Chapter 3 Euclidean Vector Spaces

Outline

- 3.1 Vectors in 2-Space, 3-Space, and n-Space
- 3.2 Norm, Dot Product, and Distance in R^n
- 3.3 Orthogonality
- 3.4 The Geometry of Linear Systems
- 3.5 Cross Product

3.1 Vectors in 2-Space, 3-Space, and n-Space

Geometric Vectors

- In this text, vectors are denoted in bold face type such as
 a, b, v, and scalars are denoted in lowercase italic type such as a, b, v.
- A vector \mathbf{v} has initial point A and terminal point B

$$\boldsymbol{v} = \overrightarrow{AB}$$

- Vectors with the same length and direction are said *equivalent*.
- The vector whose initial and terminal points coincide has length zero, and is called *zero vector*, denoted by **0**.

Definitions

- If v and w are any two vectors, then the sum v + w is the vector determined as follows:
 - Position the vector \mathbf{w} so that its initial point coincides with the terminal point of \mathbf{v} . The vector $\mathbf{v} + \mathbf{w}$ is represented by the arrow from the initial point of \mathbf{v} to the terminal point of \mathbf{w} .
- If v and w are any two vectors, then the difference of w from v is defined by v w = v + (-w).
- If v is a nonzero vector and k is nonzero real number (scalar), then the product kv is defined to be the vector whose length is |k| times the length of v and whose direction is the same as that of v if k > 0and opposite to that of v if k < 0. We define kv = 0 if k = 0 or v = 0.
- A vector of the form $k\mathbf{v}$ is called a scalar multiple.

Examples

Vectors in Coordinate Systems

$$v = (v_1, v_2)$$

$$w = (w_1, w_2)$$

$$v + w = (v_1 + w_1, v_2 + w_2)$$

$$kv = (kv_1, kv_2)$$

$$v - w = (v_1 - w_1, v_2 - w_2)$$

01.

$$oldsymbol{v} = (v_1, v_2, v_3)$$
 $oldsymbol{w} = (w_1, w_2, w_3)$
 $oldsymbol{v} + oldsymbol{w} = (v_1 + w_1, v_2 + w_2, v_3 + w_3)$
 $koldsymbol{v} = (kv_1, kv_2, kv_3)$

 \boldsymbol{v} and \boldsymbol{w} are equivalent if and only if $v_1 = w_1, v_2 = w_2, v_3 = w_3$

Vectors

• If the vector $\overrightarrow{P_1P_2}$ has initial point $P_1(x_1, y_1, z_1)$ and terminal point $P_2(x_2, y_2, z_2)$, then

$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

Theorem 3.1.1 (Properties of Vector Arithmetic)

- If u, v and w are vectors in Rⁿ and k and l are scalars, then the following relationships hold.
 - $\Box \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

$$\Box (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

- $\Box \quad u + 0 = 0 + u = u$
- $\square \quad \mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

$$\mathbf{u} \quad k(l\mathbf{u}) = (kl)\mathbf{u}$$

- $\mathbf{a} \quad k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- $\Box (k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$
- **u** $1\mathbf{u} = \mathbf{u}$

Proof of part (b) (geometric)

Theorem and Definition

- Theorem 3.1.2: If **v** is a vector in \mathbb{R}^n and k is a scalar, then:
 - $\mathbf{D} \quad \mathbf{0}\mathbf{v} = \mathbf{0}$
 - $\bullet \quad k\mathbf{0} = \mathbf{0}$
 - $\Box \quad (-1)\mathbf{v} = -\mathbf{v}$
- If w is a vector in Rⁿ, then w is said to be a *linear combination* of the vectors v₁, v₂, ..., v_r in Rⁿ if it can be expressed in the form

$$\boldsymbol{w} = k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_r \boldsymbol{v}_r$$

• where $k_1, k_2, ..., k_r$ are scalars.

Alternative Notations for Vectors

- Comma-delimited form: $\boldsymbol{v} = (v_1, v_2, ..., v_n)$
- It can also written as a *row-matrix* form

 $\boldsymbol{v} = [v_1 \quad v_2 \quad \dots \quad v_n]$

Or a *column-matrix* form

$$oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

3.2 Norm, Dot Product, and Distance in *Rⁿ*

Norm of a Vector

- The length of a vector u is often called the <u>norm</u> (範數) or <u>magnitude</u> of u and is denoted by ||u||.
- It follows from the Theorem of Pythagoras that the norm of a vector $\mathbf{u} = (u_1, u_2, u_3)$ in 3-space is

$$\|\boldsymbol{u}\|^{2} = (OR)^{2} + (RP)^{2}$$

= $(OQ)^{2} + (QR)^{2} + (RP)^{2} = u_{1}^{2} + u_{2}^{2} + u_{3}^{2}$
$$\|\boldsymbol{u}\| = \sqrt{u_{1}^{2} + u_{2}^{2} + u_{3}^{2}}$$

P(u_{1}, u_{2}, u_{3})
Q
R

Norm of a Vector

- If v=(v₁, v₂, ..., v_n) is a vector in Rⁿ, then the norm of v is denoted by ||v||, and is defined by
 ||v|| = √v₁² + v₂² + ··· + v_n²
- Example:
 - The norm of v=(-3,2,1) in R^3 is $||v|| = \sqrt{(-3)^2 + 2^2 + 1^2} = \sqrt{14}$
 - The norm of v=(2, -1, 3, -5) in R^4 is

$$\|\boldsymbol{v}\| = \sqrt{2^2 + (-1)^2 + 3^2 + (-5)^2} = \sqrt{39}$$

Theorem 3.2.1

• If **v** is a vector in \mathbb{R}^n , and if k is any scalar, then:

 $\square ||\mathbf{v}|| \ge 0$

- **u**||**v**|| = 0 if and only if**v**=**0**
- $\square ||k\mathbf{v}|| = |k| ||\mathbf{v}||$
- Proof of (c):

□ If $\mathbf{v} = (v_1, v_2, ..., v_n)$, then $k\mathbf{v} = (kv_1, kv_2, ..., kv_n)$, so

$$\begin{aligned} \|k\boldsymbol{v}\| &= \sqrt{(kv_1)^2 + (kv_2)^2 + \dots + (kv_n)^2} \\ &= \sqrt{(k^2)(v_1^2 + v_2^2 + \dots + v_n^2)} \\ &= |k| \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \\ &= |k| \|\boldsymbol{v}\| \end{aligned}$$

Unit Vector

- A vector of norm 1 is called a <u>unit vector</u>. (單位向量)
- You can obtain a unit vector in a desired direction by choosing any nonzero vector v in that direction and multiplying v by the reciprocal of its length.

$$oldsymbol{u} = rac{1}{\|oldsymbol{v}\|}oldsymbol{v}$$

- The process is called *normalizing* v
- Example: $\mathbf{v} = (2,2,-1), \|v\| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$ $u = \frac{1}{3}(2,2,-1) = (\frac{2}{3},\frac{2}{3},\frac{-1}{3})$
 - You can verify that $\|\boldsymbol{u}\| = 1$

Standard Unit Vectors

• When a rectangular coordinate system is introduced in R^2 or R^3 , the unit vectors in the positive directions of the coordinates axes are called *standard unit vectors*.

