Chapter 2
 Determinants

Outline

- 2.1 Determinants by Cofactor Expansion
- 2.2 Evaluating Determinants by Row Reduction
- 2.3 Properties of Determinants; Cramer's Rule
2.1

Determinants by Cofactor Expansion

Determinant

－Recall from Theorem 1．4．5 that the 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if $a d-b c \neq 0$ ．It is called the determinant （行列式）of the matrix A and is denoted by the symbol $\operatorname{det}(A)$ or $|A|$

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Minor and Cofactor

－Definition
－Let A be $n \times n$
－The (i, j)－minor（子行列式）of A ，denoted $M_{i j}$ is the determinant of the $(n-1) \times(n-1)$ matrix formed by deleting the i th row and j th column from A
－The（ i, j ）－cofactor（餘因子）of A ，denoted $C_{i j}$ ，is $(-1)^{i+j} M_{i j}$
－Remark
－Note that $C_{i j}= \pm M_{i j}$ and the signs $(-1)^{i+j}$ in the definition of cofactor form a checkerboard pattern：

$$
\left[\begin{array}{cccccc}
+ & - & + & - & + & \ldots \\
- & + & - & + & - & \ldots \\
+ & - & + & - & + & \ldots \\
- & + & - & + & - & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

Example

- Let

$$
A=\left[\begin{array}{rrr}
3 & 1 & -4 \\
2 & 5 & 6 \\
1 & 4 & 8
\end{array}\right]
$$

- The minor of entry a_{11} is $M_{11}=\left|\begin{array}{ccc}2 & 5 & 6 \\ 1 & 4 & 8\end{array}\right|=\left|\begin{array}{ll}5 & 6 \\ 4 & 8\end{array}\right|=16$
- The cofactor of a_{11} is $C_{11}=(-1)^{1+1} M_{11}=M_{11}=16$
- Similarly, the minor of entry a_{32} is $M_{32}=\left|\begin{array}{cc}3 & 1\end{array}\right| \begin{array}{r}-4 \\ 2\end{array}\left|\begin{array}{cc}5 \\ 1 & 4\end{array}\right|=\left|\begin{array}{cc}3 & -4 \\ 2 & 6\end{array}\right|=26$
- The cofactor of a_{32} is $C_{32}=(-1)^{3+2} M_{32}=-M_{32}=-26$

Cofactor Expansion of a 2×2 Matrix

- For the matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

$$
\begin{aligned}
& C_{11}=M_{11}=a_{22} \\
& C_{12}=-M_{12}=-a_{21} \\
& C_{21}=-M_{21}=-a_{12} \\
& C_{22}=M_{22}=a_{11} \\
& \operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21} \\
& \begin{array}{l}
\operatorname{det}(A)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \\
=a_{11} C_{11}+a_{12} C_{12} \\
=a_{21} C_{21}+a_{22} C_{22} \\
=a_{11} C_{11}+a_{21} C_{21} \\
=a_{12} C_{12}+a_{22} C_{22}
\end{array}
\end{aligned}
$$

These are called cofactor expansions of A

Cofactor Expansion

- Theorem 2.1.1 (Expansions by Cofactors)
- The determinant of an $n \times n$ matrix A can be computed by multiplying the entries in any row (or column) by their cofactors and adding the resulting products; that is, for each $1 \leq i, j \leq n$

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\ldots+a_{n j} C_{n j}
$$

(cofactor expansion along the j th column)
and

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}
$$

(cofactor expansion along the i th row)

- Example

$$
\operatorname{det}(A)=\left|\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right|=3\left|\begin{array}{rr}
-4 & 3 \\
4 & -2
\end{array}\right|-(-2)\left|\begin{array}{rr}
1 & 0 \\
4 & -2
\end{array}\right|+5\left|\begin{array}{rr}
1 & 0 \\
-4 & 3
\end{array}\right|=3(-4)-(-2)(-2)+5(3)=-1
$$

