Chapter 3

Euclidean Vector Spaces

Outline

- 3.1 Vectors in 2-Space, 3-Space, and n-Space
- 3.2 Norm, Dot Product, and Distance in R^{n}
- 3.3 Orthogonality
- 3.4 The Geometry of Linear Systems
- 3.5 Cross Product
3.1

Vectors in 2-Space, 3-Space, and n -Space

Geometric Vectors

- In this text, vectors are denoted in bold face type such as $\mathbf{a}, \mathbf{b}, \mathbf{v}$, and scalars are denoted in lowercase italic type such as a, b, v.
- A vector \mathbf{v} has initial point A and terminal point B

$$
v=\overrightarrow{A B}
$$

- Vectors with the same length and direction are said equivalent.
- The vector whose initial and terminal points coincide has length zero, and is called zero vector, denoted by $\mathbf{0}$.

Definitions

- If \mathbf{v} and \mathbf{w} are any two vectors, then the $\operatorname{sum} \mathbf{v}+\mathbf{w}$ is the vector determined as follows:
- Position the vector \mathbf{w} so that its initial point coincides with the terminal point of \mathbf{v}. The vector $\mathbf{v}+\mathbf{w}$ is represented by the arrow from the initial point of \mathbf{v} to the terminal point of \mathbf{w}.
- If \mathbf{v} and \mathbf{w} are any two vectors, then the difference of \mathbf{w} from \mathbf{v} is defined by $\mathbf{v}-\mathbf{w}=\mathbf{v}+(-\mathbf{w})$.
- If \mathbf{v} is a nonzero vector and k is nonzero real number (scalar), then the product $k \mathbf{v}$ is defined to be the vector whose length is $|k|$ times the length of \mathbf{v} and whose direction is the same as that of \mathbf{v} if $k>0$ and opposite to that of \mathbf{v} if $k<0$. We define $k \mathbf{v}=0$ if $k=0$ or $\mathbf{v}=\mathbf{0}$.
- A vector of the form $k \mathbf{v}$ is called a scalar multiple.

Examples

Vectors in Coordinate Systems

$$
\begin{aligned}
& \boldsymbol{v}=\left(v_{1}, v_{2}\right) \\
& \boldsymbol{w}=\left(w_{1}, w_{2}\right) \\
& \boldsymbol{v}+\boldsymbol{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}\right) \\
& k \boldsymbol{v}=\left(k v_{1}, k v_{2}\right) \\
& \boldsymbol{v}-\boldsymbol{w}=\left(v_{1}-w_{1}, v_{2}-w_{2}\right)
\end{aligned}
$$

Vectors in 3-Space

$$
\begin{aligned}
& \boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right) \quad \boldsymbol{w}=\left(w_{1}, w_{2}, w_{3}\right) \\
& \boldsymbol{v}+\boldsymbol{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}\right) \\
& k \boldsymbol{v}=\left(k v_{1}, k v_{2}, k v_{3}\right)
\end{aligned}
$$

\boldsymbol{v} and \boldsymbol{w} are equivalent if and only if $v_{1}=w_{1}, v_{2}=w_{2}, v_{3}=w_{3}$

Vectors

- If the vector $\overrightarrow{P_{1} P_{2}}$ has initial point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and terminal point $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$, then

$$
\overrightarrow{P_{1} P_{2}}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
$$

Theorem 3.1.1 (Properties of Vector Arithmetic)

- If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in R^{n} and k and l are scalars, then the following relationships hold.
- $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
- $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
- $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
- $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
- $k(l \mathbf{u})=(k l) \mathbf{u}$
- $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
- $(k+l) \mathbf{u}=k \mathbf{u}+l \mathbf{u}$
- $1 \mathbf{u}=\mathbf{u}$

Proof of part (b) (geometric)

Theorem and Definition

- Theorem 3.1.2: If \mathbf{v} is a vector in R^{n} and k is a scalar, then:
- $0 \mathbf{v}=\mathbf{0}$
- $k 0=0$
- $(-1) \mathbf{v}=-\mathbf{v}$
- If \mathbf{w} is a vector in R^{n}, then \mathbf{w} is said to be a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ in R^{n} if it can be expressed in the form

$$
\boldsymbol{w}=k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}
$$

- where $k_{1}, k_{2}, \ldots, k_{r}$ are scalars.

Alternative Notations for Vectors

- Comma-delimited form: $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
- It can also written as a row-matrix form

$$
\boldsymbol{v}=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]
$$

- Or a column-matrix form

$$
\boldsymbol{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

3.2

Norm, Dot Product, and Distance in R^{n}

Norm of a Vector

- The length of a vector \mathbf{u} is often called the norm (範數) or magnitude of \mathbf{u} and is denoted by $\|\mathbf{u}\|$.
- It follows from the Theorem of Pythagoras that the norm of a vector $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ in 3-space is

$$
\begin{aligned}
& \|\boldsymbol{u}\|^{2}=(O R)^{2}+(R P)^{2} \\
& =(O Q)^{2}+(Q R)^{2}+(R P)^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2} \\
& \|\mathbf{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}
\end{aligned}
$$

Norm of a Vector

- If $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a vector in R^{n}, then the norm of \mathbf{v} is denoted by $\|\mathbf{v}\|$, and is defined by

$$
\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

- Example:
- The norm of $\mathbf{v}=(-3,2,1)$ in R^{3} is $\|\boldsymbol{v}\|=\sqrt{(-3)^{2}+2^{2}+1^{2}}=\sqrt{14}$
- The norm of $\mathbf{v}=(2,-1,3,-5)$ in R^{4} is

$$
\|\boldsymbol{v}\|=\sqrt{2^{2}+(-1)^{2}+3^{2}+(-5)^{2}}=\sqrt{39}
$$

Theorem 3.2.1

- If \mathbf{v} is a vector in R^{n}, and if k is any scalar, then:
- $\|\mathbf{v}\|>0$
- $\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=\mathbf{0}$
- $\|k \mathbf{v}\|=|k|\|\mathbf{v}\|$
- Proof of (c):
- If $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, then $k \mathbf{v}=\left(k v_{1}, k v_{2}, \ldots, k v_{n}\right)$, so

$$
\begin{aligned}
& \|k \boldsymbol{v}\|=\sqrt{\left(k v_{1}\right)^{2}+\left(k v_{2}\right)^{2}+\cdots+\left(k v_{n}\right)^{2}} \\
& =\sqrt{\left(k^{2}\right)\left(v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}\right)} \\
& =|k| \sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \\
& =|k|\|\boldsymbol{v}\|
\end{aligned}
$$

Unit Vector

－A vector of norm 1 is called a unit vector．（單位向量）
－You can obtain a unit vector in a desired direction by choosing any nonzero vector \mathbf{v} in that direction and multiplying \mathbf{v} by the reciprocal of its length．

$$
\boldsymbol{u}=\frac{1}{\|\boldsymbol{v}\|} \boldsymbol{v}
$$

－The process is called normalizing \mathbf{v}
－Example： $\mathbf{v}=(2,2,-1),\|\boldsymbol{v}\|=\sqrt{2^{2}+2^{2}+(-1)^{2}}=3$

$$
\boldsymbol{u}=\frac{1}{3}(2,2,-1)=\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)
$$

－You can verify that $\|\boldsymbol{u}\|=1$

Standard Unit Vectors

- When a rectangular coordinate system is introduced in R^{2} or R^{3}, the unit vectors in the positive directions of the coordinates axes are called standard unit vectors.
- In $R^{2}, \mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$
- In $R^{3}, \mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$

