Quick Review of Probability

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

References:

1. W. Navidi. Statistics for Engineering and Scientists. Chapter 2 \& Teaching Material
2. D. P. Bertsekas, J. N. Tsitsiklis. Introduction to Probability.

Sample Statistics and Population Parameters

Basic Ideas

- Definition: An experiment is a process that results in an outcome that cannot be predicted in advance with certainty
- Examples:
- Rolling a die
- Tossing a coin
- Weighing the contents of a box of cereal
- Definition: The set of all possible outcomes of an experiment is called the sample space for the experiment
- Examples:
- For rolling a fair die, the sample space is $\{1,2,3,4,5,6\}$
- For a coin toss, the sample space is \{heads, tails\}
- For weighing a cereal box, the sample space is ($0, \infty$), a more reasonable sample space is $(12,20)$ for a 16 oz . box (with an infinite number of outcomes)

More Terminology

Definition: A subset of a sample space is called an event

- The empty set \varnothing is an event
- The entire sample space is also an event
- A given event is said to have occurred if the outcome of the experiment is one of the outcomes in the event. For example, if a die comes up 2 , the events $\{2,4,6\}$ and $\{1$, $2,3\}$ have both occurred, along with every other event that contains the outcome " 2 "

Combining Events

- The union of two events A and B, denoted $A \cup B$, is the set of outcomes that belong either to A, to B, or to both
- In words, $A \cup B$ means " A or B ". So the event " A or B " occurs whenever either A or B (or both) occurs
- Example: Let $A=\{1,2,3\}$ and $B=\{2,3,4\}$

Then $A \cup B=\{1,2,3,4\}$

Intersections

- The intersection of two events A and B, denoted by $A \cap B$, is the set of outcomes that belong to A and to B
- In words, $\mathrm{A} \cap B$ means " A and B ". Thus the event " A and B " occurs whenever both A and B occur
- Example: Let $A=\{1,2,3\}$ and $B=\{2,3,4\}$

Then $A \cap B=\{2,3\}$

Complements

- The complement of an event A, denoted A^{c}, is the set of outcomes that do not belong to A
- In words, A^{c} means "not A ". Thus the event "not A " occurs whenever A does not occur
- Example: Consider rolling a fair sided die.

Let A be the event: "rolling a six" = \{6\}.
Then $A^{c}=$ "not rolling a six" $=\{1,2,3,4,5\}$

Mutually Exclusive Events

- Definition: The events A and B are said to be mutually exclusive if they have no outcomes in common
- More generally, a collection of events $A_{1}, A_{2}, \ldots, A_{n}$ is said to be mutually exclusive if no two of them have any outcomes in common
- Sometimes mutually exclusive events are referred to as disjoint events

Example

- When you flip a coin, you cannot have the coin come up heads and tails
- The following Venn diagram illustrates mutually exclusive events

Probabilities

- Definition: Each event in the sample space has a probability of occurring. Intuitively, the probability is a quantitative measure of how likely the event is to occur
- Given any experiment and any event A :
- The expression $P(A)$ denotes the probability that the event A occurs
- $P(A)$ is the proportion of times that the event A would occur in the long run, if the experiment were to be repeated over and over again

Axioms of Probability

1. Let S be a sample space. Then $P(S)=1$
2. For any event $A, 0 \leq P(A) \leq 1$
3. If A and B are mutually exclusive events, then $P(A \cup B)=P(A)+P(B)$

More generally, if A_{1}, A_{2}, \ldots. are mutually exclusive events, then $\quad P\left(A_{1} \cup A_{2} \cup \ldots.\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots$

A Few Useful Things

- For any event $A, P\left(A^{c}\right)=1-P(A)$
- Let \varnothing denote the empty set. Then $P(\varnothing)=0$
- If A is an event, and $A=\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ (and $E_{1}, E_{2}, \ldots, E_{n}$ are mutually exclusive), then

$$
P(A)=P(E 1)+P(E 2)+\ldots+P\left(E_{n}\right) .
$$

- Addition Rule (for when A and B are not mutually exclusive):

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Conditional Probability and Independence

- Definition: A probability that is based on a part of the sample space is called a conditional probability
- E.g., calculate the probability of an event given that the outcomes from a certain part of the sample space occur

Let A and B be events with $P(B) \neq 0$. The conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

(a)

(b)

Venn diagram

More Definitions

- Definition: Two events A and B are independent if the probability of each event remains the same whether or not the other occurs
- If $P(B) \neq 0$ and $P(B) \neq 0$, then A and B are independent if $P(B \mid A)=P(B)$ or, equivalently, $P(A \mid B)=P(A)$
- If either $P(A)=0$ or $P(B)=0$, then A and B are independent

Are A and B independent (?)

