(\frac{\mathbf{F}}{\mathbf{G}}\right)^{\prime}=\frac{\mathbf{F}^{\prime} \mathbf{G}-\mathbf{G}^{\prime} \mathbf{F}}{\mathbf{G}^{2}}
$$

$\Rightarrow \frac{\partial \lambda_{i}}{\partial \boldsymbol{w}_{i}}=\frac{2 \boldsymbol{S}_{b} \boldsymbol{w}_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)-2 \boldsymbol{S}_{w} \boldsymbol{w}_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{b} \boldsymbol{w}_{i}\right)}{\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)^{2}}=0$

$$
\frac{d\left(\mathbf{x}^{\mathrm{T}} \mathbf{C x}\right)}{d \mathbf{x}}=\left(\mathbf{C}+\mathbf{C}^{\mathrm{T}}\right) \mathbf{x}
$$

$$
\Rightarrow \frac{\boldsymbol{S}_{b} \boldsymbol{w}_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)}{\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)^{2}}-\frac{\boldsymbol{S}_{w} \boldsymbol{w}_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{b} \boldsymbol{w}_{i}\right)}{\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)^{2}}=0
$$

$$
\frac{\boldsymbol{S}_{b} \boldsymbol{w}_{i}}{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}}-\frac{\boldsymbol{S}_{w} \boldsymbol{w}_{i}}{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}} \lambda_{i}=0 \quad\left(\because \lambda_{i}=\frac{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{b} \boldsymbol{w}_{i}}{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}}\right)
$$

$$
\Rightarrow \boldsymbol{S}_{b} \boldsymbol{w}_{i}-\lambda_{i} \boldsymbol{S}_{w} \boldsymbol{w}_{i}=0 \Rightarrow \boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{S}_{w} \boldsymbol{w}_{i}
$$

$$
\Rightarrow \boldsymbol{S}_{w}^{-1} \boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{w}_{i}
$$

LDA Examples: Feature Transformation (1/2)

- Example1: Experiments on Speech Signal Processing

Covariance Matrix of the 18-Mel-filter-bank vectors Covariance Matrix of the 18-cepstral vectors

Calculated using Year-99's 5471 files

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{\mathbf{x}_{i}}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{T}
$$

Calculated using Year-99's 5471 files

$$
\boldsymbol{\Sigma}^{\prime}=\frac{1}{N} \sum_{y_{i}}\left(\mathbf{y}_{i}-\overline{\mathbf{y}}\right)\left(\mathbf{y}_{i}-\overline{\mathbf{y}}\right)^{T}
$$

After Cosine Transform

LDA Examples: Feature Transformation (2/2)

- Example1: Experiments on Speech Signal Processing (cont.)

Covariance Matrix of the 18-PCA-cepstral vectors Covariance Matrix of the 18-LDA-cepstral vectors

Calculated using Year-99's 5471 files
After PCA Transform

	Character Error Rate	
	TC	WG
MFCC	26.32	22.71
LDA-1	23.12	20.17
LDA-2	23.11	20.11

Calculated using Year-99's 5471 files
After LDA Transform

PCA vs. LDA (1/2)

Figure 4.9: Although the line joining the centroids defines the direction of greatest centroid spread, the projected data overlap because of the covariance (left panel). The discriminant direction minimizes this overlap for Gaussian data (right panel).

Heteroscedastic Discriminant Analysis (HDA)

- HDA: Heteroscedastic Discriminant Analysis
- The difference in the projections obtained from LDA and HDA for 2-class case

Fig. 1. Difference between LDA and HDA

- Clearly, the HDA provides a much lower classification error than LDA theoretically
- However, most statistical modeling approaches assume data samples are Gaussian and have diagonal covariance matrices

HW: Feature Transformation (1/4)

- Given two data sets (MaleData, Female Data) in which each row is a sample with 39 features, please perform the following operations:

1. Merge these two data sets and find/plot the covariance matrix for the merged data set.
2. Apply PCA and LDA transformations to the merged data set, respectively. Also, find/plot the covariance matrices for transformations, respectively. Describe the phenomena that you have observed.
3. Use the first two principal components of PCA as well as the first two eigenvectors of LDA to represent the merged data set. Selectively plot portions of samples from MaleData and FemaleData, respectively. Describe the phenomena that you have observed.