- Every vector $\mathbf{v}=\left(v_{1}, v_{2}\right)$ in R^{2} can be expressed as a linear combination of standard unit vectors $\mathbf{k} \uparrow$ $\boldsymbol{v}=\left(v_{1}, v_{2}\right)=v_{1}(1,0)+v_{2}(0,1)=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}$

Standard Unit Vectors

- We can generalize these formulas to R^{n} by defining standard unit vectors in R^{n} to be

$$
\boldsymbol{e}_{1}=(1,0,0, \ldots, 0) \quad \boldsymbol{e}_{2}=(0,1,0, \ldots, 0) \quad \ldots \quad \boldsymbol{e}_{n}=(0,0,0, \ldots, 1)
$$

- Every vector $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in R^{n} can be expressed as

$$
\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)=v_{1} \boldsymbol{e}_{1}+v_{2} \boldsymbol{e}_{2}+\cdots+v_{n} \boldsymbol{e}_{n}
$$

- Example: $(2,-3,4)=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$
- $(7,3,-4,5)=7 \mathbf{e}_{1}+3 \mathbf{e}_{2}-4 \mathbf{e}_{3}+5 \mathbf{e}_{4}$

Distance

－The distance between two points is the norm of the vector．
－If $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ are two points in 3－space， then the distance d between them is the norm of the vector $\overrightarrow{P_{1} P_{2}}$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

－Euclidean distance（歐幾里德距離，歐式距離）
－If $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are points in R^{n} ， then the distance $d(\mathbf{u}, \mathbf{v})$ is defined as

$$
d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}}
$$

Definitions

－Let \mathbf{u} and \mathbf{v} be two nonzero vectors in 2－space or 3－space， and assume these vectors have been positioned so their initial points coincided．By the angle between \mathbf{u} and \mathbf{v} ，we shall mean the angle θ determined by \mathbf{u} and \mathbf{v} that satisfies 0 $\leq \theta \leq \pi$ ．
－If \mathbf{u} and \mathbf{v} are vectors in 2 －space or 3 －space and θ is the angle between \mathbf{u} and \mathbf{v} ，then the dot product（點積）or Euclidean inner product（內積） $\mathbf{u} \cdot \mathbf{v}$ is defined by

$$
\mathbf{u} \cdot \mathbf{v}= \begin{cases}\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta & \text { if } \mathbf{u} \neq \mathbf{0} \text { and } \mathbf{v} \neq \mathbf{0} \\ 0 & \text { if } \mathbf{u}=\mathbf{0} \text { or } \mathbf{v}=\mathbf{0}\end{cases}
$$

Dot Product

$$
\cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}
$$

－If the vectors \mathbf{u} and \mathbf{v} are nonzero and θ is the angle between them，then

- θ is acute（銳角）if and only if $\mathbf{u} \cdot \mathbf{v}>0$
- θ is obtuse（鈍角）if and only if $\mathbf{u} \cdot \mathbf{v}<0$
- $\theta=\pi / 2$（直角）if and only if $\mathbf{u} \cdot \mathbf{v}=0$

Example

- If the angle between the vectors $\mathbf{u}=(0,0,1)$ and $\mathbf{v}=$ $(0,2,2)$ is 45°, then

$$
\begin{aligned}
& \mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta=\sqrt{0+0+1} \sqrt{0+4+4} \cdot\left(\frac{1}{\sqrt{2}}\right)=2 \\
& \mathbf{u} \cdot \mathbf{v}=\left(u_{1}, u_{2}, u_{3}\right) \cdot\left(v_{1}, v_{2}, v_{3}\right)=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}=2 \\
& \cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{2}{\sqrt{0+0+1} \sqrt{0+4+4}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Example

- Find the angle between a diagonal of a cube and one of its edges

$$
\begin{aligned}
& \boldsymbol{d}=(k, k, k)=\boldsymbol{u}_{1}+\boldsymbol{u}_{2}+\boldsymbol{u}_{3} \\
& \cos \theta=\frac{\boldsymbol{u}_{1} \cdot \boldsymbol{d}}{\left\|\boldsymbol{u}_{1}\right\|\|\boldsymbol{d}\|}=\frac{k^{2}}{(k)\left(\sqrt{3 k^{2}}\right)}=\frac{1}{\sqrt{3}} \\
& \theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 54.74^{\circ}
\end{aligned}
$$

Component Form of Dot Product

- Let $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$ be two nonzero vectors.
- According to the law of cosine
$\|\overrightarrow{P Q}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}-2\|\boldsymbol{u}\|\|\boldsymbol{v}\| \cos \theta$

law of cosine

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (\gamma)
$$

Component Form of Dot Product

$$
\|\overrightarrow{P Q}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}-2\|\boldsymbol{u}\|\|\boldsymbol{v}\| \cos \theta
$$

$$
\Rightarrow \overrightarrow{P Q}=\boldsymbol{v}-\boldsymbol{u}
$$

$$
\Rightarrow\|\boldsymbol{u}\|\|\boldsymbol{v}\| \cos \theta=\frac{1}{2}\left(\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}-\|\boldsymbol{v}-\boldsymbol{u}\|^{2}\right)
$$

$\Rightarrow \boldsymbol{u} \cdot \boldsymbol{v}=\frac{1}{2}\left(\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}-\|\boldsymbol{v}-\boldsymbol{u}\|^{2}\right)$
$\Rightarrow \boldsymbol{u} \cdot \boldsymbol{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$

$$
\begin{aligned}
& \|\boldsymbol{u}\|^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2} \\
& \|\boldsymbol{v}\|^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}
\end{aligned}
$$

$$
\|\boldsymbol{v}-\boldsymbol{u}\|^{2}=\left(v_{1}-u_{1}\right)^{2}+\left(v_{2}-u_{2}\right)^{2}+\left(v_{3}-u_{3}\right)^{2}
$$

Definition

- If $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are vectors in R^{n}, then the dot product (also called the Euclidean inner product) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined by

$$
\boldsymbol{u} \cdot \boldsymbol{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

- Example: $\mathbf{u}=(-1,3,5,7)$ and $\mathbf{v}=(-3,-4,1,0)$
- $\mathbf{u} \cdot \mathbf{v}=(-1)(-3)+(3)(-4)+(5)(1)+(7)(0)=-4$

Theorems

$$
\mathbf{u} \cdot \mathbf{v}= \begin{cases}\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta & \text { if } \mathbf{u} \neq \mathbf{0} \text { and } \mathbf{v} \neq \mathbf{0} \\ 0 & \text { if } \mathbf{u}=\mathbf{0} \text { or } \mathbf{v}=\mathbf{0}\end{cases}
$$

- The special case $\mathbf{u}=\mathbf{v}$, we obtain the relationship

$$
\begin{aligned}
& \boldsymbol{v} \cdot \boldsymbol{v}=v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}=\|\boldsymbol{v}\|^{2} \\
& \|\boldsymbol{v}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}
\end{aligned}
$$

- Theorem 3.2.2
- If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in 2- or 3-space, and k is a scalar, then
- $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
- $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
- $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(k \mathbf{v})$
- $\mathbf{v} \cdot \mathbf{v} \geqq 0$ and $\mathbf{v} \cdot \mathbf{v}=0$ if $\mathbf{v}=0$
[symmetry property]
[distributive property]
[homogeneity property]
[positivity property]

Proof of Theorem 3.2.2

$$
k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(k \mathbf{v})
$$

- Let $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$

$$
\begin{aligned}
& k(\boldsymbol{u} \cdot \boldsymbol{v})=k\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \\
& =\left(k u_{1}\right) v_{1}+\left(k u_{2}\right) v_{2}+\left(k u_{3}\right) v_{3} \\
& =(k \boldsymbol{u}) \cdot \boldsymbol{v}
\end{aligned}
$$