Example

- Cofactor expansion along the first row

$$
\begin{aligned}
& \left|\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right|=3\left|\begin{array}{cc}
-4 & 3 \\
4 & -2
\end{array}\right|-1\left|\begin{array}{cc}
-2 & 3 \\
5 & -2
\end{array}\right|+0\left|\begin{array}{cc}
-2 & -4 \\
5 & 4
\end{array}\right| \\
& =3(-4)-(1)(-11)+0=-1
\end{aligned}
$$

Example

- Smart choice of row or column

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
3 & 1 & 2 & 2 \\
1 & 0 & -2 & 1 \\
2 & 0 & 0 & 1
\end{array}\right]
$$

- It's easiest to use cofactor expansion along the second column

$$
\operatorname{det}(A)=1 \cdot\left|\begin{array}{ccc}
1 & 0 & -1 \\
1 & -2 & 1 \\
2 & 0 & 1
\end{array}\right|=1 \cdot(-2) \cdot\left|\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right|=-2(1+2)=-6
$$

Determinant of an Upper Triangular

 Matrix- For simplicity of notation, we prove the result for a 4×4 lower triangular matrix

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{det}(A)=\left|\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
a_{41} & a_{42} & a_{43} & a_{41}
\end{array}\right|=a_{11}\left|\begin{array}{ccc}
a_{22} & 0 & 0 \\
a_{32} & a_{33} & 0 \\
a_{42} & a_{43} & a_{44}
\end{array}\right|=a_{11} a_{22}\left|\begin{array}{cc}
a_{33} & 0 \\
a_{43} & a_{44}
\end{array}\right| \\
& =a_{11} a_{22} a_{33}\left|a_{44}\right|=a_{11} a_{22} a_{33} a_{44}
\end{aligned}
$$

Theorem 2.1.2

- If A is an $n \times n$ triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal of the matrix: $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$

Useful Technique for 2 x 2 and 3×3

 Matrices

$$
\operatorname{det}=a_{11} a_{22}-a_{12} a_{21}
$$

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{cc}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
\end{aligned}
$$

2.2

Evaluating Determinants by Row Reduction

Theorem 2.2.1

- Let A be a square matrix. If A has a row of zeros or a column of zeros, then $\operatorname{det}(A)=0$.
- Proof:
- Since the determinant of A can be found by a cofactor expansion along any row or column, we can use the row or column of zeros.

$$
\operatorname{det}(A)=0 C_{1}+0 C_{2}+\cdots+0 C_{n}=0
$$

Theorem 2.2.2

- Let A be a square matrix. Then $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
- Proof:
- Since transposing a matrix changes it columns to rows and its rows to columns, the cofactor expansion of A along any row is the same as the cofactor expansion of A^{T} along the corresponding column. Thus, both have the same determinant.

Theorem 2.2.3 (Elementary Row

Operations)

- Let A be an $n \times n$ matrix
- If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, than $\operatorname{det}(B)=k \operatorname{det}(A)$
- If B is the matrix that results when two rows or two columns of A are interchanged, then $\operatorname{det}(B)=-\operatorname{det}(A)$
- If B is the matrix that results when a multiple of one row of A is added to another row or when a multiple column is added to another column, then $\operatorname{det}(B)=\operatorname{det}(A)$

Example

$$
\begin{aligned}
& \left|\begin{array}{ccc}
k a_{11} & k a_{12} & k a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=k a_{11} C_{11}+k a_{12} C_{12}+k a_{13} C_{13} \\
& =k\left(a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}\right)=k\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& \left|\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \stackrel{?}{=}-\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& \left|\begin{array}{ccc}
a_{11}+k a_{21} & a_{12}+k a_{22} & a_{13}+k a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \stackrel{?}{=}\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
\end{aligned}
$$

