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2.1  
Determinants by Cofactor Expansion 



Determinant 

 Recall from Theorem 1.4.5 that the          matrix 

 

 

is invertible if                    . It is called the determinant    

(行列式) of the matrix A and is denoted by the symbol 

det(A) or |A| 
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Minor and Cofactor 

 Definition 

 Let A be nn 

 The (i,j)-minor (子行列式) of A, denoted Mij is the determinant of 

the (n-1) (n-1) matrix formed by deleting the ith row and jth 

column from A 

 The (i,j)-cofactor (餘因子) of A, denoted Cij, is (-1)i+j Mij 

 Remark 

 Note that Cij = Mij and the signs (-1)i+j in the definition of 

cofactor form a checkerboard pattern: 
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Example 

 Let  

 

 

 The minor of entry a11 is  

 

 The cofactor of a11 is C11 = (-1)1+1M11 = M11 = 16 

 

 Similarly, the minor of entry a32 is  

 

 The cofactor of a32 is C32 = (-1)3+2M32 = -M32 = -26 
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Cofactor Expansion of a 2 x 2 Matrix 

 For the matrix  
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These are called cofactor expansions of A 



Cofactor Expansion 

 Theorem 2.1.1 (Expansions by Cofactors) 

 The determinant of an nn matrix A can be computed by multiplying the 

entries in any row (or column) by their cofactors and adding the 

resulting products; that is, for each 1  i, j  n 

det(A) = a1jC1j + a2jC2j +… +  anjCnj 

(cofactor expansion along the jth column) 

 and 

det(A) = ai1Ci1 + ai2Ci2 +… +  ainCin 

(cofactor expansion along the ith row) 

 Example 
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Example 

 Cofactor expansion along the first row 
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Example 

 Smart choice of row or column 

 

 

 

 It’s easiest to use cofactor expansion along the second 

column 
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Determinant of an Upper Triangular 

Matrix 
 For simplicity of notation, we prove the result for a 

lower triangular matrix  
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Theorem 2.1.2 

 If A is an           triangular matrix, then det(A) is the 

product of the entries on the main diagonal of the 

matrix:   
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Useful Technique for 2x2 and 3x3 

Matrices 
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2.2 
Evaluating Determinants by Row Reduction 



Theorem 2.2.1 

 Let A be a square matrix. If A has a row of zeros or a 

column of zeros, then det(A) = 0.  

 Proof:  

 Since the determinant of A can be found by a cofactor expansion 

along any row or column, we can use the row or column of zeros.  
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Theorem 2.2.2 

 Let A be a square matrix. Then det(A) = det(AT) 

 Proof:  

 Since transposing a matrix changes it columns to rows and its 

rows to columns, the cofactor expansion of A along any row is 

the same as the cofactor expansion of AT along the corresponding 

column. Thus, both have the same determinant.  
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Theorem 2.2.3 (Elementary Row 

Operations) 

 Let A be an nn matrix 

 If B is the matrix that results when a single row or single column 

of A is multiplied by a scalar k, than det(B) = k det(A) 

 If B is the matrix that results when two rows or two columns of A 

are interchanged, then det(B) = - det(A) 

 If B is the matrix that results when a multiple of one  row of A is 

added to another row or when a multiple column is added to 

another column, then det(B) = det(A) 

 



Example 

18 

? 
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Theorems 

 Theorem 2.2.4 (Elementary Matrices) 

 Let E be an nn elementary matrix (基本矩陣)  

 If E results from multiplying a row of In by  k, then det(E) = k 

 If E results from interchanging two rows of In, then det(E) = -1 

 If E results from adding a multiple of one row of In to another, then 

det(E) = 1 

 



Theorems 

 Theorem 2.2.5 (Matrices with Proportional Rows or 

Columns) 

 If A is a square matrix with two proportional rows or two 

proportional column, then det(A) = 0 

 

20 

-2 times Row 1  

was added to Row 2  
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Example (Using Row Reduction to Evaluate a 

Determinant) 

 Evaluate det(A) where 

 

 

 

 Solution: 
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A

The first and second 

rows of A are 

interchanged. 