Theorem 3.2.3

- If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n}, and if k is a scalar, then
- $\mathbf{0} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{0}=0$
$\square(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
- $\mathbf{u} \cdot(\mathbf{v}-\mathbf{W})=\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{W}$
- $(\mathbf{u}-\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}-\mathbf{v} \cdot \mathbf{w}$
- $k(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(k \mathbf{v})$
- Proof(b)

$$
\begin{array}{ll}
(\boldsymbol{u}+\boldsymbol{v}) \cdot \boldsymbol{w}=\boldsymbol{w} \cdot(\boldsymbol{u}+\boldsymbol{v}) & \text { [by symmetry] } \\
=\boldsymbol{w} \cdot \boldsymbol{u}+\boldsymbol{w} \cdot \boldsymbol{v} & {[\text { by distributivity] }} \\
=\boldsymbol{u} \cdot \boldsymbol{w}+\boldsymbol{v} \cdot \boldsymbol{w} & {[\text { by symmetry }]}
\end{array}
$$

Example

- Calculating with dot products
- $(\mathbf{u}-2 \mathbf{v}) \cdot(3 \mathbf{u}+4 \mathbf{v})$
$=\mathbf{u} \cdot(3 \mathbf{u}+4 \mathbf{v})-2 \mathbf{v} \cdot(3 \mathbf{u}+4 \mathbf{v})$
$=3(\mathbf{u} \cdot \mathbf{u})+4(\mathbf{u} \cdot \mathbf{v})-6(\mathbf{v} \cdot \mathbf{u})-8(\mathbf{v} \cdot \mathbf{v})$
$=3\|\mathbf{u}\|^{2}-2(\mathbf{u} \cdot \mathbf{v})-8\|\mathbf{v}\|^{2}$

Cauchy-Schwarz Inequality

- With the formula

$$
\cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} \quad \theta=\cos ^{-1}\left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}\right)
$$

- The inverse cosine is not defined unless its argument satisfies the inequalities

$$
-1 \leq \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} \leq 1
$$

- Fortunately, these inequalities do hold for all nonzero vectors in R^{n} as a result of Cauchy-Schwarz inequality

Theorem 3.2.4 Cauchy-Schwarz

Inequality

- If $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are vectors in R^{n}, then $|\mathbf{u} \cdot \mathbf{v}| \leqq\|\mathbf{u}\|\|\mathbf{v}\|$ or in terms of components

$$
\begin{aligned}
& \left|u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}\right| \\
& \leq\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}\right)^{1 / 2}\left(v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}\right)^{1 / 2}
\end{aligned}
$$

- To show $-1 \leq \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} \leq 1$

$$
-1 \leq \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} \leq 1 \Rightarrow \frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} \leq 1 \quad \Rightarrow\left|\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}\right| \leq 1
$$

- Cauchy-Schwarz Inequality: If $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ are vectors in R^{n}, then $|\mathbf{u} \cdot \mathbf{v}| \leqq\|\mathbf{u}\|\|\mathbf{v}\|$

Geometry in R^{n}

- The sum of the lengths of two side of a triangle is at least as large as the third
- The shortest distance between two points is a straight line
- Theorem 3.2.5
- If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{n}, and k is any scalar, then
- $\|\mathbf{u}+\mathbf{v}\| \leqq\|\mathbf{u}\|+\|\mathbf{v}\|$
- $d(\mathbf{u}, \mathbf{v}) \leqq d(\mathbf{u}, \mathbf{w})+d(\mathbf{w}, \mathbf{v})$

Proof of Theorem 3.2.5

- Proof (a) $\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=(\boldsymbol{u}+\boldsymbol{v}) \cdot(\boldsymbol{u}+\boldsymbol{v})$

$$
=(\boldsymbol{u} \cdot \boldsymbol{u})+2(\boldsymbol{u} \cdot \boldsymbol{v})+(\boldsymbol{v} \cdot \boldsymbol{v})
$$

$$
=\|\boldsymbol{u}\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v})+\|\boldsymbol{v}\|^{2}
$$

$$
\leq\|\boldsymbol{u}\|^{2}+2|\boldsymbol{u} \cdot \boldsymbol{v}|+\|\boldsymbol{v}\|^{2} \quad \leftarrow \text { Property of absolute value }
$$

$$
\leq\|\boldsymbol{u}\|^{2}+2\|\boldsymbol{u}\|\|\boldsymbol{v}\|+\|\boldsymbol{v}\|^{2} \longleftarrow \text { Cauchy-Schwarz inequality }
$$

$$
=(\|\boldsymbol{u}\|+\|\boldsymbol{v}\|)^{2}
$$

- Proof (b)

$$
\begin{aligned}
& d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\| \\
& =\|(\boldsymbol{u}-\boldsymbol{w})+(\boldsymbol{w}-\boldsymbol{v})\| \\
& \leq\|\boldsymbol{u}-\boldsymbol{w}\|+\|\boldsymbol{w}-\boldsymbol{v}\| \\
& =d(\boldsymbol{u}, \boldsymbol{w})+d(\boldsymbol{w}, \boldsymbol{v})
\end{aligned}
$$

Theorem 3.2.6 Parallelogram Equation for Vectors

- If u and v are vectors in R^{n}, then $\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\left(\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}\right)$
- Proof:

$$
\begin{aligned}
& \|\boldsymbol{u}+\boldsymbol{v}\|^{2}+\|\boldsymbol{u}-\boldsymbol{v}\|^{2} \\
& =(\boldsymbol{u}+\boldsymbol{v}) \cdot(\boldsymbol{u}+\boldsymbol{v})+(\boldsymbol{u}-\boldsymbol{v}) \cdot(\boldsymbol{u}-\boldsymbol{v}) \\
& =2(\boldsymbol{u} \cdot \boldsymbol{u})+2(\boldsymbol{v} \cdot \boldsymbol{v}) \\
& =2\left(\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}\right)
\end{aligned}
$$

Theorem 3.2.7

- If \mathbf{u} and \mathbf{v} are vectors in R^{n} with the Euclidean inner product, then $\boldsymbol{u} \cdot \boldsymbol{v}=\frac{1}{4}\|\boldsymbol{u}+\boldsymbol{v}\|^{2}-\frac{1}{4}\|\boldsymbol{u}-\boldsymbol{v}\|^{2}$
- Proof:

$$
\begin{aligned}
\|\boldsymbol{u}+\boldsymbol{v}\|^{2} & =(\boldsymbol{u}+\boldsymbol{v}) \cdot(\boldsymbol{u}+\boldsymbol{v})=\|\boldsymbol{u}\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v})+\|\boldsymbol{v}\|^{2} \\
\|\boldsymbol{u}-\boldsymbol{v}\|^{2} & =(\boldsymbol{u}-\boldsymbol{v}) \cdot(\boldsymbol{u}-\boldsymbol{v})=\|\boldsymbol{u}\|^{2}-2(\boldsymbol{u} \cdot \boldsymbol{v})+\|\boldsymbol{v}\|^{2}
\end{aligned}
$$

Dot Products as Matrix Multiplication

- View \mathbf{u} and \mathbf{v} as column matrices

$$
\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}=\boldsymbol{v}^{T} \boldsymbol{u}
$$

- Example:

$$
\begin{aligned}
& \boldsymbol{u}=(1,-3,5) \quad \boldsymbol{u}=\left[\begin{array}{c}
1 \\
-3 \\
5
\end{array}\right] \quad \boldsymbol{v}=\left[\begin{array}{l}
5 \\
4 \\
\boldsymbol{v}=(5,4,0)
\end{array}\right] \\
& \boldsymbol{u} \cdot \boldsymbol{v}=(1,-3,5) \cdot(5,4,0)=(1)(5)+(-3)(4)+(5)(0)=-7 \\
& \boldsymbol{u}^{T} \boldsymbol{v}=\left[\begin{array}{lll}
1 & -3 & 5
\end{array}\right]\left[\begin{array}{l}
5 \\
4 \\
0
\end{array}\right]=-7 \quad \boldsymbol{v}^{T} \boldsymbol{u}=\left[\begin{array}{lll}
5 & 4 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-3 \\
5
\end{array}\right]=-7
\end{aligned}
$$