• In
$$R^2$$
, $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0,1)$

In
$$R^3$$
, $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0, 1, 0)$, $\mathbf{k} = (0, 0, 1)$

Every vector $\mathbf{v} = (v_1, v_2)$ in R^2 can be expressed as a linear combination of standard unit vectors $\mathbf{v} = (v_1, v_2) = v_1(1, 0) + v_2(0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j}$ $\mathbf{v} = (v_1, v_2) = v_1(1, 0) + v_2(0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j}$

(0,1

Standard Unit Vectors

We can generalize these formulas to Rⁿ by defining standard unit vectors in Rⁿ to be

$$e_1 = (1, 0, 0, \dots, 0)$$
 $e_2 = (0, 1, 0, \dots, 0)$... $e_n = (0, 0, 0, \dots, 1)$

• Every vector $\mathbf{v}=(v_1,v_2,\ldots,v_n)$ in \mathbb{R}^n can be expressed as

$$\boldsymbol{v} = (v_1, v_2, ..., v_n) = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + \cdots + v_n \boldsymbol{e}_n$$

- Example: $(2,-3,4) = 2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$
- $(7,3,-4,5) = 7\mathbf{e}_1 + 3\mathbf{e}_2 4\mathbf{e}_3 + 5\mathbf{e}_4$

Distance

- The distance between two points is the norm of the vector.
- If $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are two points in 3-space, then the distance *d* between them is the norm of the vector $\overrightarrow{P_1P_2}$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

- Euclidean distance (歐幾里德距離,歐式距離)
- If $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ are points in \mathbb{R}^n , then the distance $d(\mathbf{u}, \mathbf{v})$ is defined as

$$d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Definitions

- Let **u** and **v** be two nonzero vectors in 2-space or 3-space, and assume these vectors have been positioned so their initial points coincided. By the angle between **u** and **v**, we shall mean the angle θ determined by **u** and **v** that satisfies 0 $\leq \theta \leq \pi$.
- If u and v are vectors in 2-space or 3-space and θ is the angle between u and v, then the <u>dot product</u> (點積) or Euclidean inner product (內積) u · v is defined by

$$\mathbf{u} \cdot \mathbf{v} = \begin{cases} \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta & \text{if } \mathbf{u} \neq \mathbf{0} \text{ and } \mathbf{v} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{u} = \mathbf{0} \text{ or } \mathbf{v} = \mathbf{0} \end{cases}$$

Dot Product

$$\cos\theta = \frac{\boldsymbol{u}\cdot\boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}$$

- If the vectors u and v are nonzero and θ is the angle between them, then
 - □ θ is acute (銳角) if and only if $\mathbf{u} \cdot \mathbf{v} > 0$
 - □ θ is obtuse (鈍角) if and only if $\mathbf{u} \cdot \mathbf{v} < 0$

Example

• If the angle between the vectors $\mathbf{u} = (0,0,1)$ and $\mathbf{v} = (0,2,2)$ is 45°, then

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = \sqrt{0 + 0 + 1} \sqrt{0 + 4 + 4} \cdot \left(\frac{1}{\sqrt{2}}\right) = 2$$
$$\mathbf{u} \cdot \mathbf{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3 = 2$$
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{2}{\sqrt{0 + 0 + 1} \sqrt{0 + 4 + 4}} = \frac{1}{\sqrt{2}}$$

Example

Find the angle between a diagonal of a cube and one of its edges

$$oldsymbol{d} = (k,k,k) = oldsymbol{u}_1 + oldsymbol{u}_2 + oldsymbol{u}_3$$

$$\cos \theta = \frac{\boldsymbol{u}_1 \cdot \boldsymbol{d}}{\|\boldsymbol{u}_1\| \|\boldsymbol{d}\|} = \frac{k^2}{(k)(\sqrt{3k^2})} = \frac{1}{\sqrt{3}}$$
$$\theta = \cos^{-1}(\frac{1}{\sqrt{3}}) \approx 54.74^\circ$$

$$(0,0,k)$$

 u_3
 (k,k,k)
 d
 u_2
 $(0,k,0)$

Component Form of Dot Product

- Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ be two nonzero vectors.
- According to the *law of cosine* $\|\overrightarrow{PQ}\|^2 = \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2 - 2\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta$

Component Form of Dot Product

$$\|\overrightarrow{PQ}\|^{2} = \|\boldsymbol{u}\|^{2} + \|\boldsymbol{v}\|^{2} - 2\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta$$

$$\Rightarrow \overrightarrow{PQ} = \boldsymbol{v} - \boldsymbol{u}$$

$$\Rightarrow \|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\theta = \frac{1}{2}(\|\boldsymbol{u}\|^{2} + \|\boldsymbol{v}\|^{2} - \|\boldsymbol{v} - \boldsymbol{u}\|^{2})$$

$$\Rightarrow \boldsymbol{u} \cdot \boldsymbol{v} = \frac{1}{2}(\|\boldsymbol{u}\|^{2} + \|\boldsymbol{v}\|^{2} - \|\boldsymbol{v} - \boldsymbol{u}\|^{2})$$

$$\Rightarrow \boldsymbol{u} \cdot \boldsymbol{v} = u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3}$$

$$\|\boldsymbol{v}\|^{2} = v_{1}^{2} + v_{2}^{2} + v_{3}^{2}$$

$$\|\boldsymbol{v}\|^{2} = v_{1}^{2} + v_{2}^{2} + v_{3}^{2}$$

$$\|\boldsymbol{v}\|^{2} = (v_{1} - u_{1})^{2} + (v_{2} - u_{2})^{2} + (v_{3} - u_{3})^{2}$$

Definition

If u=(u₁,u₂,...,uₙ) and v=(v₁,v₂,...,vₙ) are vectors in Rⁿ, then the dot product (also called the Euclidean inner product) of u and v is denoted by u ⋅ v and is defined by

$$\boldsymbol{u}\cdot\boldsymbol{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

• Example: $\mathbf{u} = (-1,3,5,7)$ and $\mathbf{v} = (-3,-4,1,0)$ • $\mathbf{u} \cdot \mathbf{v} = (-1)(-3) + (3)(-4) + (5)(1) + (7)(0) = -4$

Theorems

$$\mathbf{u} \cdot \mathbf{v} = \begin{cases} \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta & \text{if } \mathbf{u} \neq \mathbf{0} \text{ and } \mathbf{v} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{u} = \mathbf{0} \text{ or } \mathbf{v} = \mathbf{0} \end{cases}$$

• The special case $\mathbf{u} = \mathbf{v}$, we obtain the relationship

$$\boldsymbol{v} \cdot \boldsymbol{v} = v_1^2 + v_2^2 + \dots + v_n^2 = \|\boldsymbol{v}\|^2$$

 $\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}$

- Theorem 3.2.2
 - \square If **u**, **v** and **w** are vectors in 2- or 3-space, and k is a scalar, then
 - $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
 - $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

•
$$k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$$

• $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if $\mathbf{v} = 0$

[symmetry property] [distributive property] [homogeneity property] [positivity property] Proof of Theorem 3.2.2 $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$ • Let $u=(u_1, u_2, u_3)$ and $v=(v_1, v_2, v_3)$ $k(\mathbf{u} \cdot \mathbf{v}) = k(u_1v_1 + u_2v_2 + u_3v_3)$ $= (ku_1)v_1 + (ku_2)v_2 + (ku_3)v_3$ $= (k\mathbf{u}) \cdot \mathbf{v}$