The Multiplication (Chain) Rule

- If A and B are two events and $P(B) \neq 0$, then $P(A \cap B)=P(B) P(A \mid B)$
- If A and B are two events and $P(A) \neq 0$, then $P(A \cap B)=P(A) P(B \mid A)$
- If $P(A) \neq 0$, and $P(B) \neq 0$, then both of the above hold
- If A and B are two independent events, then $P(A \cap B)=P(A) P(B)$
- This result can be extended to more than two events

Law of Total Probability

- If A_{1}, \ldots, A_{n} are mutually exclusive and exhaustive events, and B is any event, then

$$
P(B)=P\left(A_{1} \cap B\right)+\ldots+P\left(A_{n} \cap B\right)
$$

- Exhaustive events:

- The union of the events cover the sample space

$$
\mathrm{S}=A_{1} \cup A_{2} \ldots \cup A_{n}
$$

- Or equivalently, if $P\left(A_{i}\right) \neq 0$ for each A_{i},

$$
P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+\ldots+P\left(B \mid A_{n}\right) P\left(A_{n}\right)
$$

Example

- Customers who purchase a certain make of car can order an engine in any of three sizes. Of all the cars sold, 45% have the smallest engine, 35% have a medium-sized engine, and 20% have the largest. Of cars with smallest engines, 10% fail an emissions test within two years of purchase, while 12% of those with the medium size and 15% of those with the largest engine fail. What is the probability that a randomly chosen car will fail an emissions test within two years?

Solution

- Let B denote the event that a car fails an emissions test within two years. Let A_{1} denote the event that a car has a small engine, A_{2} the event that a car has a medium size engine, and A_{3} the event that a car has a large engine. Then $P\left(A_{1}\right)=0.45, P\left(A_{2}\right)=0.35$, and $P\left(A_{3}\right)=$ 0.20. Also, $P\left(B \mid A_{1}\right)=0.10, P\left(B \mid A_{2}\right)=0.12$, and $P\left(B \mid A_{3}\right)=$ 0.15 . By the law of total probability,

$$
\begin{aligned}
P(B) & =P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+P\left(B \mid A_{3}\right) P\left(A_{3}\right) \\
& =0.10(0.45)+0.12(0.35)+0.15(0.20)=0.117
\end{aligned}
$$

Bayes' Rule

- Let A_{1}, \ldots, A_{n} be mutually exclusive and exhaustive events, with $P\left(A_{i}\right) \neq 0$ for each A_{i}. Let B be any event with $P(B) \neq 0$. Then

$$
\begin{aligned}
P\left(A_{k} \mid B\right) & =\frac{P\left(A_{k} \cap B\right)}{P(B)} \\
& =\frac{P\left(B \mid A_{k}\right) P\left(A_{k}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
\end{aligned}
$$

Example

- The proportion of people in a given community who have a certain disease (D) is 0.005 . A test is available to diagnose the disease. If a person has the disease, the probability that the test will produce a positive signal (+) is 0.99. If a person does not have the disease, the probability that the test will produce a positive signal is 0.01 . If a person tests positive, what is the probability that the person actually has the disease?