Dot Products as Matrix Multiplication

- If A is an $n \times n$ matrix and \mathbf{u} and \mathbf{v} are $n \times 1$ matrices

$$
\begin{aligned}
& A \boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v}^{T}(A \boldsymbol{u})=\left(\boldsymbol{v}^{T} A\right) \boldsymbol{u}=\left(A^{T} \boldsymbol{v}\right)^{T} \boldsymbol{u}=\boldsymbol{u} \cdot A^{T} \boldsymbol{v} \\
& \boldsymbol{u} \cdot A \boldsymbol{v}=(A \boldsymbol{v})^{T} \boldsymbol{u}=\left(\boldsymbol{v}^{T} A^{T}\right) \boldsymbol{u}=\boldsymbol{v}^{T}\left(A^{T} \boldsymbol{u}\right)=A^{T} \boldsymbol{u} \cdot \boldsymbol{v} \\
& A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
2 & 4 & 1 \\
-1 & 0 & 1
\end{array}\right] \quad \boldsymbol{u}=\left[\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right] \quad \boldsymbol{v}=\left[\begin{array}{c}
-2 \\
0 \\
5
\end{array}\right]
\end{aligned}
$$

You can check $A \boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u} \cdot A^{T} \boldsymbol{v}$

Dot Product View of Matrix
 Multiplication

- If $A=\left[a_{i j}\right]$ is a $m \times r$ matrix, and $B=\left[b_{i j}\right]$ is an $r \times n$ matrix, then the $i j$ th entry of $A B$ is

$$
a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i r} b_{r j}
$$

which is the dot product of the i th row vector of A

$$
\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i r}
\end{array}\right]
$$

and the j th column vector of B

$$
\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{r j}
\end{array}\right]
$$

Dot Product View of Matrix Multiplication

- If the row vectors of A are $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{m}$ and the column vectors of B are $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$, then the matrix product $A B$ can be expressed as

$$
A B=\left[\begin{array}{cccc}
\boldsymbol{r}_{1} \cdot \boldsymbol{c}_{1} & \boldsymbol{r}_{1} \cdot \boldsymbol{c}_{2} & \cdots & \boldsymbol{r}_{1} \cdot \boldsymbol{c}_{n} \\
\boldsymbol{r}_{2} \cdot \boldsymbol{c}_{1} & \boldsymbol{r}_{2} \cdot \boldsymbol{c}_{2} & \cdots & \boldsymbol{r}_{2} \cdot \boldsymbol{c}_{n} \\
\vdots & \vdots & & \vdots \\
\boldsymbol{r}_{m} \cdot \boldsymbol{c}_{1} & \boldsymbol{r}_{m} \cdot \boldsymbol{c}_{2} & \cdots & \boldsymbol{r}_{m} \cdot \boldsymbol{c}_{n}
\end{array}\right]
$$

3.3

Orthogonality

Orthogonal Vectors

－Recall that $\theta=\cos ^{-1}\left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}\right)$
－It follows that $\theta=\frac{\pi}{2}$ if and only if $\mathbf{u} \cdot \mathbf{v}=0$
－Definition：Two nonzero vectors \mathbf{u} and \mathbf{v} in R^{n} are said to be orthogonal［正交］（or perpendicular［垂直］） if $\mathbf{u} \cdot \mathbf{v}=0$ ．
－The zero vector in R^{n} is orthogonal to every vector in R^{n} ．
－A nonempty set of vectors in R^{n} is called an orthogonal set if all pairs of distinct vectors in the set are orthogonal．
－An orthogonal set of unit vectors is called an orthonormal set．

Example

- Show that $\mathbf{u}=(-2,3,1,4)$ and $\mathbf{v}=(1,2,0,-1)$ are orthogonal

$$
\boldsymbol{u} \cdot \boldsymbol{v}=(-2)(1)+(3)(2)+(1)(0)+(4)(-1)=0
$$

- Show that the set $S=\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ of standard unit vectors is an orthogonal set in R^{3}
- We must show $\boldsymbol{i} \cdot \boldsymbol{j}=\boldsymbol{i} \cdot \boldsymbol{k}=\boldsymbol{j} \cdot \boldsymbol{k}=0$

$$
\begin{aligned}
& \boldsymbol{i} \cdot \boldsymbol{j}=(1,0,0) \cdot(0,1,0)=0 \\
& \boldsymbol{i} \cdot \boldsymbol{k}=(1,0,0) \cdot(0,0,1)=0 \\
& \boldsymbol{j} \cdot \boldsymbol{k}=(0,1,0) \cdot(0,0,1)=0
\end{aligned}
$$

Normal

－One way of specifying slope and inclination is the use a nonzero vector \mathbf{n} ，called normal（法向量）that is orthogonal to the line or plane．

$$
\begin{gathered}
\boldsymbol{n} \cdot \overrightarrow{P_{0} P}=0 \\
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0
\end{gathered}
$$

The line through the point $\left(x_{0}, y_{0}\right)$ has normal $\mathbf{n}=(a, b)$
Example：the equation $6(x-3)+(y+7)=0$ represents the line through $(3,-7)$ with normal $\mathbf{n}=(6,1)$

Theorem 3.3.1

- If a and b are constants that are not both zero, then an equation of the form $a x+b y+c=0$ represents a line in R^{2} with normal $\mathbf{n}=(a, b)$
- If a, b, and c are constants that are not all zero, then an equation of the form $a x+b y+c z+d=0$ represents a line in R^{3} with normal $\mathbf{n}=(a, b, c)$

Example

- The equation $a x+b y=0$ represents a line through the origin in R^{2}. Show that the vector $\mathbf{n}=(a, b)$ is orthogonal to the line, that is, orthogonal to every vector along the line.
- Solution:
- Rewrite the equation as

$$
\begin{array}{r}
(a, b) \cdot(x, y)=0 \\
\boldsymbol{n} \cdot(x, y)=0
\end{array}
$$

Therefore, the vector \mathbf{n} is orthogonal to every vector (x, y) on the line.

An Orthogonal Projection

－To＂decompose＂a vector \mathbf{u} into a sum of two terms，one parallel to a specified nonzero vector \mathbf{a} and the other perpendicular to a．
－We have $\mathbf{w}_{2}=\mathbf{u}-\mathbf{w}_{1}$ and $\mathbf{w}_{1}+\mathbf{w}_{2}=\mathbf{w}_{1}+\left(\mathbf{u}-\mathbf{w}_{1}\right)=\mathbf{u}$
－The vector \mathbf{w}_{1} is called the orthogonal projection（正交投影）of \mathbf{u} on a or sometimes the vector component（分向量）of \mathbf{u} along a，and denoted by proja $_{\mathrm{a}} \mathbf{u}$
－The vector \mathbf{w}_{2} is called the vector component of \mathbf{u} orthogonal to a， and denoted by $\mathbf{w}_{2}=\mathbf{u}-\operatorname{proj}_{\mathbf{a}} \mathbf{u}$