HW: Feature Transformation (2/4)

> 6.427136 .637947 .066377 .888898 .286659 .131449 .158209 .023149 .064479 .544929 .644179 .397509 .545399 .667439 .9610610 .3176710 .2754310 .35846 6.609186 .689787 .545577 .511358 .419629 .199908 .978768 .843589 .178199 .386529 .187609 .158179 .675019 .866229 .8630210 .1950810 .2868010 .20568 6.419627 .138097 .667897 .365028 .295999 .723099 .252068 .890619 .236109 .544639 .610809 .901449 .841379 .8763210 .1768610 .1018510 .3978210 .18437 6.863557 .005697 .174718 .156148 .716179 .410839 .447529 .219239 .355369 .640529 .415459 .770799 .818749 .7249010 .1262710 .2045910 .6337310 .43855
$6.316277 .098347 .440187 .941358 .975529 .091709 .582359 .071879 .485629 .952539 .472159 .501589 .8854110 .0310110 .1713910 .19946 \quad 10.5153510 .47495$
7.326657 .138437 .904107 .893668 .75369 .1823310 .110259 .503579 .425009 .862749 .400069 .877869 .8476310 .1759810 .0278710 .4465710 .3643910 .15492
6.87836 .381327 .621167 .916638 .707699 .366559 .662509 .53569 .850959 .7498810 .118059 .966939 .848369 .9731110 .0622810 .2734210 .5940810 .49595
$7.04571 \quad 7.345928 .254108 .511518 .845468 .739909 .556569 .705039 .360179 .993179 .502879 .9049810 .2240110 .211699 .9905210 .1505910 .4374110 .29127$
7.039856 .814028 .062668 .491289 .098589 .497099 .509819 .402139 .628719 .366449 .690029 .9572410 .1108410 .3873710 .2906010 .2972710 .6506210 .870610
$\begin{array}{llllllllllllllllllllllllll}9.2859 & 10.41168 & 12.07715 & 12.69397 & 12.28251 & 13.02032 & 12.16224 & 10.87808 & 10.60156 & 10.51851 & 10.51198 & 11.84690 & 13.09567 & 13.19682 & 11.56034 & 10.36879 & 10.73642 & 11.23687\end{array}$
$9.2528410 .3995512 .2877513 .0958712 .5520015 .0438912 .2254811 .2825010 .57541 \quad 10.5850210 .4919611 .5710212 .6589912 .78191 \quad 11.54582 \quad 10.4777611 .1700912 .07101$
$9.3785610 .5637912 .1550213 .0358212 .3594612 .79591 \quad 11.9947711 .2589010 .59781010 .4114210 .2975311 .6117912 .76901 \quad 12.8285411 .5348910 .2669311 .5957712 .46711$
$9.1057410 .3623012 .1091313 .0504712 .3054312 .7977711 .8245411 .110259 .9530310 .2572610 .2145711 .6501612 .7501312 .7991911 .44790 \quad 10.15221 \quad 11.3457012 .17819$
$9.3794410 .2263411 .9959412 .9779612 .2064012 .6695011 .6566610 .9784510 .1490910 .25551 \quad 10.0772611 .5914712 .7567012 .8787611 .5839710 .53411 \quad 11.2349811 .82416$
$9.2475510 .35095 \quad 11.9009212 .9096712 .1972912 .5735711 .5552910 .9483010 .376129 .9957210 .0234311 .4412112 .6673212 .85391 \quad 11.4122310 .1804211 .0513011 .66860$
$9.3511610 .4000611 .9149012 .9259312 .2683612 .5996711 .7507211 .0736310 .42829 \quad 10.38190 \quad 10.0201611 .4016712 .67601 \quad 12.8503211 .4881610 .25896 \quad 11.0095211 .80365$
$8.8556510 .2295211 .9747012 .9374712 .3202512 .6968711 .9119511 .1261010 .046529 .745229 .8404011 .60561 \quad 12.81711 \quad 12.95019 \quad 11.651179 .94210 \quad 11.10972 \quad 11.99067$
9.452429 .8317210 .992112 .374612 .3789412 .6760114 .0803913 .3130011 .6349911 .5784611 .2003611 .7292712 .5909012 .7340411 .2135110 .8948711 .0679111 .73133
9.169159 .386940 .7877012 .2322212 .4610912 .7928914 .1428513 .4215111 .6898611 .5038011 .1701911 .8049012 .4551913 .2282011 .7148110 .3277510 .4816411 .30554

HW: Feature Transformation (3/4)

- Plot Covariance Matrix

CoVar=[
	3.0	0.5	$0.4 ;$
	0.9	6.3	$0.2 ;$
	0.4	0.4	$4.2 ;$
];			
colormap('default');			
surf(CoVar);			