Solution

- Let D represent the event that a person actually has the disease
- Let + represent the event that the test gives a positive signal
- We wish to find $P(D \mid+)$
- We know $P(D)=0.005, P(+\mid D)=0.99$, and $P\left(+\mid D^{C}\right)=$ 0.01
- Using Bayes' rule

$$
\begin{aligned}
P(D \mid+) & =\frac{P(+\mid D) P(D)}{P(+\mid D) P(D)+P\left(+\mid D^{C}\right) P\left(D^{C}\right)} \\
& =\frac{0.99(0.005)}{0.99(0.005)+0.01(0.995)}=0.332
\end{aligned}
$$

Random Variables

- Definition: A random variable assigns a numerical value to each outcome in a sample space
- We can say a random variable is a real-valued function of the experimental outcome
- Definition: A random variable is discrete if its possible values form a discrete set

Example

- The number of flaws in a 1-inch length of copper wire manufactured by a certain process varies from wire to wire. Overall, 48% of the wires produced have no flaws, 39% have one flaw, 12% have two flaws, and 1% have three flaws. Let X be the number of flaws in a randomly selected piece of wire
- Then,
$-P(X=0)=0.48, P(X=1)=0.39, P(X=2)=0.12$, and $P(X=3)=0.01$
- The list of possible values $0,1,2$, and 3 , along with the probabilities of each, provide a complete description of the population from which X was drawn

Probability Mass Function

- The description of the possible values of X and the probabilities of each has a name:
- The probability mass function
- Definition: The probability mass function (denoted as pmf) of a discrete random variable X is the function $p(x)$ $=P(X=x)$. The probability mass function is sometimes called the probability distribution

Cumulative Distribution Function

- The probability mass function specifies the probability that a random variable is equal to a given value
- A function called the cumulative distribution function (cdf) specifies the probability that a random variable is less than or equal to a given value
- The cumulative distribution function of the random variable X is the function $F(x)=P(X \leq x)$

Example

- Recall the example of the number of flaws in a randomly chosen piece of wire. The following is the pdf:
- $P(X=0)=0.48, P(X=1)=0.39, P(X=2)=0.12$, and $P(X=3)=0.01$
- For any value x, we compute $F(x)$ by summing the probabilities of all the possible values of x that are less than or equal to x
- $F(0)=P(X \leq 0)=0.48$
- $F(1)=P(X \leq 1)=0.48+0.39=0.87$
$-F(2)=P(X \leq 2)=0.48+0.39+0.12=0.99$
$-F(3)=P(X \leq 3)=0.48+0.39+0.12+0.01=1$

More on Discrete Random Variables

- Let X be a discrete random variable. Then
- The probability mass function (cmf) of X is the function $p(x)=P(X=x)$
- The cumulative distribution function (cdf) of X is the function $F(x)=P(X \leq x)$
$F(x)=\sum_{t \leq x} p(t)=\sum_{t \leq x} P(X=t)$
$-\sum_{x} p(x)=\sum_{x} P(X=x)=1$, where the sum is over all the possible values of X

Mean and Variance for Discrete Random Variables

- The mean (or expected value) of X is given by

$$
\mu_{X}=\sum_{x} x P(X=x), \text { also denoted as } \mathbf{E}[X]
$$

where the sum is over all possible values of X

- The variance of X is given by

$$
\begin{aligned}
& \text { ariance of } X \text { is given by } \\
& \begin{aligned}
\sigma_{X}^{2} & =\sum_{x}\left(x-\mu_{X}\right)^{2} P(X=x), \text { also denoted as } \mathbf{E}\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =\sum_{x} x^{2} P(X=x)-\mu_{X}^{2} ., \text {,also denoted as } \mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}
\end{aligned}
\end{aligned}
$$

- The standard deviation is the square root of the variance
- Mean, variance, standard deviation provide summary information for a random variable (probability distribution)

The Probability Histogram

- When the possible values of a discrete random variable are evenly spaced, the probability mass function can be represented by a histogram, with rectangles centered at the possible values of the random variable
- The area of the rectangle centered at a value x is equal to $P(X=x)$
- Such a histogram is called a probability histogram, because the areas represent probabilities

Example

- The following is a probability histogram for the example with number of flaws in a randomly chosen piece of wire
$-P(X=0)=0.48, P(X=1)=0.39, P(X=2)=0.12$, and $P(X=3)=0.01$
- Figure 2.8

Continuous Random Variables

- A random variable is continuous if its probabilities are given by areas under a curve
- The curve is called a probability density function (pdf) for the random variable. Sometimes the pdf is called the probability distribution
- Let X be a continuous random variable with probability density function $f(x)$. Then