Theorem 3.3.2 Projection Theorem

- If \mathbf{u} and \mathbf{a} are vectors in R^{n}, and if $\mathbf{a} \neq \mathbf{0}$, then \mathbf{u} can be expressed in exactly one way in the form $\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}$, where \mathbf{w}_{1} is a scalar multiple of \mathbf{a} and \mathbf{w}_{2} is orthogonal to \mathbf{a}.
- Proof:
- Since \mathbf{w}_{1} is to be a scalar multiple of \mathbf{a}, it has the form: $\mathbf{w}_{1}=k \mathbf{a}$
- Our goal is to find a value of k and a vector \mathbf{w}_{2} that is orthogonal to \mathbf{a} such that $\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}$.
- Rewrite $\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}=k \mathbf{a}+\mathbf{w}_{2}$, and then applying Theorems 3.2.2 and 3.2.3 to obtain $\mathbf{u} \cdot \mathbf{a}=\left(k \mathbf{a}+\mathbf{w}_{2}\right) \cdot \mathbf{a}=k\|\mathbf{a}\|^{2}+\left(\mathbf{w}_{2} \cdot \mathbf{a}\right)$
- Since \mathbf{w}_{2} is orthogonal to $\mathbf{a}, \mathbf{u} \cdot \mathbf{a}=k\|\mathbf{a}\|^{2}$, from which we obtain $k=\frac{\boldsymbol{u} \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^{2}}$
- Therefore, we can get

$$
\boldsymbol{w}_{2}=\boldsymbol{u}-\boldsymbol{w}_{1}=\boldsymbol{u}-k \boldsymbol{a}=\boldsymbol{u}-\frac{\boldsymbol{u} \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^{2}} \boldsymbol{a}
$$

Projection Theorem
 $$
\begin{aligned} & \mathbf{w}_{1}=\operatorname{proj}_{\mathbf{a}} \mathbf{u} \\ & \mathbf{w}_{2}=\mathbf{u}-\operatorname{proj}_{\mathbf{a}} \mathbf{u} \end{aligned}
$$

- The vector \mathbf{w}_{1} is called the orthogonal projection of \mathbf{u} on a, or the vector component of u along a.
- The vector \mathbf{w}_{2} is called the vector component of \mathbf{u} orthogonal to a.

$$
\begin{array}{ll}
\operatorname{proj}_{\mathbf{a}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} & (\text { vector component of } \mathbf{u} \text { along } \mathbf{a}) \\
\mathbf{u}-\operatorname{proj}_{\mathrm{a}} \mathbf{u}=\mathbf{u}-\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} & (\text { vector component of } \mathbf{u} \text { orthogonal to } \mathbf{a})
\end{array}
$$

Example

$$
\begin{gathered}
\left.\boldsymbol{e}_{2}=\uparrow \begin{array}{c}
(0,1) \\
\underset{y}{c}(\cos \theta, \sin \theta) \\
\boldsymbol{e}_{1}=(1,0)
\end{array}\right)
\end{gathered}
$$

- Find the orthogonal projections of the vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ on the line L that makes an angle θ with the positive x-axis in R 2 .
- Solution:
$\square \boldsymbol{a}=(\cos \theta, \sin \theta)$ is a unit vector along L.
- Find orthogonal projection of \mathbf{e}_{1} along \mathbf{a}.

$$
\begin{aligned}
& \|\boldsymbol{a}\|=\sqrt{\sin \theta^{2}+\cos \theta^{2}}=1 \quad \boldsymbol{e}_{1} \cdot \boldsymbol{a}=(1,0) \cdot(\cos \theta, \sin \theta)=\cos \theta \\
& \text { proj}_{\boldsymbol{a}} \boldsymbol{e}_{1}=\frac{\boldsymbol{e}_{1} \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^{2}} \boldsymbol{a}=(\cos \theta)(\cos \theta, \sin \theta)=\left(\cos \theta^{2}, \sin \theta \cos \theta\right) \\
& \boldsymbol{e}_{2} \cdot \boldsymbol{a}=(0,1) \cdot(\cos \theta, \sin \theta)=\sin \theta \\
& \text { proj}_{\boldsymbol{a}} \boldsymbol{e}_{2}=\frac{\boldsymbol{e}_{2} \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^{2}} \boldsymbol{a}=(\sin \theta)(\cos \theta, \sin \theta)=\left(\sin \theta \cos \theta, \sin \theta^{2}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{proj}_{\mathbf{a}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \\
& \mathbf{u}-\operatorname{proj}_{\mathbf{a}} \mathbf{u}=\mathbf{u}-\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}
\end{aligned}
$$

Let $u=(2,-1,3)$ and $a=(4,-1,2)$. Find the vector component of u along a and the vector component of u orthogonal to a.

- Solution:

$$
\begin{aligned}
& u \cdot a=(2)(4)+(-1)(-1)+(3)(2)=15 \\
& \|a\|^{2}=4^{2}+(-1)^{2}+2^{2}=21
\end{aligned}
$$

Thus, the vector component of u along a is

$$
\operatorname{proj}_{a} u=\frac{u \cdot a}{\|a\|^{2}} a=\frac{15}{21}(4,-1,2)=\left(\frac{20}{7},-\frac{5}{7}, \frac{10}{7}\right)
$$

and the vector component of u orthogonal to a is

$$
u-\operatorname{proj}_{a} u=(2,-1,3)-\left(\frac{20}{7},-\frac{5}{7}, \frac{10}{7}\right)=\left(-\frac{6}{7},-\frac{2}{7}, \frac{11}{7}\right)
$$

Verify that the vector $u-\operatorname{proj}_{a} u$ and a are perpendicu lar by showing that their dot product is zero.

Length of Orthogonal Projection

$$
\begin{aligned}
& \quad\left\|\operatorname{proj}_{a} \boldsymbol{u}\right\|=\left\|\frac{\boldsymbol{u} \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^{2}} \boldsymbol{a}\right\| \\
& \text { scalar } \\
& =\left|\frac{\boldsymbol{u} \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^{2}}\right|\|\boldsymbol{a}\| \leftarrow \text { Theorem 3.2.1 } \\
& \quad=\frac{|\boldsymbol{u} \cdot \boldsymbol{a}|}{\|\boldsymbol{a}\|^{2}}\|\boldsymbol{a}\| \leftarrow \text { Since }\|\boldsymbol{a}\|^{2}>0 \\
& \quad=\frac{|\boldsymbol{u} \cdot \boldsymbol{a}|}{\|\boldsymbol{a}\|}
\end{aligned}
$$

If θ denotes the angle between \boldsymbol{u} and \boldsymbol{a}, then $\boldsymbol{u} \cdot \boldsymbol{a}=\|\boldsymbol{u}\|\|\boldsymbol{a}\| \cos \theta$

$$
\left\|\operatorname{proj}_{a} \boldsymbol{u}\right\|=\|\boldsymbol{u}\||\cos \theta|
$$

Length of Orthogonal Projection

$$
0 \leq \theta<\frac{\pi}{2}
$$

$$
\frac{\pi}{2}<\theta \leq \pi
$$

Theorem 3.3.3 Theorem of Pythagoras

- If \mathbf{u} and \mathbf{v} are orthogonal vectors in R^{n} with the Euclidean inner product, then

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Proof:

Since \mathbf{u} and \mathbf{v} are orthogonal, $\mathbf{u} \cdot \mathbf{v}=0$, then

$$
\begin{aligned}
& \|\boldsymbol{u}+\boldsymbol{v}\|^{2}=(\boldsymbol{u}+\boldsymbol{v}) \cdot(\boldsymbol{u}+\boldsymbol{v})=\|\boldsymbol{u}\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v})+\|\boldsymbol{v}\|^{2} \\
& =\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}
\end{aligned}
$$