- Eigen Decomposition

$B E=[$			
	3.0	3.5	1.4;
	1.9	6.3	2.2;
	2.4	0.4	4.2;
];			
WI=[
	4.0	4.1	2.1;
	2.9	8.7	3.5;
	4.4	3.2	4.3;
];			

```
%LDA
IWI=inv(WI);
A=IWI*BE;
%PCA
A=BE+WI; % why ?? (Prove it!)
[V,D]=eig(A);
[V,D]=eigs(A,3);
fid=fopen('Basis','w');
for i=1:3 % feature vector length
    for j=1:3 % basis number
    fprintf(fid,'%10.10f ',V(i,j));
    end
    fprintf(fid,'\n');
end
fclose(fid);
```


HW: Feature Transformation (4/4)

- Examples

Latent Semantic Analysis (LSA) (1/7)

- Also called Latent Semantic Indexing (LSI), Latent Semantic Mapping (LSM)
- A technique originally proposed for Information Retrieval (IR), which projects queries and docs into a space with "latent" semantic dimensions
- Co-occurring terms are projected onto the same dimensions

- In the latent semantic space (with fewer dimensions), a query and doc can have high cosine similarity even if they do not share any terms
- Dimensions of the reduced space correspond to the axes of greatest variation
- Closely related to Principal Component Analysis (PCA)

LSA (2/7)

- Dimension Reduction and Feature Extraction
- PCA feature space

- SVD (in LSA)
$\min \|\hat{\boldsymbol{X}}-\boldsymbol{X}\|^{2}$ for a given k

LSA (3/7)

- Singular Value Decomposition (SVD) used for the worddocument matrix
- A least-squares method for dimension reduction

	Term 1	Term 2	Term 3	Term 4
Query	user	interface		
Document 1	user	interface	HCI	interaction
Document 2			HCI	interaction

Projection of a Vector \boldsymbol{x} :

LSA (4/7)

- Frameworks to circumvent vocabulary mismatch

LSA (5/7)

Titles	
c1:	Human machine interface for Lab ABC computer applications
c2:	A survey of user opinion of computer system response time
$\mathrm{c3:}$	The EPS user interface management system
$\mathrm{c} 4:$	System and human system engineering testing of EPS
$\mathrm{c5:}$	Relation of user-perceived response fime to error measurement
$\mathrm{m} 1:$	The generation of random, binary, unordered trees
$\mathrm{m} 2:$	The intersection graph of paths in trees
$\mathrm{m} 3:$	Graph minors IV: Widths of trees and well-quasi-ordering
$\mathrm{m} 4:$	Graph minors: A survey

Terms Documents

	$c 1$	c 2	c 3	c 4	c 5	m 1	m 2	m 3	m 4
human	1	O	0	1	O	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

LSA (6/7)

2-D Plot of Terms and Docs from Example

FIG. 1. A two-dimensional plot of 12 Terms and 9 Documents from the sampe TM set. Terms are represented by filled circles. Documents are shown as open squares, and component terms are indicated parenthetically. The query ("human computer interaction") is represented as a pseudo-document at point q. Axes are scaled for Document-Document or Term-Term comparisons. The dotted cone represents the region whose points are within a cosine of .9 from the query q. All documents about human-computer ($\mathrm{cl} 1-\mathrm{cs}$) are "near" the query (i.e., within this cone), but none of the graph theory documents $(\mathrm{ml}=\mathrm{m} 4)$ are nearby. In this reduced space, even documents c 3 and c 5 which share no terms with the query are near it.

LSA (7/7)

- Singular Value Decomposition (SVD) Row $A \in R^{n}$

$\operatorname{Col} A \in R^{m}$ Both U and V has orthonormal column vectors

$$
\begin{aligned}
& U^{\top} U=I_{r X r} \\
& V^{\top} V=I_{r X r}
\end{aligned}
$$

$r \leq \min (m, n)$

$K \leq r$

$\|A\|_{F}^{2} \geq\left\|A^{\prime}\right\|_{F}^{2}$

$$
\|A\|_{r}^{2}=\sum_{i=1}^{m} \sum_{p=1}^{n} a_{i j}^{2}
$$

Docs and queries are represented in a k-dimensional space. The quantities of the axes can be properly weighted according to the associated diagonal values of Σ_{k}

LSA Derivations (1/7)

- Singular Value Decomposition (SVD)
- $A^{T} A$ is symmetric $n \times n$ matrix
- All eigenvalues λ_{j} are nonnegative real numbers

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq 0 \quad \Sigma^{2}=\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \ldots, \lambda_{n}\right)
$$