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Computing Probabilities

- Let X be a continuous random variable with probability density function $f(x)$. Let a and b be any two numbers, with $a<b$. Then

$$
P(a \leq X \leq b)=P(a \leq X<b)=P(a<X \leq b)=\int_{a}^{b} f(x) d x .
$$

- In addition,

$$
\begin{aligned}
& P(X \leq a)=P(X<a)=\int_{-\infty}^{a} f(x) d x \\
& P(X \geq a)=P(X>a)=\int_{a}^{\infty} f(x) d x .
\end{aligned}
$$

More on Continuous Random Variables

- Let X be a continuous random variable with probability density function $f(x)$. The cumulative distribution function (cdf) of X is the function

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

- The mean of X is given by

$$
\mu_{X}=\int_{-\infty}^{\infty} x f(x) d x . \quad, \text { also denoted as } \mathbf{E}[X]
$$

- The variance of X is given by

$$
\begin{array}{rlrl}
\sigma_{X}^{2} & =\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} f(x) d x & & \text {, also denoted as } \mathbf{E}\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-\mu_{X}^{2} . & & \text {, also denoted as } \mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \\
\text { Statistics-Berlin Chen 33 }
\end{array}
$$

Median and Percentiles

- Let X be a continuous random variable with probability mass function $f(x)$ and cumulative distribution function $F(x)$
- The median of X is the point x_{m} that solves the equation

$$
F\left(x_{m}\right)=P\left(X \leq x_{m}\right)=\int_{-\infty}^{x_{m}} f(x) d x=0.5
$$

- If p is any number between 0 and 100 , the p th percentile is the point x_{p} that solves the equation

$$
F\left(x_{p}\right)=P\left(X \leq x_{p}\right)=\int_{-\infty}^{x_{p}} f(x) d x=p / 100
$$

- The median is the $50^{\text {th }}$ percentile

Linear Functions of Random Variables

- If X is a random variable, and a and b are constants, then

$$
\begin{aligned}
& \mu_{a X+b}=a \mu_{X}+b \\
& \sigma_{a X+b}^{2}=a^{2} \sigma_{X}^{2} \\
& \sigma_{a X+b}=|a| \sigma_{X}
\end{aligned}
$$

More Linear Functions

- If X and Y are random variables, and a and b are constants, then

$$
\mu_{a X+b Y}=\mu_{a X}+\mu_{b Y}=a \mu_{X}+b \mu_{Y}
$$

- More generally, if X_{1}, \ldots, X_{n} are random variables and c_{1}, \ldots, c_{n} are constants, then the mean of the linear combination $c_{1} X_{1}, \ldots, c_{n} X_{n}$ is given by

$$
\mu_{c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}}=c_{1} \mu_{X_{1}}+c_{2} \mu_{X_{2}}+\ldots+c_{n} \mu_{X_{n}} .
$$

Two Independent Random Variables

- If X and Y are independent random variables, and S and T are sets of numbers, then

$$
P(X \in S \text { and } Y \in T)=P(X \in S) P(Y \in T) .
$$

- More generally, if X_{1}, \ldots, X_{n} are independent random variables, and S_{1}, \ldots, S_{n} are sets, then

$$
P\left(X_{1} \in S_{1}, X_{2} \in S_{2}, \ldots, X_{n} \in S_{n}\right)=P\left(X_{1} \in S_{1}\right) P\left(X_{2} \in S_{2}\right) \ldots P\left(X_{n} \in S_{n}\right) .
$$

Variance Properties

- If X_{1}, \ldots, X_{n} are independent random variables, then the variance of the sum $X_{1}+\ldots+X_{n}$ is given by

$$
\sigma_{X_{1}+X_{2}+\ldots+X_{n}}^{2}=\sigma_{X_{1}}^{2}+\sigma_{X_{2}}^{2}+\ldots .+\sigma_{X_{n}}^{2} .
$$

- If X_{1}, \ldots, X_{n} are independent random variables and c_{1}, \ldots, c_{n} are constants, then the variance of the linear combination $c_{1} X_{1}+\ldots+c_{n} X_{n}$ is given by

$$
\sigma_{c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}}^{2}=c_{1}^{2} \sigma_{X_{1}}^{2}+c_{2}^{2} \sigma_{X_{2}}^{2}+\ldots .+c_{n}^{2} \sigma_{X_{n}}^{2} .
$$