Theorem 3.2.3

• If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then

$$\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = \mathbf{0}$$

$$\Box (\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

$$\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{w}$$

$$\Box (\mathbf{u} - \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} - \mathbf{v} \cdot \mathbf{w}$$

$$\mathbf{u} \quad k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$$

Proof(b)

$$(\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{w} \cdot (\boldsymbol{u} + \boldsymbol{v})$$
 [by symmetry]
= $\boldsymbol{w} \cdot \boldsymbol{u} + \boldsymbol{w} \cdot \boldsymbol{v}$ [by distributivity]
= $\boldsymbol{u} \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \boldsymbol{w}$ [by symmetry]

Example

Calculating with dot products

$$\begin{aligned} \mathbf{u} & (\mathbf{u} - 2\mathbf{v}) \cdot (3\mathbf{u} + 4\mathbf{v}) \\ &= \mathbf{u} \cdot (3\mathbf{u} + 4\mathbf{v}) - 2\mathbf{v} \cdot (3\mathbf{u} + 4\mathbf{v}) \\ &= 3(\mathbf{u} \cdot \mathbf{u}) + 4(\mathbf{u} \cdot \mathbf{v}) - 6(\mathbf{v} \cdot \mathbf{u}) - 8(\mathbf{v} \cdot \mathbf{v}) \\ &= 3||\mathbf{u}||^2 - 2(\mathbf{u} \cdot \mathbf{v}) - 8||\mathbf{v}||^2 \end{aligned}$$

Cauchy-Schwarz Inequality

• With the formula

$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \qquad \theta = \cos^{-1} \left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \right)$$

• The inverse cosine is not defined unless its argument satisfies the inequalities

$$-1 \leq \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \leq 1$$

Fortunately, these inequalities do hold for all nonzero vectors in Rⁿ as a result of Cauchy-Schwarz inequality

Theorem 3.2.4 Cauchy-Schwarz Inequality

If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| ||\mathbf{v}||$ or in terms of components

$$|u_1v_1 + u_2v_2 + \dots + u_nv_n|$$

$$\leq (u_1^2 + u_2^2 + \dots + u_n^2)^{1/2} (v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$

• To show
$$-1 \le \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \le 1$$

 $-1 \le \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \le 1 \implies \frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \le 1 \implies \left|\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}\right| \le 1$

• Cauchy-Schwarz Inequality: If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| ||\mathbf{v}||$

Geometry in Rⁿ

- The sum of the lengths of two side of a triangle is at least as large as the third
- The shortest distance between two points is a straight line
- Theorem 3.2.5
 - □ If **u**, **v**, and **w** are vectors in \mathbb{R}^n , and k is any scalar, then

$$\square \|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

$$\Box \ d(\mathbf{u},\mathbf{v}) \leq d(\mathbf{u},\mathbf{w}) + d(\mathbf{w},\mathbf{v})$$

Proof of Theorem 3.2.5

Proof (b)

$$d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\|$$

$$= \|(\boldsymbol{u} - \boldsymbol{w}) + (\boldsymbol{w} - \boldsymbol{v})\|$$

$$\leq \|\boldsymbol{u} - \boldsymbol{w}\| + \|\boldsymbol{w} - \boldsymbol{v}\|$$

$$= d(\boldsymbol{u}, \boldsymbol{w}) + d(\boldsymbol{w}, \boldsymbol{v})$$

Theorem 3.2.6 Parallelogram Equation for Vectors

• If u and v are vectors in \mathbb{R}^n , then $||\mathbf{u}+\mathbf{v}||^2 + ||\mathbf{u}-\mathbf{v}||^2 = 2(||\mathbf{u}||^2 + ||\mathbf{v}||^2)$

Proof:

$$\|\boldsymbol{u} + \boldsymbol{v}\|^{2} + \|\boldsymbol{u} - \boldsymbol{v}\|^{2}$$

$$= (\boldsymbol{u} + \boldsymbol{v}) \cdot (\boldsymbol{u} + \boldsymbol{v}) + (\boldsymbol{u} - \boldsymbol{v}) \cdot (\boldsymbol{u} - \boldsymbol{v})$$

$$= 2(\boldsymbol{u} \cdot \boldsymbol{u}) + 2(\boldsymbol{v} \cdot \boldsymbol{v})$$

$$= 2(\|\boldsymbol{u}\|^{2} + \|\boldsymbol{v}\|^{2})$$

$$\mathbf{v} \quad \mathbf{u} + \mathbf{v}$$

$$\mathbf{u} \quad \mathbf{u} \quad \mathbf{v}$$

Theorem 3.2.7

If **u** and **v** are vectors in \mathbb{R}^n with the Euclidean inner product, then $\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} ||\mathbf{u} + \mathbf{v}||^2 - \frac{1}{4} ||\mathbf{u} - \mathbf{v}||^2$

Proof:

$$\|\boldsymbol{u} + \boldsymbol{v}\|^{2} = (\boldsymbol{u} + \boldsymbol{v}) \cdot (\boldsymbol{u} + \boldsymbol{v}) = \|\boldsymbol{u}\|^{2} + 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \|\boldsymbol{v}\|^{2}$$
$$\|\boldsymbol{u} - \boldsymbol{v}\|^{2} = (\boldsymbol{u} - \boldsymbol{v}) \cdot (\boldsymbol{u} - \boldsymbol{v}) = \|\boldsymbol{u}\|^{2} - 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \|\boldsymbol{v}\|^{2}$$

Dot Products as Matrix Multiplication

View u and v as column matrices

$$\boldsymbol{u}\cdot\boldsymbol{v}=\boldsymbol{u}^T\boldsymbol{v}=\boldsymbol{v}^T\boldsymbol{u}$$

• Example:

$$\boldsymbol{u} = (1, -3, 5) \qquad \boldsymbol{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} \qquad \boldsymbol{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$$

$$\boldsymbol{u} \cdot \boldsymbol{v} = (1, -3, 5) \cdot (5, 4, 0) = (1)(5) + (-3)(4) + (5)(0) = -7$$
$$\boldsymbol{u}^T \boldsymbol{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7 \qquad \boldsymbol{v}^T \boldsymbol{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$$

Dot Products as Matrix Multiplication

• If A is an $n \times n$ matrix and **u** and **v** are $n \times 1$ matrices

$$A\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v}^T (A\boldsymbol{u}) = (\boldsymbol{v}^T A)\boldsymbol{u} = (A^T \boldsymbol{v})^T \boldsymbol{u} = \boldsymbol{u} \cdot A^T \boldsymbol{v}$$
$$\boldsymbol{u} \cdot A\boldsymbol{v} = (A\boldsymbol{v})^T \boldsymbol{u} = (\boldsymbol{v}^T A^T) \boldsymbol{u} = \boldsymbol{v}^T (A^T \boldsymbol{u}) = A^T \boldsymbol{u} \cdot \boldsymbol{v}$$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$$

You can check $A \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u} \cdot A^T \boldsymbol{v}$

Dot Product View of Matrix Multiplication

• If $A = [a_{ij}]$ is a $m \times r$ matrix, and $B = [b_{ij}]$ is an $r \times n$ matrix, then the *ij*th entry of *AB* is