- All eigenvectors v_{j} are orthonormal $\left(\in R^{n}\right)$

$$
\begin{aligned}
& V_{n \times n}=\left[v_{1} v_{2} \ldots v_{n}\right] v_{j}^{T} v_{j}=1 \quad\left(V^{T} V=I_{n x n}\right) \\
& \text { sigma } \sigma_{j}=\sqrt{\lambda_{j}}, j=1, \ldots, n
\end{aligned}
$$

- Define singular values:
- As the square roots of the eigenvalues of $A^{T} A$
- As the lengths of the vectors $A v_{1}, A v_{2}, \ldots, A v_{n}$

For $\lambda_{i} \neq 0, i=1, \ldots r$,
$\left\{A v_{1}, A v_{2}, \ldots ., A v_{r}\right\}$ is an orthogonal basis of Col A

LSA Derivations (2/7)

- $\left\{A v_{1}, A v_{2}, \ldots, A v_{r}\right\}$ is an orthogonal basis of Col A

$$
A v_{i} \bullet A v_{j}=\left(A v_{i}\right)^{T} A v_{j}=v_{i}^{T} A^{T} A v_{j}=\lambda_{j} v_{i}^{T} v_{j}=0
$$

- Suppose that A (or $A^{T} A$) has rank $r \leq n$

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0, \quad \lambda_{r+1}=\lambda_{r+2}=\ldots .=\lambda_{n}=0
$$

- Define an orthonormal basis $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ for Col A

$$
\begin{aligned}
& u_{i}=\frac{1}{\left\|A v_{i}\right\|} A v_{i}=\frac{1}{\sigma_{i}} A v_{i} \Rightarrow \sigma_{i} u_{i}=A v_{i} \\
& \text { 4. also an } \\
& \underset{(\mathrm{mxr})}{\text { orthonormal matrix }} \stackrel{\text { ! }}{\Rightarrow}\left[u_{1} u_{2} \ldots u_{r} \sum_{1}^{1} \sum_{r}=A\left[\begin{array}{lll}
v_{1} & v_{2} & v_{r}
\end{array}\right]\right. \\
& \text { Known in advance } \\
& \text { - Extend to an orthonormal başís }\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \text { of } R^{m} \\
& \Rightarrow\left[u_{1} u_{2} \ldots u_{r} \ldots u_{m}\right] \Sigma=A\left[v_{1} v_{2} \ldots v_{r} \ldots v_{n}\right] \\
& \|A\|_{F}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2} \\
& \Rightarrow U \Sigma=A V^{\prime} \Rightarrow U \Sigma V^{T}=A \underbrace{V V^{T}}
\end{aligned}
$$

$$
\begin{aligned}
& \|A\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{r}^{2} \quad \text { ? }
\end{aligned}
$$

LSA Derivations (3/7)

FIGURE 4 The four fundamental subspaces and the action of A.

$$
\begin{aligned}
& =\boldsymbol{U}_{1} \Sigma_{1} \boldsymbol{V}_{1}^{T} \\
& =\boldsymbol{A} \boldsymbol{V}_{1} \boldsymbol{V}_{1}^{T} \quad U \Sigma=A V \\
& =\boldsymbol{A}
\end{aligned}
$$

LSA Derivations (4/7)

- Additional Explanations

- Each row of U is related to the projection of a corresponding row of A onto the basis formed by columns of V

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& \Rightarrow A V=U \Sigma V^{T} V=U \Sigma \Rightarrow U \Sigma=A V
\end{aligned}
$$

- the i-th entry of a row of U is related to the projection of a corresponding row of A onto the i-th column of V
- Each row of V is related to the projection of a corresponding row of A^{T} onto the basis formed by U

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& \Rightarrow A^{T} U=\left(U \Sigma V^{T}\right)^{T} U=V \Sigma U^{T} U=V \Sigma \\
& \Rightarrow V \Sigma=A^{T} U
\end{aligned}
$$

- the i-th entry of a row of V is related to the projection of a corresponding row of A^{T} onto the i-th column of U

LSA Derivations (5/7)

- Fundamental comparisons based on SVD
- The original word-document matrix (A)

- compare two terms \rightarrow dot product of two rows of A
- or an entry in $A A^{\top}$
- compare two docs \rightarrow dot product of two columns of A
- or an entry in $A^{\top} A$
- compare a term and a doc \rightarrow each individual entry of A
- The new word-document matrix (A')
$U^{\prime}=U_{m \times k}$ $\Sigma^{\prime}=\Sigma_{k}$
$V^{\prime}=V_{n \times k}$
- compare two terms
 \rightarrow dot product of two rows of $U^{\prime} \Sigma^{\prime}$
- compare two docs \rightarrow dot product of two rows of $V^{\prime} \Sigma^{\prime}$
- compare a query word and a doc \rightarrow each individual entry of A'