More Variance Properties

- If X and Y are independent random variables with variances σ_{X}^{2} and σ_{Y}^{2}, then the variance of the sum $X+Y$ is

$$
\sigma_{X+Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}
$$

The variance of the difference $X-Y$ is

$$
\sigma_{X-Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}
$$

Independence and Simple Random Samples

- Definition: If X_{1}, \ldots, X_{n} is a simple random sample, then X_{1}, \ldots, X_{n} may be treated as independent random variables, all from the same population
- Phrased another way, X_{1}, \ldots, X_{n} are independent, and identically distributed (i.i.d.)

Properties of $\bar{X} \quad(1 / 4)$

- If X_{1}, \ldots, X_{n} is a simple random sample from a population with mean μ and variance σ^{2}, then the sample mean \bar{X} is a random variable with
mean of sample mean

$$
\mu_{\bar{X}}=\mu \quad \bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

variance of sample mean $\sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}$.
The standard deviation of \bar{X} is

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
$$

Properties of $\bar{X} \quad(2 / 4)$

Properties of $\bar{X} \quad(3 / 4)$

$$
\begin{aligned}
& \mu_{\bar{X}}=\mathbf{E}[\bar{X}] \\
& =\mu_{\frac{1}{n}}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \\
& =\frac{1}{n} \mu_{X_{1}}+\frac{1}{n} \mu_{X_{2}}+\cdots+\frac{1}{n} \mu_{X_{n}} \\
& =\frac{1}{n} \mu+\frac{1}{n} \mu+\cdots+\frac{1}{n} \mu \\
& =\mu^{\frac{2}{X}}=\mathbf{E}\left[\left(\frac{1}{X}-\mu_{\bar{X}}\right)^{2}\right] \\
& =\sigma_{\frac{1}{n}}^{2}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \\
& =\frac{1}{n^{2}} \sigma_{X_{1}}^{2}+\frac{1}{n^{2}} \sigma_{X 2}^{2}+\cdots+\frac{1}{n^{2}} \sigma_{X_{n}}^{2} \\
& =\frac{1}{n^{2}} \sigma^{2}+\frac{1}{n^{2}} \sigma^{2}+\cdots+\frac{1}{n^{2}} \sigma^{2} \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

$$
X_{1}, X_{2}, \ldots, X_{n} \text { are i.i.d }
$$

and follow the same distribution X with mean μ

$$
X_{1}, X_{2}, \ldots, X_{n} \text { are identically distributed }
$$

$$
\text { (follow the same distribution } X \text { with variance }
$$

$$
\left.\sigma^{2} \quad\right)
$$

Properties of $\bar{X} \quad(4 / 4)$

mean of sample mean $\mu_{\bar{X}} \quad$ (equal to population mean μ)

\qquad

The spread of sample mean is determined by the variance of sample mean $\sigma \frac{2}{\bar{X}}$ (equal to $\frac{\sigma^{2}}{n}$ where σ^{2} is the population variance)

Jointly Distributed Random Variables

- If X and Y are jointly discrete random variables:
- The joint probability mass function of X and Y is the function

$$
p(x, y)=P(X=x \text { and } Y=y)
$$

- The marginal probability mass functions of X and Y can be obtained from the joint probability mass function as follows:

$$
p_{X}(x)=P(X=x)=\sum_{y} p(x, y) \quad p_{Y}(y)=P(Y=y)=\sum_{x} p(x, y)
$$

where the sums are taken over all the possible values of Y and of X, respectively (marginalization)

- The joint probability mass function has the property that

$$
\sum_{x} \sum_{y} p(x, y)=1
$$

where the sum is taken over all the possible values of X and Y

Jointly Continuous Random Variables

- If X and Y are jointly continuous random variables, with joint probability density function $f(x, y)$, and $a<b, c<d$, then

$$
P(a \leq X \leq b \text { and } c \leq Y \leq d)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

The joint probability density function has the property that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x=1
$$