Theorem 3.3.4

- (a) In R^{2} the distance D between the point $P_{0}\left(x_{0}, y_{0}\right)$ and the line $a x+b y+c=0$ is

$$
D=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

- (b) In R^{3} the distance D between the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and the plane $a x+b y+c z+d=0$ is

$$
D=\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Proof of Theorem 3.3.4(b)

- Let $Q\left(x_{1}, y_{1}, z_{1}\right)$ be any point in the plane. Position the normal $\mathbf{n}=(a, b, c)$ so that its initial point is at Q.
- D is the length of the orthogonal projection of $\overrightarrow{Q P_{0}}$ on \mathbf{n}.

$$
\begin{aligned}
& \quad D=\left\|\operatorname{proj}_{\boldsymbol{n}} \overrightarrow{Q P_{0}}\right\|=\frac{\left|\overrightarrow{Q P_{0}} \cdot \boldsymbol{n}\right|}{\|\boldsymbol{n}\|} \\
& \overrightarrow{Q P_{0}}=\left(x_{0}-x_{1}, y_{0}-y_{1}, z_{0}-z_{1}\right) \\
& \overrightarrow{Q P_{0}} \cdot \boldsymbol{n}=a\left(x_{0}-x_{1}\right)+b\left(y_{0}-y_{1}\right)+c\left(z_{0}-z_{1}\right) \\
& \|\boldsymbol{n}\|=\sqrt{a^{2}+b^{2}+c^{2}} \\
& D=\frac{\left|a\left(x_{0}-x_{1}\right)+b\left(y_{0}-y_{1}\right)+c\left(z_{0}-z_{1}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

Proof of Theorem 3.3.4(b)

$$
D=\frac{\left|a\left(x_{0}-x_{1}\right)+b\left(y_{0}-y_{1}\right)+c\left(z_{0}-z_{1}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

- Since the point $Q\left(x_{1}, y_{1}, z_{1}\right)$ lies in the given plane, $a x_{1}+b y_{1}+c z_{1}+d=0$, or $d=-a x_{1}-b y_{1}-c z_{1}$
- Thus

$$
D=\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Example

$$
D=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

- Find the distance D from the point $(1,-2)$ to the line $3 x+4 y-6=0$ is

$$
D=\frac{|3(1)+4(-2)-6|}{\sqrt{3^{2}+4^{2}}}=\frac{11}{5}
$$

Distance Between Parallel Plane

- Two planes $x+2 y-2 z=3$ and $2 x+4 y-4 z=7$
- To find the distance D between the planes, we can select an arbitrary point in one of the planes and compute its distance to the other plane.
- By setting $y=z=0$ in the equation $x+2 y-2 z=3$, we obtain the point $P_{0}(3,0,0)$ in this plane.
- The distance between P_{0} and the plane $2 x+4 y-4 z=7$ is

$$
D=\frac{|2(3)+4(0)+(-4)(0)-7|}{\sqrt{2^{2}+4^{2}+(-4)^{2}}}=\frac{1}{6}
$$

3.4

The Geometry of Linear Systems

Vector and Parametric Equations

- A unique line in R^{2} or R^{3} is determined by a point \mathbf{x}_{0} on the line and a nonzero vector \mathbf{v} parallel to the line
- A unique plane in R^{3} is determined by a point \mathbf{x}_{0} in the plane and two noncollinear vectors \mathbf{v}_{1} and \mathbf{v}_{2} parallel to the plane

Vector and Parametric Equations

- If \mathbf{x} is a general point on such a line, the vector $\mathbf{x}-\mathbf{x}_{0}$ will be some scalar multiple of \mathbf{v}
- $\mathbf{x}-\mathbf{x}_{0}=t \mathbf{v}$ or equivalently $\mathbf{x}=\mathbf{x}_{0}+t \mathbf{v}$
- As the variable t (called parameter) varies from $-\infty$ to ∞, the point \mathbf{x} traces out the line L.

Theorem 3.4.1

- Let L be the line in R^{2} or R^{3} that contains the point \mathbf{x}_{0} and is parallel to the nonzero vector \mathbf{v}. Then the equation of the line through \mathbf{x}_{0} that is parallel to \mathbf{v} is

$$
\mathbf{x}=\mathbf{x}_{0}+t \mathbf{v}
$$

- If $\mathbf{x}_{0}=\mathbf{0}$, then the line passes through the origin and the equation has the form

$$
\mathbf{x}=t \mathbf{v}
$$

- The translation by \mathbf{x}_{0} of the line through the origin

Vector and Parametric Equations

- If \mathbf{x} is any point in the plane, then by forming suitable scalar multiples of \mathbf{v}_{1} and \mathbf{v}_{2}, we can create a parallelogram with diagonal $\mathbf{x}-\mathbf{x}_{0}$ and adjacent sides $t_{1} \mathbf{v}_{1}$ and $t_{2} \mathbf{v}_{2}$. Thus we have

$$
\mathbf{x}-\mathbf{x}_{0}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2} \text { or equivalently } \mathbf{x}=\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}
$$

- As the variables t_{1} and t_{2} (parameters) vary independently from $-\infty$ to ∞, the point \mathbf{x} varies over the entire plane W.

Theorem 3.4.2

- Let W be the plane in R^{3} that contains the point \mathbf{x}_{0} and is parallel to the noncollinear vectors \mathbf{v}_{1} and \mathbf{v}_{2}. Then an equation of the plane through \mathbf{x}_{0} that is parallel to \mathbf{v}_{1} and \mathbf{v}_{2} is given by

$$
\mathbf{x}=\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}
$$

- If $\mathbf{x}_{0}=\mathbf{0}$, then the plane passes through the origin and the equation has the form

$$
\mathbf{x}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}
$$

Definition

- If \mathbf{x}_{0} and \mathbf{v} are vectors in R^{n}, and if \mathbf{v} is nonzero, then the equation $\mathbf{x}=\mathbf{x}_{0}+t \mathbf{v}$ defines the line through $\mathbf{x}_{\mathbf{0}}$ that is parallel to \mathbf{v}. In the special case where $\mathbf{x}_{0}=\mathbf{0}$, the line is said to pass through the origin.
- If $\mathbf{x}_{0}, \mathbf{v}_{1}$ and \mathbf{v}_{2} are vectors in R^{n}, and if \mathbf{v}_{1} and \mathbf{v}_{2} are not collinear, then the equation $\mathbf{x}=\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}$ defines the plane through x_{0} that is parallel to v_{1} and v_{2}. In the special case where $\mathbf{x}_{0}=\mathbf{0}$, the line is said to pass through the origin.

Vector Forms

- The previous equations are called vector forms of a line and plane in R^{n}.
- If the vectors in these equations are expressed in terms of their components and the corresponding components on each side are equated, then the resulting equations are called parametric equations of the line and plane.