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ir}b_{rj}$$

which is the dot product of the *i*th row vector of A

$$\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ir} \end{bmatrix}$$

and the *j*th column vector of B

$$\begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{rj} \end{bmatrix}$$

Dot Product View of Matrix Multiplication

If the row vectors of A are r₁, r₂, ..., r_m and the column vectors of B are c₁, c₂, ..., c_n, then the matrix product AB can be expressed as

$$AB = \begin{bmatrix} \boldsymbol{r}_1 \cdot \boldsymbol{c}_1 & \boldsymbol{r}_1 \cdot \boldsymbol{c}_2 & \cdots & \boldsymbol{r}_1 \cdot \boldsymbol{c}_n \\ \boldsymbol{r}_2 \cdot \boldsymbol{c}_1 & \boldsymbol{r}_2 \cdot \boldsymbol{c}_2 & \cdots & \boldsymbol{r}_2 \cdot \boldsymbol{c}_n \\ \vdots & \vdots & \vdots \\ \boldsymbol{r}_m \cdot \boldsymbol{c}_1 & \boldsymbol{r}_m \cdot \boldsymbol{c}_2 & \cdots & \boldsymbol{r}_m \cdot \boldsymbol{c}_n \end{bmatrix}$$

3.3 Orthogonality

Orthogonal Vectors

- Recall that $\theta = \cos^{-1}\left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}\right)$
- It follows that $\theta = \frac{\pi}{2}$ if and only if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$
- Definition: Two nonzero vectors **u** and **v** in *Rⁿ* are said to be *orthogonal* [正交] (or *perpendicular* [垂直]) if **u** · **v** = 0.
- The zero vector in \mathbb{R}^n is orthogonal to every vector in \mathbb{R}^n .
- A nonempty set of vectors in Rⁿ is called an *orthogonal* set if all pairs of distinct vectors in the set are orthogonal.
- An orthogonal set of unit vectors is called an *orthonormal set*.

Example

- Show that $\mathbf{u} = (-2,3,1,4)$ and $\mathbf{v} = (1,2,0,-1)$ are orthogonal $\mathbf{u} \cdot \mathbf{v} = (-2)(1) + (3)(2) + (1)(0) + (4)(-1) = 0$
- Show that the set S={i,j,k} of standard unit vectors is an orthogonal set in R³
 - We must show $\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0$

$$i \cdot j = (1, 0, 0) \cdot (0, 1, 0) = 0$$

$$i \cdot k = (1, 0, 0) \cdot (0, 0, 1) = 0$$

$$j \cdot k = (0, 1, 0) \cdot (0, 0, 1) = 0$$

Normal

One way of specifying slope and inclination is the use a nonzero vector n, called *normal* (法向量) that is orthogonal to the line or plane.

$$oldsymbol{n} \cdot \overrightarrow{P_0 P} = 0$$

 $a(x - x_0) + b(y - y_0) = 0$

The line through the point (x_0, y_0) has normal $\mathbf{n} = (a, b)$

Example: the equation 6(x-3) + (y+7) = 0 represents the line through (3,-7) with normal $\mathbf{n}=(6,1)$

Theorem 3.3.1

- If *a* and *b* are constants that are not both zero, then an equation of the form ax+by+c = 0 represents a line in R^2 with normal $\mathbf{n}=(a,b)$
- If *a*, *b*, and *c* are constants that are not all zero, then an equation of the form ax+by+cz+d = 0 represents a line in R^3 with normal $\mathbf{n}=(a,b,c)$

Example

- The equation ax+by=0 represents a line through the origin in R². Show that the vector n=(a,b) is orthogonal to the line, that is, orthogonal to every vector along the line.
- Solution:
 - **•** Rewrite the equation as

$$(a,b) \cdot (x,y) = 0$$

 $\boldsymbol{n} \cdot (x,y) = 0$

Therefore, the vector **n** is orthogonal to every vector (x,y) on the line.

An Orthogonal Projection

- To "decompose" a vector **u** into a sum of two terms, one *parallel* to a specified nonzero vector **a** and the other *perpendicular* to **a**.
- We have $\mathbf{w}_2 = \mathbf{u} \mathbf{w}_1$ and $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{w}_1 + (\mathbf{u} \mathbf{w}_1) = \mathbf{u}$
- The vector w₁ is called the <u>orthogonal projection</u> (正交投影) of u on a or sometimes the vector component (分向量) of u along a, and denoted by proj_au
- The vector \mathbf{w}_2 is called the vector component of **u** orthogonal to **a**, and denoted by $\mathbf{w}_2 = \mathbf{u} - \text{proj}_a \mathbf{u}$

Theorem 3.3.2 Projection Theorem

If u and a are vectors in Rⁿ, and if a≠0, then u can be expressed in exactly one way in the form u=w₁+w₂, where w₁ is a scalar multiple of a and w₂ is orthogonal to a.

Proof:

- Since \mathbf{w}_1 is to be a scalar multiple of \mathbf{a} , it has the form: $\mathbf{w}_1 = k\mathbf{a}$
- Our goal is to find a value of k and a vector \mathbf{w}_2 that is orthogonal to **a** such that $\mathbf{u}=\mathbf{w}_1+\mathbf{w}_2$.
- □ Rewrite $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2 = k\mathbf{a} + \mathbf{w}_2$, and then applying Theorems 3.2.2 and 3.2.3 to obtain $\mathbf{u} \cdot \mathbf{a} = (k\mathbf{a} + \mathbf{w}_2) \cdot \mathbf{a} = k ||\mathbf{a}||^2 + (\mathbf{w}_2 \cdot \mathbf{a})$
- □ Since \mathbf{w}_2 is orthogonal to $\mathbf{a}, \mathbf{u} \cdot \mathbf{a} = k ||\mathbf{a}||^2$, from which we obtain $k = \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2}$. □ Therefore, we can get
- Therefore, we can get

$$oldsymbol{w}_2 = oldsymbol{u} - oldsymbol{w}_1 = oldsymbol{u} - koldsymbol{a} = oldsymbol{u} - rac{oldsymbol{u}\cdotoldsymbol{a}}{\|oldsymbol{a}\|^2}oldsymbol{a}$$

Projection Theorem

 $\mathbf{w}_1 = \operatorname{proj}_{\mathbf{a}} \mathbf{u}$ $\mathbf{w}_2 = \mathbf{u} - \operatorname{proj}_{\mathbf{a}} \mathbf{u}$

- The vector w₁ is called *the orthogonal projection of* u *on* a, or *the vector component of* u *along* a.
- The vector \mathbf{w}_2 is called *the vector component of* **u** *orthogonal to* **a**.

Example

- Find the orthogonal projections of the vectors e₁=(1,0) and
 e₂=(0,1) on the line *L* that makes an angle θ with the positive *x*-axis in R2.
- Solution:
 - $\Box a = (\cos \theta, \sin \theta)$ is a unit vector along L.
 - Find orthogonal projection of \mathbf{e}_1 along \mathbf{a} .

$$\|\boldsymbol{a}\| = \sqrt{\sin\theta^2 + \cos\theta^2} = 1 \qquad \boldsymbol{e}_1 \cdot \boldsymbol{a} = (1,0) \cdot (\cos\theta, \sin\theta) = \cos\theta$$
$$proj_{\boldsymbol{a}}\boldsymbol{e}_1 = \frac{\boldsymbol{e}_1 \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^2} \boldsymbol{a} = (\cos\theta)(\cos\theta, \sin\theta) = (\cos\theta^2, \sin\theta\cos\theta)$$
$$\boldsymbol{e}_2 \cdot \boldsymbol{a} = (0,1) \cdot (\cos\theta, \sin\theta) = \sin\theta$$
$$proj_{\boldsymbol{a}}\boldsymbol{e}_2 = \frac{\boldsymbol{e}_2 \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^2} \boldsymbol{a} = (\sin\theta)(\cos\theta, \sin\theta) = (\sin\theta\cos\theta, \sin\theta^2)$$

Example

Let u = (2,-1,3) and a = (4,-1,2). Find the vector component of u along a and the vector component of u orthogonal to a.