Marginals of X and Y

- If X and Y are jointly continuous with joint probability density function $f(x, y)$, then the marginal probability density functions of X and Y are given, respectively, by

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
f_{Y}(y) & =\int_{-\infty}^{\infty} f(x, y) d x
\end{aligned}
$$

- Such a process is called "marginalization"

More Than Two Random Variables

- If the random variables X_{1}, \ldots, X_{n} are jointly discrete, the joint probability mass function is

$$
p\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

- If the random variables X_{1}, \ldots, X_{n} are jointly continuous, they have a joint probability density function $f\left(x_{1}, x_{2}, \ldots\right.$, x_{n}), where
$P\left(a_{1} \leq X_{1} \leq b_{1}, \ldots, a_{n} \leq X_{n} \leq b_{n}\right)=\int_{a_{n}}^{b_{n}} \ldots \int_{a_{1}}^{b_{1}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}$.
for any constants $a_{1} \leq b_{1}, \ldots, a_{n} \leq b_{n}$

Means of Functions of Random Variables (1/2)

- If the random variables X_{1}, \ldots, X_{n} are jointly discrete, the joint probability mass function is

$$
p\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) .
$$

- If the random variables X_{1}, \ldots, X_{n} are jointly continuous, they have a joint probability density function $f\left(x_{1}, x_{2}, \ldots\right.$, x_{n}), where

$$
P\left(a_{1} \leq X_{1} \leq b_{1}, \ldots ., a_{n} \leq X_{n} \leq b_{n}\right)=\int_{a_{n}}^{b_{n}} \cdots \int_{a_{1}}^{b_{1}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} .
$$

for any constants $a_{1} \leq b_{1}, \ldots, a_{n} \leq b_{n}$.

Means of Functions of Random Variables (2/2)

- Let X be a random variable, and let $h(X)$ be a function of X. Then:
- If X is a discrete with probability mass function $p(x)$, then mean of $h(X)$ is given by

$$
\mu_{h(x)}=\sum_{x} h(x) p(x) ., \text { also denoted as } \mathbf{E}[h(X)]
$$

where the sum is taken over all the possible values of X

- If X is continuous with probability density function $f(x)$, the mean of $h(x)$ is given by

$$
\mu_{h(x)}=\int_{-\infty}^{\infty} h(x) f(x) d x ., \text { also denoted as } \mathbf{E}[h(X)]
$$

Functions of Joint Random Variables

- If X and Y are jointly distributed random variables, and $h(X, Y)$ is a function of X and Y, then
- If X and Y are jointly discrete with joint probability mass function $p(x, y)$,

$$
\mu_{h(X, Y)}=\sum_{x} \sum_{y} h(x, y) p(x, y) .
$$

where the sum is taken over all possible values of X and Y

- If X and Y are jointly continuous with joint probability mass function $f(x, y)$,

$$
\mu_{h(X, Y)}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f(x, y) d x d y .
$$

Discrete Conditional Distributions

- Let X and Y be jointly discrete random variables, with joint probability density function $p(x, y)$, let $p_{\chi}(x)$ denote the marginal probability mass function of X and let x be any number for which $p_{\chi}(x)>0$.
- The conditional probability mass function of Y given $X=x$ is

$$
p_{Y \mid X}(y \mid x)=\frac{p(x, y)}{p(x)}
$$

- Note that for any particular values of x and y, the value of $p_{Y \mid X}(y \mid x)$ is just the conditional probability $P(Y=y \mid X=x)$

Continuous Conditional Distributions

- Let X and Y be jointly continuous random variables, with joint probability density function $f(x, y)$. Let $f_{X}(x)$ denote the marginal density function of X and let x be any number for which $f_{X}(x)>0$.
- The conditional distribution function of Y given $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f(x)} .
$$

Conditional Expectation

- Expectation is another term for mean
- A conditional expectation is an expectation, or mean, calculated using the conditional probability mass function or conditional probability density function
- The conditional expectation of Y given $X=x$ is denoted by $E(Y \mid X=x)$ or $\mu_{Y \mid X}$

Independence (1/2)