Example

- Find a vector equation and parametric equations of the line in R^{3} that passes through the point $P_{0}(1,2,-3)$ and is parallel to the vector $\mathbf{v}=(4,-5,1)$
- Solution:

The line is $\mathbf{x}=\mathbf{x}_{0}+t \mathbf{v}$
If we let $\mathbf{x}=(x, y, z)$, and if we take $\mathbf{x}_{0}=(1,2,-3)$ then this equation is $(x, y, z)=(1,2,-3)+t(4,-5,1)$
Equating corresponding components on the two sides of this equation yields the parametric equations

$$
x=1+4 t, y=2-5 t, z=-3+t
$$

Example

- Find vector and parametric equations of the plane $x-y+2 z=5$
- Solution: solving for x in terms of y and z yields $x=5+y-2 z$
- Then using y and z as parameters t_{1} and t_{2}, respectively, yields the parametric equations:

$$
x=5+t_{1}-2 t_{2}, y=t_{1}, z=t_{2}
$$

- To obtain a vector equation of the plane we rewrite these parametric equations as $(x, y, z)=\left(5+t_{1}-2 t_{2}, t_{1}, t_{2}\right)$, or equivalently as $(x, y, z)=(5,0,0)+t_{1}(1,1,0)+t_{2}(-2,0,1)$

Example

- Find vector and parametric equations of the plane in R^{4} that passes through the point $\mathbf{x}_{0}=(2,-1,0,3)$ and is parallel to both $\mathbf{v}_{1}=(1,5,2,-4)$ and $\mathbf{v}_{2}=(0,7,-8,6)$
- Solution: the vector equation $\mathbf{x}=\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}$ can be expressed as

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,-1,0,3)+t_{1}(1,5,2,-4)+t_{2}(0,7,-8,6)
$$

- Which yields the parametric equations

$$
x_{1}=2+t_{1}, x_{2}=-1+5 t_{1}+7 t_{2}, x_{3}=2 t_{1}-8 t_{2}, x_{4}=3-4 t_{1}+6 t_{2}
$$

Lines Through Two points

- If \mathbf{x}_{0} and \mathbf{x}_{1} are distinct points in R^{n}, then the line determined by these points is parallel to the vector

$$
\mathbf{v}=\mathbf{x}_{1}-\mathbf{x}_{0}
$$

- The line can be expressed as $\mathbf{x}=\mathbf{x}_{0}+t\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)$
- Or equivalently as $\mathbf{x}=(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1}$
- These are called the two-point vector equations of a line in R^{n}

Example

- Find vector and parametric equations for the line in R^{2} that passes through the points $P(0,7)$ and $Q(5,0)$
- Solution: Let's choose $\mathbf{x}_{0}=(0,7)$ and $\mathbf{x}_{1}=(5,0)$. $\mathbf{x}_{1}-\mathbf{x}_{0}=(5,-7)$ and hence $(x, y)=(0,7)+t(5,-7)$
- We can rewrite in parametric form as $x=5 t, y=7-7 t$

Definition

- If \mathbf{x}_{0} and \mathbf{x}_{1} are vectors in R^{n}, then the equation $\mathbf{x}=\mathbf{x}_{0}+t\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)(0 \leqq t \leqq 1)$ defines the line segment from x_{0} to x_{1}.
- When convenient, it can be written as $\mathbf{x}=(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1}(0 \leqq t \leqq 1)$
- Example: the line segment from $\mathbf{x}_{0}=(1,-3)$ to $\mathbf{x}_{1}=(5,6)$ can be represented by $\mathbf{x}=(1,-3)+t(4,9)(0 \leqq t \leqq 1)$ or $\mathbf{x}=(1-t)(1,-3)+t(5,6)(0 \leqq t \leqq 1)$

Dot Product Form of a Linear System

- Recall that a linear equation has the form

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b \quad\left(a_{1}, a_{2}, \ldots, \text { an not all zero }\right)
$$

- The corresponding homogeneous equation is

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=0 \quad\left(a_{1}, a_{2}, \ldots, \text { an not all zero }\right)
$$

- These equations can be rewritten in vector form by letting

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \text { and } \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- Two equations can be written as

$$
\boldsymbol{a} \cdot \boldsymbol{x}=b \quad \boldsymbol{a} \cdot \boldsymbol{x}=0
$$

Dot Product Form of a Linear System

$$
\boldsymbol{a} \cdot \boldsymbol{x}=0
$$

- It reveals that each solution vector \mathbf{x} of a homogeneous equation is orthogonal to the coefficient vector a.
- Consider the homogeneous system

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=0 \\
\vdots \quad \vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=
\end{gathered}
$$

- If we denote the successive row vectors of the coefficient matrix by $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{m}$, then we can write this system as

$$
\begin{aligned}
& \boldsymbol{r}_{1} \cdot \boldsymbol{x}=0 \\
& \boldsymbol{r}_{2} \cdot \boldsymbol{x}=0 \\
& \vdots \boldsymbol{r}_{m} \cdot \boldsymbol{x}=0
\end{aligned}
$$

Theorem 3.4.3
 $$
\begin{aligned} & \boldsymbol{r}_{1} \cdot \boldsymbol{x}=0 \\ & \boldsymbol{r}_{2} \cdot \boldsymbol{x}=0 \\ & \vdots \\ & \boldsymbol{r}_{m} \cdot \boldsymbol{x}=0 \end{aligned}
$$

- If A is an $m \times n$ matrix, then the solution set of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ consists of all vectors in R^{n} that are orthogonal to every row vector of A.
- Example: the general solution of

$$
\left[\begin{array}{cccccc}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

is $x_{1}=-3 r-4 s-2 t, x_{2}=r, x_{3}=-2 s, x_{4}=s, x_{5}=t, x_{6}=0$
Vector form: $\mathbf{x}=(-3 r-4 s-2 t, r,-2 s, s, t, 0)$

Theorem 3.4.3

- According to Theorem 3.4.3, the vector \mathbf{x} must be orthogonal to each of the row vectors

$$
\begin{aligned}
& \mathbf{r}_{1}=(1,3,-2,0,2,0) \\
& \mathbf{r}_{2}=(2,6,-5,-2,4,-3) \\
& \mathbf{r}_{3}=(0,0,5,10,0,15) \\
& \mathbf{r}_{4}=(2,6,0,8,4,18)
\end{aligned}
$$

- Verify that $\mathbf{r}_{1} \cdot \mathbf{x}=$

$$
1(-3 r-4 s-2 t)+3(r)+(-2)(-2 s)+0(s)+2(t)+0(0)=0
$$

The Relationship Between $A \mathbf{x}=\mathbf{0}$ and

 $A \mathbf{x}=\mathrm{b}$- Compare the solutions of the corresponding linear systems

$$
\left[\begin{array}{ccccc}
1 & 3 & -2 & 0 & 2 \\
2 & 6 & -5 & -2 & 4 \\
0 & 0 & 5 & -3 & 0 \\
2 & 6 & 0 & 8 & 4 \\
\hline
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{cccccc}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
5 \\
6
\end{array}\right]
$$

- Homogeneous system:

$$
x_{1}=-3 r-4 s-2 t, x_{2}=r, x_{3}=-2 s, x_{4}=s, x_{5}=t, x_{6}=0
$$

- Nonhomogeneous system:

$$
x_{1}=-3 r-4 s-2 t, x_{2}=r, x_{3}=-2 s, x_{4}=s, x_{5}=t, x_{6}=1 / 3
$$

The Relationship Between $A \mathbf{x}=\mathbf{0}$ and $A \mathrm{x}=\mathrm{b}$

- We can rewrite them in vector form:
- Homogeneous system: $\mathbf{x}=(-3 r-4 s-2 t, r,-2 s, s, t, 0)$
- Nonhomogeneous system: $\mathbf{x}=(-3 r-4 s-2 t, r,-2 s, s, t, 1 / 3)$
- By splitting the vectors on the right apart and collecting terms with like parameters,
- Homogeneous system: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=r(-3,1,0,0,0)+s(-4,0,-$ $2,1,0,0)+t(-2,0,0,0,1,0)$
- Nonhomogeneous system: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=r(-3,1,0,0,0)+s(-4,0,-$ $2,1,0,0)+t(-2,0,0,0,1,0)+(0,0,0,0,0,1 / 3)$
- Each solution of the nonhomogeneous system can be obtained by adding $(0,0,0,0,0,1 / 3)$ to the corresponding solution of the homogeneous system.