• Solution:

$$u \cdot a = (2)(4) + (-1)(-1) + (3)(2) = 15$$
$$||a||^2 = 4^2 + (-1)^2 + 2^2 = 21$$

Thus, the vector component of u along a is

$$proj_{a} u = \frac{u \cdot a}{\|a\|^{2}} a = \frac{15}{21} (4, -1, 2) = (\frac{20}{7}, -\frac{5}{7}, \frac{10}{7})$$

and the vector component of u orthogonal to a is

$$u - proj_a \ u = (2, -1, 3) - (\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}) = (-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7})$$

Verify that the vector $u - proj_a u$ and a are perpendicular by showing that their dot product is zero.

Length of Orthogonal Projection

$$\|proj_{a}\boldsymbol{u}\| = \left\|\frac{\boldsymbol{u}\cdot\boldsymbol{a}}{\|\boldsymbol{a}\|^{2}}\boldsymbol{a}\right\|$$

scalar $= \left|\frac{\boldsymbol{u}\cdot\boldsymbol{a}}{\|\boldsymbol{a}\|^{2}}\right| \|\boldsymbol{a}\|$ \leftarrow Theorem 3.2.1
 $= \frac{|\boldsymbol{u}\cdot\boldsymbol{a}|}{\|\boldsymbol{a}\|^{2}} \|\boldsymbol{a}\|$ \leftarrow Since $\|\boldsymbol{a}\|^{2} > 0$
 $= \frac{|\boldsymbol{u}\cdot\boldsymbol{a}|}{\|\boldsymbol{a}\|}$

If θ denotes the angle between \boldsymbol{u} and \boldsymbol{a} , then $\boldsymbol{u} \cdot \boldsymbol{a} = \|\boldsymbol{u}\| \|\boldsymbol{a}\| \cos \theta$ $\|proj_{\boldsymbol{a}}\boldsymbol{u}\| = \|\boldsymbol{u}\| |\cos \theta|$

Length of Orthogonal Projection

Theorem 3.3.3 Theorem of Pythagoras

If u and v are orthogonal vectors in Rⁿ with the Euclidean inner product, then

$$|\mathbf{u}+\mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

Proof:

Since **u** and **v** are orthogonal, $\mathbf{u} \cdot \mathbf{v}=0$, then

$$\|\boldsymbol{u} + \boldsymbol{v}\|^2 = (\boldsymbol{u} + \boldsymbol{v}) \cdot (\boldsymbol{u} + \boldsymbol{v}) = \|\boldsymbol{u}\|^2 + 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \|\boldsymbol{v}\|^2$$

= $\|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2$

Theorem 3.3.4

• (a) In R^2 the distance *D* between the point $P_0(x_0,y_0)$ and the line ax+by+c=0 is

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

• (b) In R^3 the distance *D* between the point $P_0(x_0, y_0, z_0)$ and the plane ax+by+cz+d = 0 is

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof of Theorem 3.3.4(b)

- Let $Q(x_1,y_1,z_1)$ be any point in the plane. Position the normal $\mathbf{n}=(a,b,c)$ so that its initial point is at Q.
- *D* is the length of the orthogonal projection of $\overrightarrow{QP_0}$ on **n**.

$$D = \| proj_{\boldsymbol{n}} \overrightarrow{QP_0} \| = \frac{|\overrightarrow{QP_0} \cdot \boldsymbol{n}|}{\|\boldsymbol{n}\|}$$

$$\overrightarrow{QP_0} = (x_0 - x_1, y_0 - y_1, z_0 - z_1)$$

$$\overrightarrow{QP_0} \cdot \mathbf{n} = a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1)$$

$$\|\mathbf{n}\| = \sqrt{a^2 + b^2 + c^2}$$

$$D = \frac{|a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$proj_n \overrightarrow{QP_0}$$

Proof of Theorem 3.3.4(b)

$$D = \frac{|a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1)|}{\sqrt{a^2 + b^2 + c^2}}$$

- Since the point $Q(x_1, y_1, z_1)$ lies in the given plane, $ax_1+by_1+cz_1+d=0$, or $d=-ax_1-by_1-cz_1$
- Thus

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Example

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

Find the distance *D* from the point (1,-2) to the line 3x+4y-6 = 0 is

$$D = \frac{|3(1) + 4(-2) - 6|}{\sqrt{3^2 + 4^2}} = \frac{11}{5}$$

Distance Between Parallel Plane

- Two planes x+2y-2z=3 and 2x+4y-4z=7
- To find the distance *D* between the planes, we can select an arbitrary point in one of the planes and compute its distance to the other plane.
- By setting y=z=0 in the equation x+2y-2z=3, we obtain the point $P_0(3,0,0)$ in this plane.
- The distance between P_0 and the plane 2x+4y-4z=7 is

$$D = \frac{|2(3) + 4(0) + (-4)(0) - 7|}{\sqrt{2^2 + 4^2 + (-4)^2}} = \frac{2}{6}$$

3.4The Geometry of Linear Systems

Vector and Parametric Equations

- A unique line in R² or R³ is determined by a point x₀ on the line and a nonzero vector v parallel to the line
- A unique plane in R³ is determined by a point x₀ in the plane and two *noncollinear* vectors v₁ and v₂ parallel to the plane

Vector and Parametric Equations

- If x is a general point on such a line, the vector x-x₀ will be some scalar multiple of v
- $\mathbf{x} \cdot \mathbf{x}_0 = t\mathbf{v}$ or equivalently $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$
- As the variable *t* (called *parameter*) varies from -∞ to ∞, the point x traces out the line *L*.

Theorem 3.4.1

Let L be the line in R² or R³ that contains the point x₀ and is parallel to the nonzero vector v. Then the equation of the line through x₀ that is parallel to v is

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$$

If x₀=0, then the line passes through the origin and the equation has the form

$$\mathbf{x} = t\mathbf{v}$$

The translation by x₀ of the line through the origin

Vector and Parametric Equations

If **x** is any point in the plane, then by forming suitable scalar multiples of \mathbf{v}_1 and \mathbf{v}_2 , we can create a parallelogram with diagonal \mathbf{x} - \mathbf{x}_0 and adjacent sides $t_1\mathbf{v}_1$ and $t_2\mathbf{v}_2$. Thus we have

 $\mathbf{x} - \mathbf{x}_0 = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$ or equivalently $\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$

• As the variables t_1 and t_2 (*parameters*) vary independently from $-\infty$ to ∞ , the point **x** varies over the entire plane *W*.