Theorems

－Theorem 2．2．4（Elementary Matrices）
－Let E be an $n \times n$ elementary matrix（基本矩陣）
－If E results from multiplying a row of I_{n} by k ，then $\operatorname{det}(E)=k$
－If E results from interchanging two rows of I_{n} ，then $\operatorname{det}(E)=-1$
－If E results from adding a multiple of one row of I_{n} to another，then $\operatorname{det}(E)=1$

$$
\left|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=3 \quad\left|\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right|=-1 \quad\left|\begin{array}{llll}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=1
$$

Theorems

- Theorem 2.2.5 (Matrices with Proportional Rows or Columns)
- If A is a square matrix with two proportional rows or two proportional column, then $\operatorname{det}(A)=0$

$$
\begin{aligned}
& \text {-2 times Row } 1 \\
& \text { was added to Row } 2 \\
& \left|\begin{array}{cccc}
1 & 3 & -2 & 4 \\
2 & 6 & -4 & 8 \\
3 & 9 & 1 & 5 \\
1 & 1 & 4 & 8
\end{array}\right|=\left|\begin{array}{cccc}
1 & 3 & -2 & 4 \\
0 & 0 & 0 & 0 \\
3 & 9 & 1 & 5 \\
1 & 1 & 4 & 8
\end{array}\right|=0 \\
& \leftrightarrow\left[\begin{array}{ll}
-1 & 4 \\
-2 & 8
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 7 \\
-4 & 8 & 5 \\
2 & -4 & 3
\end{array}\right] \leadsto\left[\begin{array}{cccc}
3 & -1 & 4 & -5 \\
6 & -2 & 5 & 2 \\
5 & 8 & 1 & 4 \\
-9 & 3 & -12 & 15
\end{array}\right]
\end{aligned}
$$

Example (Using Row Reduction to Evaluate a Determinant)

- Evaluate $\operatorname{det}(A)$ where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array}\right]
$$

- Solution:

$$
\begin{array}{rlrl}
\operatorname{det}(A)=\left|\begin{array}{ccc}
0 & 1 & 5 \\
3 & -6 & 9 \\
2 & 6 & 1
\end{array}\right| & =-\left|\begin{array}{ccc}
3 & -6 & 9 \\
0 & 1 & 5 \\
2 & 6 & 1
\end{array}\right| & \begin{array}{l}
\text { The first and second } \\
\text { rows of A are } \\
\text { interchanged. }
\end{array} \\
& =-3\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & 5 \\
2 & 6 & 1
\end{array}\right| \longleftarrow \begin{array}{l}
\text { A common factor of } 3 \\
\text { from the first row was } \\
\text { taken through the } \\
\text { determinant sign }
\end{array}
\end{array}
$$

Example

$$
\operatorname{det}(A)=-3\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & 5 \\
2 & 6 & 1
\end{array}\right|
$$

$$
\begin{aligned}
& =-3\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 10 & -5
\end{array}\right| \\
& =-3\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 0 & -55
\end{array}\right|
\end{aligned}
$$

$$
=(-3)(-55)\left|\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right|
$$

$$
=(-3)(-55)(1)=165
$$

Example

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
2 & 7 & 0 & 6 \\
0 & 6 & 3 & 0 \\
7 & 3 & 1 & -5
\end{array}\right]
$$

- Using column operations to evaluate a determinant
- Put A in lower triangular form by adding - 3 times the first column to the fourth to obtain

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 7 & 0 & 0 \\
0 & 6 & 3 & 0 \\
7 & 3 & 1 & -26
\end{array}\right]=(1)(7)(3)(-26)=-546
$$

Example

$$
A=\left[\begin{array}{cccc}
3 & 5 & -2 & 6 \\
1 & 2 & -1 & 1 \\
2 & 4 & 1 & 5 \\
3 & 7 & 5 & 3
\end{array}\right]
$$

- By adding suitable multiples of the second row to the remaining rows, we obtain

2.3

Properties of Determinants; Cramer's Rule

Basic Properties of Determinant

- Since a common factor of any row of a matrix can be moved through the det sign, and since each of the n row in $k A$ has a common factor of k, we obtain

$$
\operatorname{det}(k A)=k^{n} \operatorname{det}(A)
$$

- There is no simple relationship exists between $\operatorname{det}(A)$, $\operatorname{det}(B)$, and $\operatorname{det}(A+B)$ in general.
- In particular, we emphasize that $\operatorname{det}(A+B)$ is usually not equal to $\operatorname{det}(A)+\operatorname{det}(B)$.