 

A common factor of 3 

from the first row was 

taken through the 

determinant sign 
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Example 
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-2 times the first row was 

added to the third row. 
 

 

-10 times the second row 

was added to the third 

row 

 
 

A common factor of -55 

from the last row was 

taken through the 

determinant sign. 
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Example 

 Using column operations to evaluate a determinant 

 Put A in lower triangular form by adding -3 times the first 

column to the fourth to obtain 
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Example 

 By adding suitable multiples of the second row to the 

remaining rows, we obtain 

24 

Cofactor expansion along the 

first column 

Add the first row 

to the third row 
Cofactor expansion along 

the first column 



2.3 
Properties of Determinants; Cramer’s Rule 
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Basic Properties of Determinant 

 Since a common factor of any row of a matrix can be 

moved through the det sign, and since each of the n row 

in kA has a common factor of k, we obtain  

det(kA) = kndet(A) 

 

 There is no simple relationship exists between det(A), 

det(B), and det(A+B) in general.  

 In particular, we emphasize that det(A+B) is usually not 

equal to det(A) + det(B). 



Example 

 Consider 

 

 

 We have det(A) = 1, det(B) = 8, and det(A+B)=23; thus 
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Example 

 Consider two matrices that differ only in the second row 
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Theorems 2.3.1 

 Let A, B, and C be nn matrices that differ only in a single row, say 

the r-th, and assume that the r-th row of C can be obtained by 

adding corresponding entries in the r-th rows of A and B. Then 

det(C) = det(A) + det(B) 

 The same result holds for columns. 

 

 

 Example  
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Theorems 

 Lemma 2.3.2 

 If B is an nn matrix and E is an nn elementary matrix, then 

det(EB) = det(E) det(B) 

 

 Remark: 

 If B is an nn matrix and E1, E2, …, Er, are nn elementary 
matrices, then 

det(E1 E2 · · · Er B) = det(E1) det(E2) · · · det(Er) det(B) 

 



Proof of Lemma 2.3.2 

 We shall consider three cases, each depending on the row 

operation that produces matrix E.  

 Case 1. If E results from multiplying a row of In by k, then by 

Theorem 1.5.1, EB results from B by multiplying a row by k; 

so from Theorem 2.2.3a we have  

 

From Theorem 2.2.4a, we have det(E) = k, so 

 

 Cases 2 and 3. E results from interchanging two rows of In or 

from adding a multiple of one row to another.  
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If B is an nn matrix and E is an nn elementary matrix, then 
det(EB) = det(E) det(B) 



Theorems 

 Theorem 2.3.3 (Determinant Test for Invertibility) 

 A square matrix A is invertible if and only if det(A)  0 

 Proof: Let R be the reduced row-echelon form of A.  

 

 

 

From Theorem 2.2.4, the determinants of the elementary 

matrices are all nonzero. Thus, det(A) and det(R) are both 

zero or both nonzero.  
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Proof of Theorem 2.3.3 

 If A is invertible, then by Theorem 1.6.4, we have R = I, 

so det(R) = 1     0 and consequently                    .  

 Conversely, if                   , then                   , so R cannot 

have a row of zeros. It follows from Theorem 1.4.3 that 

R=I, so A is invertible by Theorem 1.6.4.  
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Example: Determinant Test for 

Invertibility 
 Since the first and third rows are proportional, det(A) = 0 

 

 

 

 A is not invertible.  
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Theorems 

 Theorem 2.3.4 

 If A and B are square matrices of the same size, then 

det(AB) = det(A) det(B) 

 

 

 Theorem 2.3.5 

 If A is invertible, then 

)det(

1
)det( 1

A
A 



Proof of Theorem 2.3.4 

 If the matrix A is not invertible, then by Theorem 1.6.5 

neither is the product AB.  