Theorem 3.4.2

Let W be the plane in R³ that contains the point x₀ and is parallel to the noncollinear vectors v₁ and v₂. Then an equation of the plane through x₀ that is parallel to v₁ and v₂ is given by

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$

If x₀=0, then the plane passes through the origin and the equation has the form

$$\mathbf{x} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$

Definition

- If \mathbf{x}_0 and \mathbf{v} are vectors in \mathbb{R}^n , and if \mathbf{v} is nonzero, then the equation $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$ defines the line through \mathbf{x}_0 that is parallel to \mathbf{v} . In the special case where $\mathbf{x}_0 = \mathbf{0}$, the line is said to pass through the origin.
- If \mathbf{x}_0 , \mathbf{v}_1 and \mathbf{v}_2 are vectors in \mathbb{R}^n , and if \mathbf{v}_1 and \mathbf{v}_2 are not collinear, then the equation $\mathbf{x} = \mathbf{x}_0 + t_1\mathbf{v}_1 + t_2\mathbf{v}_2$ defines the **plane through \mathbf{x}_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2**. In the special case where $\mathbf{x}_0 = \mathbf{0}$, the line is said to **pass through the origin**.

Vector Forms

- The previous equations are called **vector forms** of a line and plane in *Rⁿ*.
- If the vectors in these equations are expressed in terms of their components and the corresponding components on each side are equated, then the resulting equations are called **parametric equations** of the line and plane.

Example

- Find a vector equation and parametric equations of the line in R^3 that passes through the point $P_0(1,2,-3)$ and is parallel to the vector $\mathbf{v}=(4,-5,1)$
- Solution:
- The line is $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$
- If we let $\mathbf{x}=(x,y,z)$, and if we take $\mathbf{x}_0=(1,2,-3)$ then this equation is (x,y,z)=(1,2,-3) + t(4,-5,1)

Equating corresponding components on the two sides of this equation yields the parametric equations

$$x = 1 + 4t, y = 2 - 5t, z = -3 + t$$

Example

- Find vector and parametric equations of the plane x-y+2z = 5
- Solution: solving for x in terms of y and z yields x = 5+y-2z
- Then using y and z as parameters t_1 and t_2 , respectively, yields the parametric equations:

$$x = 5 + t_1 - 2t_2, y = t_1, z = t_2$$

• To obtain a vector equation of the plane we rewrite these parametric equations as $(x,y,z) = (5+t_1-2t_2, t_1, t_2)$, or equivalently as $(x,y,z) = (5,0,0) + t_1(1,1,0) + t_2(-2,0,1)$
Example

- Find vector and parametric equations of the plane in R^4 that passes through the point $\mathbf{x}_0 = (2, -1, 0, 3)$ and is parallel to both $\mathbf{v}_1 = (1, 5, 2, -4)$ and $\mathbf{v}_2 = (0, 7, -8, 6)$
- Solution: the vector equation $\mathbf{x}=\mathbf{x}_0+t_1\mathbf{v}_1+t_2\mathbf{v}_2$ can be expressed as

 $(x_1, x_2, x_3, x_4) = (2, -1, 0, 3) + t_1(1, 5, 2, -4) + t_2(0, 7, -8, 6)$

Which yields the parametric equations

$$x_1 = 2 + t_1, x_2 = -1 + 5t_1 + 7t_2, x_3 = 2t_1 - 8t_2, x_4 = 3 - 4t_1 + 6t_2$$

Lines Through Two points

- If x₀ and x₁ are distinct points in Rⁿ, then the line determined by these points is parallel to the vector v = x₁-x₀
- The line can be expressed as $\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 \mathbf{x}_0)$
- Or equivalently as $\mathbf{x} = (1 t)\mathbf{x}_0 + t\mathbf{x}_1$
- These are called the *two-point vector equations* of a line in *Rⁿ*

Example

- Find vector and parametric equations for the line in R^2 that passes through the points P(0,7) and Q(5,0)
- Solution: Let's choose $\mathbf{x}_0 = (0,7)$ and $\mathbf{x}_1 = (5,0)$. $\mathbf{x}_1 - \mathbf{x}_0 = (5,-7)$ and hence (x,y) = (0,7) + t(5,-7)
- We can rewrite in parametric form as x = 5t, y = 7-7t

Definition

- If \mathbf{x}_0 and \mathbf{x}_1 are vectors in \mathbb{R}^n , then the equation $\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 - \mathbf{x}_0) \ (0 \le t \le 1)$ defines the line segment from \mathbf{x}_0 to \mathbf{x}_1 .
- When convenient, it can be written as $\mathbf{x} = (1-t)\mathbf{x}_0 + t\mathbf{x}_1 \ (0 \le t \le 1)$
- Example: the line segment from $\mathbf{x}_0 = (1, -3)$ to $\mathbf{x}_1 = (5, 6)$ can be represented by $\mathbf{x} = (1, -3) + t(4, 9)$ ($0 \le t \le 1$) or $\mathbf{x} = (1-t)(1, -3) + t(5, 6)$ ($0 \le t \le 1$)

Dot Product Form of a Linear System

Recall that a linear equation has the form

 $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$ (a_1, a_2, \ldots , an not all zero)

The corresponding homogeneous equation is

 $a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0$ (a_1, a_2, \ldots , an not all zero)

• These equations can be rewritten in vector form by letting

$$\mathbf{a} = (a_1, a_2, \dots, a_n) \text{ and } \mathbf{x} = (x_1, x_2, \dots, x_n)$$

Two equations can be written as

$$\boldsymbol{a} \cdot \boldsymbol{x} = b$$
 $\boldsymbol{a} \cdot \boldsymbol{x} = 0$

Dot Product Form of a Linear System

 $\boldsymbol{a}\cdot\boldsymbol{x}=0$

- It reveals that each solution vector x of a homogeneous equation is orthogonal to the coefficient vector a.
- Consider the homogeneous system

 $a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = 0$ $a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = 0$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = 0$

If we denote the successive row vectors of the coefficient matrix by r₁, r₂, ..., r_m, then we can write this system as

$$\begin{aligned} \boldsymbol{r}_{1} \cdot \boldsymbol{x} &= 0 \\ \boldsymbol{r}_{2} \cdot \boldsymbol{x} &= 0 \\ \vdots \\ \boldsymbol{r}_{m} \cdot \boldsymbol{x} &= 0 \end{aligned}$$

Theorem 3.4.3

$$\begin{aligned} \boldsymbol{r}_1 \cdot \boldsymbol{x} &= 0\\ \boldsymbol{r}_2 \cdot \boldsymbol{x} &= 0\\ \vdots\\ \boldsymbol{r}_m \cdot \boldsymbol{x} &= 0 \end{aligned}$$

- If A is an m × n matrix, then the solution set of the homogeneous linear system Ax=0 consists of all vectors in Rⁿ that are orthogonal to every row vector of A.
- Example: the general solution of _

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

is $x_1 = -3r - 4s - 2t$, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$ Vector form: $\mathbf{x} = (-3r - 4s - 2t, r, -2s, s, t, 0)$

Theorem 3.4.3

According to Theorem 3.4.3, the vector x must be orthogonal to each of the row vectors

$$\mathbf{r}_1 = (1, 3, -2, 0, 2, 0)$$

$$\mathbf{r}_2 = (2, 6, -5, -2, 4, -3)$$

$$\mathbf{r}_3 = (0,0,5,10,0,15)$$

$$\mathbf{r}_4 = (2, 6, 0, 8, 4, 18)$$

• Verify that $\mathbf{r}_1 \cdot \mathbf{x} =$ 1(-3*r*-4*s*-2*t*)+3(*r*)+(-2)(-2*s*)+0(*s*)+2(*t*)+0(0) = 0

The Relationship Between Ax=0 and Ax=b

Compare the solutions of the corresponding linear systems

- Homogeneous system: $x_1 = -3r - 4s - 2t, x_2 = r, x_3 = -2s, x_4 = s, x_5 = t, x_6 = 0$
- Nonhomogeneous system:

 $x_1 = -3r - 4s - 2t, x_2 = r, x_3 = -2s, x_4 = s, x_5 = t, x_6 = 1/3$

The Relationship Between Ax=0 and Ax=b

- We can rewrite them in vector form:
 - Homogeneous system: $\mathbf{x} = (-3r-4s-2t, r, -2s, s, t, 0)$
 - □ Nonhomogeneous system: $\mathbf{x} = (-3r 4s 2t, r, -2s, s, t, 1/3)$
- By splitting the vectors on the right apart and collecting terms with like parameters,
 - Homogeneous system: $(x_1, x_2, x_3, x_4, x_5) = r(-3, 1, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0)$
 - □ Nonhomogeneous system: $(x_1, x_2, x_3, x_4, x_5) = r(-3, 1, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0) + (0, 0, 0, 0, 0, 1/3)$
- Each solution of the nonhomogeneous system can be obtained by adding (0,0,0,0,0,1/3) to the corresponding solution of the

homogeneous system.