Example

$$
\left|\begin{array}{lll}
k a_{11} & k a_{12} & k a_{13} \\
k a_{21} & k a_{22} & k a_{23} \\
k a_{31} & k a_{32} & k a_{33}
\end{array}\right|=k^{3}\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

- Consider

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right] \quad B=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] \quad A+B=\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]
$$

- We have $\operatorname{det}(A)=1, \operatorname{det}(B)=8$, and $\operatorname{det}(A+B)=23$; thus

$$
\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)
$$

Example

- Consider two matrices that differ only in the second row

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad B=\left[\begin{array}{ll}
a_{11} & a_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

$$
\operatorname{det}(A)+\operatorname{det}(B)=\left(a_{11} a_{22}-a_{12} a_{21}\right)+\left(a_{11} b_{22}-a_{12} b_{21}\right)
$$

$$
=a_{11}\left(a_{22}+b_{22}\right)-a_{12}\left(a_{21}+b_{21}\right)
$$

$$
=\operatorname{det}\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
$$

$$
\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]+\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
b_{21} & b_{22}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
$$

Theorems 2.3.1

- Let A, B, and C be $n \times n$ matrices that differ only in a single row, say the r-th, and assume that the r-th row of C can be obtained by adding corresponding entries in the r-th rows of A and B. Then

$$
\operatorname{det}(C)=\operatorname{det}(A)+\operatorname{det}(B)
$$

The same result holds for columns.

- Example

$$
\operatorname{det}\left[\begin{array}{lcc}
1 & 7 & 5 \\
2 & 0 & 3 \\
1+0 & 4+1 & 7+(-1)
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
1 & 7 & 5 \\
2 & 0 & 3 \\
1 & 4 & 7
\end{array}\right]+\operatorname{det}\left[\begin{array}{ccc}
1 & 7 & 5 \\
2 & 0 & 3 \\
0 & 1 & -1
\end{array}\right]
$$

Theorems

- Lemma 2.3.2
- If B is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then $\operatorname{det}(E B)=\operatorname{det}(E) \operatorname{det}(B)$
- Remark:
- If B is an $n \times n$ matrix and $E_{1}, E_{2}, \ldots, E_{r}$, are $n \times n$ elementary matrices, then

$$
\operatorname{det}\left(E_{1} E_{2} \cdots E_{r} B\right)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \cdots \operatorname{det}\left(E_{r}\right) \operatorname{det}(B)
$$

Proof of Lemma 2.3.2

If B is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then

$$
\operatorname{det}(E B)=\operatorname{det}(E) \operatorname{det}(B)
$$

- We shall consider three cases, each depending on the row operation that produces matrix E.
- Case 1 . If E results from multiplying a row of I_{n} by k, then by Theorem 1.5.1, $E B$ results from B by multiplying a row by k; so from Theorem 2.2.3a we have

$$
\operatorname{det}(E B)=k \operatorname{det}(B)
$$

From Theorem 2.2.4a, we have $\operatorname{det}(E)=k$, so

$$
\operatorname{det}(E B)=\operatorname{det}(E) \operatorname{det}(B)
$$

- Cases 2 and 3 . E results from interchanging two rows of I_{n} or from adding a multiple of one row to another.