LSA Derivations (6/7)

- Fold-in: find representations for pesudo-docs q
- For objects (new queries or docs) that did not appear in the original analysis
- Fold-in a new $m_{x} 1$ query (or doc) vector

$$
\begin{array}{c:c}
\hat{q}_{1 \times k}= & \left(q^{T}\right)_{1 \times m} U_{m \times k} k_{k \times k} \\
\text { row of } \mathrm{V} & \begin{array}{c}
\text { Query represented by the weighted } \\
\\
\\
\text { sum of it constituent term vectors }
\end{array}
\end{array}
$$

- Cosine measure between the query and doc vectors in the latent semantic space

$$
\operatorname{sim}(\hat{q}, \hat{d})=\text { coine }(\hat{q} \Sigma, \hat{d} \Sigma)=\frac{\hat{q} \Sigma^{2} \hat{d}^{T}}{|\hat{q} \Sigma||\hat{d} \Sigma|}
$$

row vectors

LSA Derivations (7/7)

- Fold-in a new $1 \times \mathrm{n}$ term vector

$$
\hat{t}_{1 \times k}=t_{1 \times n} V_{n \times k} \Sigma-\frac{1}{k \times k}
$$

$\mathrm{m} \times(\mathrm{n}+\mathrm{p})$
$\mathrm{m} \times \mathrm{k}$
$\mathrm{k} \times \mathrm{k}$
$\mathrm{k} \times(\mathrm{n}+\mathrm{p})$
Mathematical representation of folding-in p documents.
$(m+q) \times n$

$$
(m+q) \times k
$$

$$
\mathbf{k} \times \mathbf{k}
$$

$\mathrm{k} \times \mathrm{n}$

LSA Example

- Experimental results

- HMM is consistently better than VSM at all recall levels
- LSA is better than VSM at higher recall levels

Recall-Precision curve at 11 standard recall levels evaluated on TDT-3 SD collection. (Using word-level indexing terms)

LSA: Conclusions

- Advantages
- A clean formal framework and a clearly defined optimization criterion (least-squares)
- Conceptual simplicity and clarity
- Handle synonymy problems ("heterogeneous vocabulary")
- Good results for high-recall search
- Take term co-occurrence into account
- Disadvantages
- High computational complexity
- LSA offers only a partial solution to polysemy
- E.g. bank, bass,...

LSA Toolkit: SVDLIBC (1/5)

- Doug Rohde's SVD C Library version 1.3 is based on the SVDPACKC library
- Download it at http://tedlab.mit.edu/~dr/

LSA Toolkit: SVDLIBC (2/5)

- Given a sparse term-doc matrix
- E.g., 4 terms and 3 docs

Doc
Term $\left\{\begin{array}{lll}2.3 & 0.0 & 4.2 \\ 0.0 & 1.3 & 2.2 \\ 3.8 & 0.0 & 0.5 \\ 0.0 & 0.0 & 0.0\end{array}\right.$

- Each entry is weighted by TFxIDF score

- Perform SVD to obtain corresponding term and doc vectors represented in the latent semantic space
- Evaluate the information retrieval capability of the LSA approach by using varying sizes (e.g., 100, 200, ..,600 etc.) of LSA dimensionality

LSA Toolkit: SVDLIBC (3/5)

- Example: term-docmatrix

LSA Toolkit: SVDLIBC (4/5)

- LSA100-Ut
10051253
$0.0030 .001 \ldots \ldots .$.
$0.0020 .002 \ldots \ldots$.
word vector (\mathbf{u}^{\top}): 1×100
- LSA100-S

100	
2686.18	
829.941	
559.59	
$\ldots .$.	

- LSA100-Vt 2265 docs

LSA Toolkit: SVDLIBC (5/5)

- Fold-in a new $m \times 1$ query vector

$$
\hat{q}_{1 \times k}=\left(q^{T}\right)_{1 \times m} U_{m \times k} k_{1}^{\prime} \sum_{k \times k} \quad \text { The separate dimensions }
$$

Just like a row of V
Query represented by the weighted
sum of it constituent term vectors
TFxIDF weighted beforehand

- Cosine measure between the query and doc vectors in the latent semantic space

$$
\operatorname{sim}(\hat{q}, \hat{d})=\text { coine }(\hat{q} \Sigma, \hat{d} \Sigma)=\frac{\hat{q} \Sigma^{2} \hat{d}^{T}}{|\hat{q} \Sigma||\hat{d} \Sigma|}
$$

[^0]: Fig. 4. Dimension 3 versus F2(start)-F2(end) for "U," extreme M and F in each speaker set