Theorem 3.4.4

- The general solution of a consistent linear system Ax=b can be obtained by adding any specific solution of Ax=b to the general solution of Ax=0.
- Proof:
- Let x₀ be any specific solution of Ax=b, Let W denote the solution set of Ax=0, and let x₀+W denote the set of all vectors that result by adding x₀ to each vector in W.
- Shot that if x is a vector in x₀+W, then x is a solution of Ax=b, and conversely, that every solution of Ax=b is in the set x₀+W.

Theorem 3.4.4

Assume that x is a vector in x₀+W. This implies that x is expressible in the form x=x₀+w, where Ax₀=b and Aw=0. Thus,

$$A\mathbf{x} = A(\mathbf{x}_0 + \mathbf{w}) = A\mathbf{x}_0 + A\mathbf{w} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

which shows that \mathbf{x} is a solution of $A\mathbf{x}=\mathbf{b}$.

• Conversely, let **x** be any solution of A**x**=**b**. To show that **x** is in the set $\mathbf{x}_0 + W$ we must show that **x** is expressible in the form: $\mathbf{x} = \mathbf{x}_0 + \mathbf{w}$, where **w** is in $W(A\mathbf{w} = \mathbf{0})$. We can do this by taking $\mathbf{w} = \mathbf{x} - \mathbf{x}_0$. It is in W since $A\mathbf{w} = A(\mathbf{x} - \mathbf{x}_0) = A\mathbf{x} - A\mathbf{x}_0 = \mathbf{b} - \mathbf{b} = \mathbf{0}$.

Geometric Interpretation of Theorem 3.4.4

• We interpret vector addition as translation, then the theorem states that if \mathbf{x}_0 is any specific solution of $A\mathbf{x}=\mathbf{b}$, then the entire solution set of $A\mathbf{x}=\mathbf{b}$ can be obtained by translating the solution set of $A\mathbf{x}=\mathbf{0}$ by the vector \mathbf{x}_0 .

3.5 Cross Product

Definition

• If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in 3-space, then the cross product $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

• Or, in determinant notation

$$\boldsymbol{u} \times \boldsymbol{v} = \left(\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right)$$

Remark: For the matrix $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$

to find the first component of $\mathbf{u} \times \mathbf{v}$, delete the first column and take the determinant, ...

Example

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1,2,-2)$ and $\mathbf{v} = (3,0,1)$

Solution

$$\boldsymbol{u} \times \boldsymbol{v} = \left(\begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix}, - \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \right)$$
$$= (2, -7, -6)$$

Theorems

- Theorem 3.5.1 (Relationships Involving Cross Product and Dot Product)
 - □ If **u**, **v** and **w** are vectors in 3-space, then
 - $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$
 - $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$
 - $\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 (\mathbf{u} \cdot \mathbf{v})^2$ (Lagrange's identity)
 - $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} (\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$ (relationship between cross & dot product)
 - $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} (\mathbf{v} \cdot \mathbf{w}) \mathbf{u}$ (relationship between cross & dot product)

- $(\mathbf{u} \times \mathbf{v} \text{ is orthogonal to } \mathbf{u})$
- $(\mathbf{u} \times \mathbf{v} \text{ is orthogonal to } \mathbf{v})$

Proof of Theorem 3.5.1(a)

Let
$$u = (u_1, u_2, u_3)$$
 and $v = (v_1, v_2, v_3)$

$$\begin{aligned} \boldsymbol{u} \cdot (\boldsymbol{u} \times \boldsymbol{v}) \\ &= (u_1, u_2, u_3) \cdot (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1) \\ &= u_1 (u_2 v_3 - u_3 v_2) + u_2 (u_3 v_1 - u_1 v_3) + u_3 (u_1 v_2 - u_2 v_1) = 0 \end{aligned}$$

• Example:
$$\boldsymbol{u} = (1, 2, -2)$$
 and $\boldsymbol{v} = (3, 0, 1)$
 $\boldsymbol{u} \times \boldsymbol{v} = (2, -7, -6)$
 $\boldsymbol{u} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = (1)(2) + (2)(-7) + (-2)(-6) = 0$
 $\boldsymbol{v} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = (3)(2) + (0)(-7) + (1)(-6) = 0$

Proof of Theorem 3.5.1(c) $\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$

$$\begin{split} \|\boldsymbol{u} \times \boldsymbol{v}\|^2 &= (u_2 v_3 - u_3 v_2)^2 + (u_3 v_1 - u_1 v_3)^2 + (u_1 v_2 - u_2 v_1)^2 \\ \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 - (\boldsymbol{u} \cdot \boldsymbol{v})^2 \\ &= (u_1^2 + u_2^2 + u_3^2)(v_1^2 + v_2^2 + v_3^2) - (u_1 v_1 + u_2 v_2 + u_3 v_3)^2 \end{split}$$

Theorems

- Theorem 3.5.2 (Properties of Cross Product)
 - □ If **u**, **v** and **w** are any vectors in 3-space and *k* is any scalar, then
 - $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
 - $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
 - $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$
 - $\mathbf{k}(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
 - $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
 - $\bullet \quad \mathbf{u} \times \mathbf{u} = \mathbf{0}$
- Proof of (a)
 - □ Interchanging **u** and **v** interchanges the rows of the three determinants and hence changes the sign of each component in the cross product. Thus $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$.

Standard Unit Vectors

The vectors

$$\mathbf{i} = (1,0,0), \, \mathbf{j} = (0,1,0), \, \mathbf{k} = (0,0,1)$$

have length 1 and lie along the coordinate axes. They are called the standard unit vectors in 3-space.