Theorems

- Theorem 2.3.3 (Determinant Test for Invertibility)
- A square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$
- Proof: Let R be the reduced row-echelon form of A.

$$
\begin{gathered}
R=E_{r} \cdots E_{2} E_{1} A \\
\operatorname{det}(R)=\operatorname{det}\left(E_{r}\right) \cdots \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}(A)
\end{gathered}
$$

From Theorem 2.2.4, the determinants of the elementary matrices are all nonzero. Thus, $\operatorname{det}(A)$ and $\operatorname{det}(R)$ are both zero or both nonzero.

Proof of Theorem 2.3.3

- If A is invertible, then by Theorem 1.6.4, we have $R=I$, so $\operatorname{det}(R)=1 \neq 0$ and consequently $\operatorname{det}(A) \neq 0$.
- Conversely, if $\operatorname{det}(A) \neq 0$, then $\operatorname{det}(R) \neq 0$, so R cannot have a row of zeros. It follows from Theorem 1.4.3 that $R=I$, so A is invertible by Theorem 1.6.4.

Example: Determinant Test for

Invertibility

- Since the first and third rows are proportional, $\operatorname{det}(A)=0$

$$
\left.A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1 \\
2 & 4 & 6
\end{array}\right]\right)
$$

- A is not invertible.

Theorems

- Theorem 2.3.4
- If A and B are square matrices of the same size, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

- Theorem 2.3.5
- If A is invertible, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Proof of Theorem 2.3.4

- If the matrix A is not invertible, then by Theorem 1.6.5 neither is the product $A B$.
- Thus, from Theorem 2.3.3, we have $\operatorname{det}(A B)=0$ and $\operatorname{det}(A)=0$, so it follows that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
- Now assume that A is invertible. By Theorem 1.6.4, the matrix A is expressible as a product of elementary matrices, say

$$
\begin{gathered}
A=E_{1} E_{2} \cdots E_{r} \\
A B=E_{1} E_{2} \cdots E_{r} B
\end{gathered}
$$

Proof of Theorem 2.3.4

$$
\begin{gathered}
A B=E_{1} E_{2} \cdots E_{r} B \\
\operatorname{det}(A B)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \cdots \operatorname{det}\left(E_{r}\right) \operatorname{det}(B) \\
\operatorname{det}(A B)=\operatorname{det}\left(E_{1} E_{2} \cdots E_{r}\right) \operatorname{det}(B) \\
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
\end{gathered}
$$

Proof of Theorem 2.3.5

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

- Since $A^{-1} A=I$, it follows that $\operatorname{det}\left(A^{-1} A\right)=\operatorname{det}(I)$.
- Therefore, we must have $\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)=1$.
- Since $\operatorname{det}(A) \neq 0$, the proof can be completed by dividing through by $\operatorname{det}(A)$.

Example

- If one multiplies the entries in any row by the corresponding cofactors from a different row, the sum of these products is always zero.

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

- Consider the quantity $a_{11} C_{31}+a_{12} C_{32}+a_{13} C_{33}=$?
- Construct a new matrix A^{\prime} by replacing the third row of A with another copy of the first row

$$
A^{\prime}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13}
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad A^{\prime}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13}
\end{array}\right]
$$

- Since the first two rows of A and A^{\prime} are the same, and since the computations of $C_{31}, C_{32}, C_{33}, C_{31}, C_{32}$, and C_{33}, involve only entries from the first two rows of A and A^{\prime}, it follows that

$$
C_{31}=C_{31}^{\prime} \quad C_{32}=C_{32}^{\prime} \quad C_{33}=C_{33}^{\prime}
$$

- Since A^{\prime} has two identical rows, $\operatorname{det}\left(A^{\prime}\right)=0$
- By evaluating $\operatorname{det}\left(A^{\prime}\right)$ by cofactor expansion along the third row gives
$\operatorname{det}\left(A^{\prime}\right)=a_{11} C_{31}^{\prime}+a_{12} C_{32}^{\prime}+a_{13} C_{33}^{\prime}=a_{11} C_{31}+a_{12} C_{32}+a_{13} C_{33}=0$