 Thus, from Theorem 2.3.3, we have det(AB) = 0 and 

det(A) = 0, so it follows that det(AB) = det(A) det(B).  

 Now assume that A is invertible. By Theorem 1.6.4, the 

matrix A is expressible as a product of elementary 

matrices, say  
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Proof of Theorem 2.3.4 
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Proof of Theorem 2.3.5 

 Since A-1A = I, it follows that det(A-1A)=det(I).  

 Therefore, we must have det(A-1)det(A) = 1.  

 Since                   , the proof can be completed by dividing 

through by det(A).  
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Example 

 If one multiplies the entries in any row by the corresponding 

cofactors from a different row, the sum of these products is 

always zero.  

 

 

 Consider the quantity  

 Construct a new matrix A’ by replacing the third row of A with 

another copy of the first row 
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Example 

 Since the first two rows of A and A’ are the same, and 

since the computations of C31, C32, C33, C31’, C32’, and 

C33’ involve only entries from the first two rows of A and 

A’, it follows that  

 

 Since A’ has two identical rows, det(A’) = 0 

 By evaluating det(A’) by cofactor expansion along the 

third row gives 
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Definition 

 If A is any n × n matrix, and Cij is the cofactor of aij, then 

the matrix is called the matrix of cofactors from A (餘因
子矩陣).  

 

 

 

 The transpose of this matrix is called the adjoint of A (伴
隨矩陣) and is denoted by adj(A) 
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Adjoint of a 3x3 Matrix 

42 

Cofactors of A are  

The matrix of cofactors is 

The adjoint of A 
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Theorems 

 Theorem 2.3.6 (Inverse of a Matrix using its Adjoint) 

 If A is an invertible matrix, then 

 

 

)(adj
)det(
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A

A 

IAAA )det()(adj 

ininiiii CaCaCaA  2211)det(



Proof of Theorem 2.3.6 

 We show first that Aadj(A) = det(A)I 

 

 

 

 

 

 The entry in the ith row and jth column of Aadj(A) is 
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If A is an invertible matrix, then )(adj
)det(

11 A
A

A 



Proof of Theorem 2.3.6 

 If i=j, then it is the cofactor expansion of det(A) along the ith 

row of A.  

 If i ≠ j, then the a’s and the cofactors come from different rows 

of A, so the value is zero. Therefore,  

 

 

 

 Since A is invertible, det(A)≠ 0. Therefore 

 
 

 Multiplying both sides on the left by A-1 yields 
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Example 

46 

The adjoint of A = 



Theorem 2.3.7 (Cramer’s Rule) 

 If Ax = b is a system of n linear equations in n unknowns 

such that det(A)  0 , then the system has a unique 

solution. This solution is  

 

 

    where Aj is the matrix obtained by replacing the entries in 

the  jth column of A by the entries in the matrix b = [b1  

b2  ···  bn]
T 
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Proof of Theorem 2.3.7 

 If                   , then A is invertible, and by Theorem 1.6.2,  

                is the unique solution of             . Therefore, by 

Theorem 2.3.6, we have  
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Proof of Theorem 2.3.7 

 The entry in the jth row of x is therefore 

 

 

 Now let 
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Proof of Theorem 2.3.7 

 Since Aj differs form A only in the jth column, it follows 

that the cofactors of entries b1, b2, …, bn in Aj are the 

same as the cofactors of the corresponding entries in the 

jth column of A.  

 The cofactor expansion of det(Aj) along the jth column is 

therefore 

 Substituting this result gives  
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Example 

 Use Cramer’s rule to solve 

 

 

 

 Since 
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Theorem 2.3.8 (Equivalent 

Statements) 
 If A is an nn matrix, then the following are 

equivalent 

 A is invertible. 

 Ax = 0 has only the trivial solution 

 The reduced row-echelon form of A as In 

 A is expressible as a product of elementary matrices 

 Ax = b is consistent for every n1 matrix b 

 Ax = b has exactly one solution for every n1 matrix b 

 det(A)  0 