• Every vector $\mathbf{v} = (v_1, v_2, v_3)$ in 3-space is expressible in terms of \mathbf{i}, \mathbf{j} , **k** since we can write

 $\mathbf{v} = (v_1, v_2, v_3) = v_1(1,0,0) + v_2(0,1,0) + v_3(0,0,1) = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$

• For example, (2, -3, 4) = 2i - 3j + 4k

Note that

$$i \times i = 0, \quad j \times j = 0, \quad k \times k = 0 \\ i \times j = k, \quad j \times k = i, \quad k \times i = j \\ j \times i = -k, \quad k \times j = -i, \quad i \times k = -j$$

Cross Product

A cross product can be represented symbolically in the form of 3×3 determinant:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

• Example: if $\mathbf{u} = (1,2,-2)$ and $\mathbf{v} = (3,0,1)$ $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 3 & 0 & 1 \end{vmatrix} = 2\mathbf{i} - 7\mathbf{j} - 6\mathbf{k}$

Cross Product

It's not true in general that u × (v × w) = (u × v) × w
For example:

$$oldsymbol{i} imes (oldsymbol{j} imes oldsymbol{j}) = oldsymbol{i} imes oldsymbol{0} = oldsymbol{0}$$

 $(oldsymbol{i} imes oldsymbol{j}) imes oldsymbol{j} = oldsymbol{k} imes oldsymbol{j} = -oldsymbol{i}$

- Right-hand rule
 - If the fingers of the right hand are cupped so they point in the direction of rotation, then the thumb indicates the direction of u × v

Geometric Interpretation of Cross Product

From Lagrange's identity, we have $\|\boldsymbol{u} \times \boldsymbol{v}\|^{2} = \|\boldsymbol{u}\|^{2} \|\boldsymbol{v}\|^{2} - (\boldsymbol{u} \cdot \boldsymbol{v})^{2}$ $\|\boldsymbol{u} \times \boldsymbol{v}\|^{2} = \|\boldsymbol{u}\|^{2} \|\boldsymbol{v}\|^{2} - \|\boldsymbol{u}\|^{2} \|\boldsymbol{v}\|^{2} \cos^{2} \theta$ $= \|\boldsymbol{u}\|^{2} \|\boldsymbol{v}\|^{2} (1 - \cos^{2} \theta)$ $= \|\boldsymbol{u}\|^{2} \|\boldsymbol{v}\|^{2} \sin^{2} \theta$

$$oldsymbol{u}\cdotoldsymbol{v}=\|oldsymbol{u}\|\|oldsymbol{v}\|\cos heta$$

• Since $0 \le \theta \le \pi$, it follows that $\sin \theta \ge 0$

so $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$

Geometric Interpretation of Cross Product

From Lagrange's identity in Theorem 3.5.1

 $\| \boldsymbol{u} \times \boldsymbol{v} \|^2 = \| \boldsymbol{u} \|^2 \| \boldsymbol{v} \|^2 - (\boldsymbol{u} \cdot \boldsymbol{v})^2$

• If θ denotes the angle between **u** and **v**, then $\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos \theta$

$$\begin{aligned} \| \boldsymbol{u} \times \boldsymbol{v} \|^2 &= \| \boldsymbol{u} \|^2 \| \boldsymbol{v} \|^2 - \| \boldsymbol{u} \|^2 \| \boldsymbol{v} \|^2 \cos^2 \theta \\ &= \| \boldsymbol{u} \|^2 \| \boldsymbol{v} \|^2 (1 - \cos^2 \theta) \\ &= \| \boldsymbol{u} \|^2 \| \boldsymbol{v} \|^2 \sin^2 \theta \end{aligned}$$

• Since $0 \le \theta \le \pi$, it follows that $\sin \theta \ge 0$, thus $\|\boldsymbol{u} \times \boldsymbol{v}\| = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \sin \theta$

Geometric Interpretation of Cross Product $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$

• $\|v\|\sin\theta$ is the altitude (頂垂線) of the parallelogram determined by **u** and **v**. Thus, the area *A* of this parallelogram is given by

 $A = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \sin \theta = \|\boldsymbol{u} \times \boldsymbol{v}\|$

This result is even correct if u and v are collinear, since we have
 ||u × v|| = 0 when θ = 0

Area of a Parallelogram

- Theorem 3.5.3 (Area of a Parallelogram)
 - □ If **u** and **v** are vectors in 3-space, then $||\mathbf{u} \times \mathbf{v}||$ is equal to the area of the parallelogram determined by **u** and **v**.

Example

□ Find the area of the triangle determined by the point (2,2,0), (-1,0,2), and (0,4,3).

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} = (-3, -2, 2) \times (-2, 2, 3) \\= (-10, 5, -10) \\A = \frac{1}{2} \|\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}\| = \frac{1}{2}(15) = \frac{15}{2}$$

Triple Product

Definition

If u, v and w are vectors in 3-space, then u · (v × w) is called the scalar triple product (純量三乘積) of u, v and w.

$$\begin{aligned} \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) &= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \\ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) &= \mathbf{u} \cdot \left(\begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k} \right) \\ &= \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} u_1 - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} u_2 + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} u_3 = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Example

•
$$u = 3i - 2j - 5k, v = i + 4j - 4k, w = 3j + 2k$$

$$\begin{aligned} \boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w}) &= \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix} \\ &= 3 \begin{vmatrix} 4 & -4 \\ 3 & 3 \end{vmatrix} - (-2) \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} + (-5) \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix} \\ &= 60 + 4 - 15 = 49 \end{aligned}$$

Triple Product

Remarks:

- □ The symbol $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$ make no sense because we cannot form the cross product of a scalar and a vector.
- u · (v × w) = w · (u × v) = v · (w × u), since the determinants that represent these products can be obtained from one another by *two* row interchanges.

Theorem 3.5.4

• The absolute value of the determinant det $\begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}$

is equal to the area of the parallelogram in 2-space determined by the vectors $\mathbf{u} = (u_1, u_2)$, and $\mathbf{v} = (v_1, v_2)$,

The absolute value of the determinant $det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$

is equal to the volume of the parallelepiped in 3-space determined by the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$,

Proof of Theorem 3.5.4(a)

- View **u** and **v** as vectors in the *xy*-plane of an *xyz*coordinate system. Express $\mathbf{u} = (u_1, u_2, 0)$ and $\mathbf{v} = (v_1, v_2, 0)$ $\boldsymbol{u} \times \boldsymbol{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & 0 \\ v_1 & v_2 & 0 \end{vmatrix} = \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k} = \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \mathbf{k}$
- It follows from Theorem 3.5.3 and the fact that $\|\boldsymbol{k}\| = 1$ that the area A of the parallelogram determined by \mathbf{u} and \mathbf{v} is $A = \|\boldsymbol{u} \times \boldsymbol{v}\| = \left\| \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \boldsymbol{k} \right\| = \left| \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \left| \|\boldsymbol{k}\| \right|$

$$= \left| \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \right|$$

Proof of Theorem 3.5.4(b)

- The area of the base is $\| \boldsymbol{v} \times \boldsymbol{w} \|$
- The height h of the parallelepiped is the length of the orthogonal projection of **u** on $v \times w$

$$h = \| proj_{\boldsymbol{v} \times \boldsymbol{w}} \boldsymbol{u} \| = \frac{|\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})|}{\| \boldsymbol{v} \times \boldsymbol{w} \|}$$

• The volume V of the parallelepiped is

$$V = \|\boldsymbol{v} \times \boldsymbol{w}\| \frac{|\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})|}{\|\boldsymbol{v} \times \boldsymbol{w}\|} = |\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})| \qquad \|proj_{\boldsymbol{a}}\boldsymbol{u}\| = \frac{|\boldsymbol{u} \cdot \boldsymbol{a}|}{\|\boldsymbol{a}\|}$$

Remark

Remark

 $V = |\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})|$

• We can conclude that

$$\boldsymbol{u}\cdot(\boldsymbol{v}\times\boldsymbol{w})=\pm V$$

where + or - results depending on whether **u** makes an acute or an obtuse angle with $v \times w$

Theorem 3.5.5

If the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ have the same initial point, then they lie in the same plane if and only if

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = 0$$