Definition

－If A is any $n \times n$ matrix，and $C_{i j}$ is the cofactor of a_{ij} ，then the matrix is called the matrix of cofactors from A（餘因子矩陣）。

$$
\left[\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 n} \\
C_{21} & C_{22} & \cdots & C_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
C_{n 1} & C_{n 2} & \cdots & C_{n n}
\end{array}\right]
$$

－The transpose of this matrix is called the adjoint of \boldsymbol{A}（伴隨矩陣）and is denoted by $\operatorname{adj}(A)$

$$
\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
$$

Adjoint of a 3x3 Matrix

$$
A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right]
$$

Cofactors of A are

$$
\begin{array}{lll}
C_{11}=12 & C_{12}=6 & C_{13}=-16 \\
C_{21}=4 & C_{22}=2 & C_{23}=16 \\
C_{31}=12 & C_{32}=-10 & C_{33}=16
\end{array}
$$

The matrix of cofactors is

$$
\left[\begin{array}{ccc}
12 & 6 & -16 \\
4 & 2 & 16 \\
12 & -10 & 16
\end{array}\right]
$$

The adjoint of $A\left[\begin{array}{ccc}12 & 4 & 12 \\ 6 & 2 & -10 \\ -16 & 16 & 16\end{array}\right]$

Theorems

$$
\begin{array}{r}
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \\
A \operatorname{adj}(A)=\operatorname{det}(A) I
\end{array}
$$

- Theorem 2.3.6 (Inverse of a Matrix using its Adjoint)
- If A is an invertible matrix, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$

Proof of Theorem 2.3.6

If A is an invertible matrix, then $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$

- We show first that $A \operatorname{adj}(A)=\operatorname{det}(A) I$

$$
\operatorname{Aadj}(A)=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
\mid a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{ccc|c|cc}
C_{11} & C_{21} & \cdots & \begin{array}{cc}
C_{j 1} & \cdots \\
C_{12} & C_{22} \\
C_{n 1} & \cdots \\
C_{j 2} & \cdots \\
\vdots & \vdots \\
\vdots & C_{n 2} \\
\vdots & \vdots \\
C_{1 n} & C_{2 n} \\
\cdots & \\
C_{j n} & \cdots
\end{array} C_{n n}
\end{array}\right]
$$

- The entry in the i th row and j th column of $A \operatorname{adj}(A)$ is

$$
a_{i 1} C_{j 1}+a_{i 2} C_{j 2}+\cdots+a_{i n} C_{j n}
$$

Proof of Theorem 2.3.6

$$
a_{i 1} C_{j 1}+a_{i 2} C_{j 2}+\cdots+a_{i n} C_{j n}
$$

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

- If $i=j$, then it is the cofactor expansion of $\operatorname{det}(A)$ along the i th row of A.
- If $i \neq j$, then the a 's and the cofactors come from different rows of A, so the value is zero. Therefore,

$$
\operatorname{Aadj}(A)=\left[\begin{array}{cccc}
\operatorname{det}(A) & 0 & \cdots & 0 \\
0 & \operatorname{det}(A) & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \operatorname{det}(A)
\end{array}\right]=\operatorname{det}(A) I
$$

- Since A is invertible, $\operatorname{det}(A) \neq 0$. Therefore

$$
\frac{1}{\operatorname{det}(A)}[\operatorname{Aadj}(A)]=I \Longrightarrow A\left[\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right]=I
$$

- Multiplying both sides on the left by A^{-1} yields $A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)$

Example

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right] \quad \text { The adjoint of } A=\left[\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right] \\
& A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{64}\left[\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right]
\end{aligned}
$$

Theorem 2.3.7 (Cramer's Rule)

- If $A \mathbf{x}=\mathbf{b}$ is a system of n linear equations in n unknowns such that $\operatorname{det}(A) \neq 0$, then the system has a unique solution. This solution is

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, \quad x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \cdots, x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}
$$

where A_{j} is the matrix obtained by replacing the entries in the j th column of A by the entries in the matrix $\mathbf{b}=\left[b_{1}\right.$ $\left.b_{2} \cdots b_{n}\right]^{T}$