- Random variables X_{1}, \ldots, X_{n} are independent, provided that:
- If X_{1}, \ldots, X_{n} are jointly discrete, the joint probability mass function is equal to the product of the marginals:

$$
p\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) \ldots p_{X_{n}}\left(x_{n}\right)
$$

- If X_{1}, \ldots, X_{n} are jointly continuous, the joint probability density function is equal to the product of the marginals:

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right) \ldots f\left(x_{n}\right)
$$

Independence (2/2)

- If X and Y are independent random variables, then:
- If X and Y are jointly discrete, and x is a value for which $p_{X}(x)>0$, then

$$
p_{Y \mid X}(y \mid x)=p_{Y}(y)
$$

- If X and Y are jointly continuous, and x is a value for which $f_{x}(x)>0$, then

$$
f_{Y \mid X}(y \mid x)=f_{Y}(y)
$$

Covariance

- Let X and Y be random variables with means μ_{X} and μ_{Y}
- The covariance of X and Y is

$$
\operatorname{Cov}(X, Y)=\mu_{\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)} .
$$

- An alternative formula is

$$
\operatorname{Cov}(X, Y)=\mu_{X Y}-\mu_{X} \mu_{Y} .
$$

Correlation

- Let X and Y be jointly distributed random variables with standard deviations σ_{X} and σ_{Y}
- The correlation between X and Y is denoted $\rho_{X, Y}$ and is given by

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} . \quad \text { Or, called "correlation coefficient" }
$$

- For any two random variables X and Y

$$
-1 \leq \rho_{X, Y} \leq 1
$$

Covariance, Correlation, and Independence

- If $\operatorname{Cov}(X, Y)=\rho_{X, Y}=0$, then X and Y are said to be uncorrelated
- If X and Y are independent, then X and Y are uncorrelated
- It is mathematically possible for X and Y to be uncorrelated without being independent. This rarely occurs in practice

Example

- The pair of random variables (X, Y) takes the values $(1,0),(0,1),(-1,0)$, and $(0,-1)$, each with probability $1 / 4$ Thus, the marginal pmfs of X and Y are symmetric around 0 , and $E[X]=E[Y]=0$
- Furthermore, for all possible value pairs (x, y), either x or y is equal to 0 , which implies that $X Y=0$ and $\mathrm{E}[X Y]=0$. Therefore, $\operatorname{cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]=0$, and X and Y are uncorrelated
- However, X and Y are not independent since, for example, a nonzero value of X fixes the value of Y to zero

Variance of a Linear Combination of Random Variables (1/2)

- If X_{1}, \ldots, X_{n} are random variables and c_{1}, \ldots, c_{n} are constants, then

$$
\begin{aligned}
& \mu_{c_{1} X_{1}+\ldots+c_{n} X_{n}}=c_{1} \mu_{X_{1}}+\ldots+c_{n} \mu_{X_{n}} \\
& \sigma_{c_{1} X_{1}+\ldots+c_{n} X_{n}}^{2}=c_{1}^{2} \sigma_{X_{1}}^{2}+\ldots+c_{n}^{2} \sigma_{X_{n}}^{2}+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c_{i} c_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
\end{aligned}
$$

For the case of two random variables

$$
\sigma_{X+Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}+2 \cdot \operatorname{Cov}(X, Y)
$$

Variance of a Linear Combination of Random Variables (2/2)

- If X_{1}, \ldots, X_{n} are independent random variables and c_{1}, \ldots, c_{n} are constants, then

$$
\sigma_{c_{1} X_{1}+\ldots+c_{n} X_{n}}^{2}=c_{1}^{2} \sigma_{X_{1}}^{2}+\ldots+c_{n}^{2} \sigma_{X_{n}}^{2}
$$

- In particular,

$$
\sigma_{X_{1}+\ldots+X_{n}}^{2}=\sigma_{X_{1}}^{2}+\ldots+\sigma_{X_{n}}^{2}
$$

Summary (1/2)

- Probability and axioms (and rules)
- Counting techniques
- Conditional probability
- Independence
- Random variables: discrete and continuous
- Probability mass functions

Summary (2/2)

- Probability density functions
- Cumulative distribution functions
- Means and variances for random variables
- Linear functions of random variables
- Mean and variance of a sample mean
- Jointly distributed random variables