Proof of Theorem 2.3.7

- If $\operatorname{det}(A) \neq 0$, then A is invertible, and by Theorem 1.6.2, $\boldsymbol{x}=A^{-1} \boldsymbol{b}$ is the unique solution of $A \boldsymbol{x}=\boldsymbol{b}$. Therefore, by Theorem 2.3.6, we have

$$
\begin{aligned}
& \boldsymbol{x}=A^{-1} \boldsymbol{b}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A) \boldsymbol{b} \\
& =\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
\end{aligned}
$$

Proof of Theorem 2.3.7

$$
\boldsymbol{x}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{c}
b_{1} C_{11}+b_{2} C_{21}+\cdots+b_{n} C_{n 1} \\
b_{1} C_{12}+b_{2} C_{22}+\cdots+b_{n} C_{n 2} \\
\vdots \\
b_{1} C_{1 n}+b_{2} C_{2 n}+\cdots+b_{n} C_{n n}
\end{array}\right]
$$

- The entry in the j th row of \boldsymbol{x} is therefore

$$
x_{j}=\frac{b_{1} C_{1 j}+b_{2} C_{2 j}+\cdots+b_{n} C_{n j}}{\operatorname{det}(A)}
$$

- Now let

$$
A_{j}=\left[\begin{array}{cccccccc}
a_{11} & a_{12} & \cdots & a_{1 j-1} & b_{1} & a_{1 j+1} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 j-1} & b_{2} & a_{2 j+1} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & \\
a_{n 1} & a_{n 2} & \cdots & a_{n j-1} & b_{n} & a_{n j+1} & \cdots & a_{n n}
\end{array}\right]
$$

Proof of Theorem 2.3.7

- Since A_{j} differs form A only in the j th column, it follows that the cofactors of entries $b_{1}, b_{2}, \ldots, b_{n}$ in A_{j} are the same as the cofactors of the corresponding entries in the j th column of A.
- The cofactor expansion of $\operatorname{det}\left(A_{j}\right)$ along the j th column is therefore $\operatorname{det}\left(A_{j}\right)=b_{1} C_{1 j}+b_{2} C_{2 j}+\cdots+b_{n} C_{n j}$
- Substituting this result gives

$$
x_{j}=\frac{\operatorname{det}\left(A_{j}\right)}{\operatorname{det}(A)}
$$

Example

- Use Cramer's rule to solve

$$
\begin{aligned}
x_{1}+\quad+2 x_{3} & =6 \\
-3 x_{1}+4 x_{2}+6 x_{3} & =30 \\
-x_{1}-2 x_{2}+3 x_{3} & =8
\end{aligned}
$$

- Since

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
-3 & 4 & 6 \\
-1 & -2 & 3
\end{array}\right], A_{1}=\left[\begin{array}{ccc}
6 & 0 & 2 \\
30 & 4 & 6 \\
8 & -2 & 3
\end{array}\right], A_{2}=\left[\begin{array}{ccc}
1 & 6 & 2 \\
-3 & 30 & 6 \\
-1 & 8 & 3
\end{array}\right], A_{3}=\left[\begin{array}{ccc}
1 & 0 & 6 \\
-3 & 4 & 30 \\
-1 & -2 & 8
\end{array}\right]
$$

Thus,

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{-40}{44}=\frac{-10}{11}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{72}{44}=\frac{18}{11}, x_{3}=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}=\frac{152}{44}=\frac{38}{11}
$$

Theorem 2.3.8 (Equivalent

 Statements)- If A is an $n \times n$ matrix, then the following are equivalent
- A is invertible.
- $A \mathbf{x}=\mathbf{0}$ has only the trivial solution
- The reduced row-echelon form of A as I_{n}
- A is expressible as a product of elementary matrices
- $A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}
- $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b}
- $\operatorname{det}(A) \neq 0$