Theorem 3.4.4

- The general solution of a consistent linear system $A \mathbf{x}=\mathbf{b}$ can be obtained by adding any specific solution of $A \mathbf{x}=\mathbf{b}$ to the general solution of $A \mathbf{x}=\mathbf{0}$.
- Proof:
- Let \mathbf{x}_{0} be any specific solution of $A \mathbf{x}=\mathbf{b}$, Let W denote the solution set of $A \mathbf{x}=\mathbf{0}$, and let $\mathbf{x}_{0}+W$ denote the set of all vectors that result by adding \mathbf{x}_{0} to each vector in W.
- Shot that if \mathbf{x} is a vector in $\mathbf{x}_{0}+W$, then \mathbf{x} is a solution of $A \mathbf{x}=\mathbf{b}$, and conversely, that every solution of $A \mathbf{x}=\mathbf{b}$ is in the set $\mathbf{x}_{0}+W$.

Theorem 3.4.4

- Assume that \mathbf{x} is a vector in $\mathbf{x}_{0}+W$. This implies that \mathbf{x} is expressible in the form $\mathbf{x}=\mathbf{x}_{0}+\mathbf{w}$, where $A \mathbf{x}_{0}=\mathbf{b}$ and $A \mathbf{w}=\mathbf{0}$. Thus,
$A \mathbf{x}=A\left(\mathbf{x}_{0}+\mathbf{w}\right)=A \mathbf{x}_{0}+A \mathbf{w}=\mathbf{b}+\mathbf{0}=\mathbf{b}$
which shows that \mathbf{x} is a solution of $A \mathbf{x}=\mathbf{b}$.
- Conversely, let \mathbf{x} be any solution of $A \mathbf{x}=\mathbf{b}$. To show that \mathbf{x} is in the set $\mathbf{x}_{0}+W$ we must show that \mathbf{x} is expressible in the form: $\mathbf{x}=\mathbf{x}_{0}+\mathbf{w}$, where \mathbf{w} is in $W(A \mathbf{w}=\mathbf{0})$. We can do this by taking $\mathbf{w}=\mathbf{x}-\mathbf{x}_{0}$. It is in W since $A \mathbf{w}=A\left(\mathbf{x}-\mathbf{x}_{0}\right)=A \mathbf{x}-A \mathbf{x}_{0}=\mathbf{b}-\mathbf{b}=\mathbf{0}$.

Geometric Interpretation of Theorem

 3.4.4- We interpret vector addition as translation, then the theorem states that if \mathbf{x}_{0} is any specific solution of $A \mathbf{x}=\mathbf{b}$, then the entire solution set of $A \mathbf{x}=\mathbf{b}$ can be obtained by translating the solution set of $A \mathbf{x}=\mathbf{0}$ by the vector \mathbf{x}_{0}.

3.5

Cross Product

Definition

- If $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ are vectors in 3-space, then the cross product $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
$$

- Or, in determinant notation

$$
\boldsymbol{u} \times \boldsymbol{v}=\left(\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|,-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|,\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right)
$$

- Remark: For the matrix $\left[\begin{array}{lll}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right]$
to find the first component of $\mathbf{u} \times \mathbf{v}$, delete the first column and take the determinant, ...

Example

- Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u}=(1,2,-2)$ and $\mathbf{v}=(3,0,1)$
- Solution

$$
\begin{aligned}
& \boldsymbol{u} \times \boldsymbol{v}=\left(\left|\begin{array}{cc}
2 & -2 \\
0 & 1
\end{array}\right|,-\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right|,\left|\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right|\right) \\
& =(2,-7,-6)
\end{aligned}
$$

Theorems

- Theorem 3.5.1 (Relationships Involving Cross Product and Dot Product)
- If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in 3-space, then
- $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=0$
$(\mathbf{u} \times \mathbf{v}$ is orthogonal to $\mathbf{u})$
- $\mathbf{v} \cdot(\mathbf{u} \times \mathbf{v})=0$
- $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$
($\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{v})
- $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$ product)
- $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{v} \cdot \mathbf{w}) \mathbf{u} \quad$ (relationship between cross \& dot product)
(Lagrange's identity)
(relationship between cross \& dot

Proof of Theorem 3.5.1(a)

Let $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$

$$
\begin{aligned}
& \boldsymbol{u} \cdot(\boldsymbol{u} \times \boldsymbol{v}) \\
& =\left(u_{1}, u_{2}, u_{3}\right) \cdot\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right) \\
& =u_{1}\left(u_{2} v_{3}-u_{3} v_{2}\right)+u_{2}\left(u_{3} v_{1}-u_{1} v_{3}\right)+u_{3}\left(u_{1} v_{2}-u_{2} v_{1}\right)=0
\end{aligned}
$$

- Example: $\boldsymbol{u}=(1,2,-2)$ and $\boldsymbol{v}=(3,0,1)$

$$
\begin{aligned}
& \boldsymbol{u} \times \boldsymbol{v}=(2,-7,-6) \\
& \boldsymbol{u} \cdot(\boldsymbol{u} \times \boldsymbol{v})=(1)(2)+(2)(-7)+(-2)(-6)=0 \\
& \boldsymbol{v} \cdot(\boldsymbol{u} \times \boldsymbol{v})=(3)(2)+(0)(-7)+(1)(-6)=0
\end{aligned}
$$

Proof of Theorem 3.5.1(c)

$$
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
$$

$$
\begin{aligned}
& \|\boldsymbol{u} \times \boldsymbol{v}\|^{2}=\left(u_{2} v_{3}-u_{3} v_{2}\right)^{2}+\left(u_{3} v_{1}-u_{1} v_{3}\right)^{2}+\left(u_{1} v_{2}-u_{2} v_{1}\right)^{2} \\
& \|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}-(\boldsymbol{u} \cdot \boldsymbol{v})^{2} \\
& =\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)-\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)^{2}
\end{aligned}
$$

Theorems

- Theorem 3.5.2 (Properties of Cross Product)
- If \mathbf{u}, \mathbf{v} and \mathbf{w} are any vectors in 3-space and k is any scalar, then
- $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
- $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
- $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=\mathbf{u} \times \mathbf{w}+\mathbf{v} \times \mathbf{w}$
- $k(\mathbf{u} \times \mathbf{v})=(k \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(k \mathbf{v})$
- $\mathbf{u} \times \mathbf{0}=\mathbf{0} \times \mathbf{u}=\mathbf{0}$
- $\mathbf{u} \times \mathbf{u}=\mathbf{0}$
- Proof of (a)
- Interchanging \mathbf{u} and \mathbf{v} interchanges the rows of the three determinants and hence changes the sign of each component in the cross product. Thus $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$.

Standard Unit Vectors

- The vectors

$$
\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)
$$

have length 1 and lie along the coordinate axes. They are called the standard unit vectors in 3 -space.

- Every vector $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ in 3-space is expressible in terms of \mathbf{i}, \mathbf{j}, \mathbf{k} since we can write

$$
\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)=v_{1}(1,0,0)+v_{2}(0,1,0)+v_{3}(0,0,1)=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}
$$

- For example, $(2,-3,4)=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$
- Note that

$$
\begin{aligned}
& \mathbf{i} \times \mathbf{i}=\mathbf{0}, \mathbf{j} \times \mathbf{j}=\mathbf{0}, \quad \mathbf{k} \times \mathbf{k}=\mathbf{0} \\
& \mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathrm{i}=\mathbf{j} \\
& \mathbf{j} \times \mathbf{i}=-\mathbf{k}, \quad \mathbf{k} \times \mathbf{j}=\mathbf{- i}, \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j}
\end{aligned}
$$

Cross Product

- A cross product can be represented symbolically in the form of 3×3 determinant:

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{k}
$$

- Example: if $\mathbf{u}=(1,2,-2)$ and $\mathbf{v}=(3,0,1)$

$$
\boldsymbol{u} \times \boldsymbol{v}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & 2 & -2 \\
3 & 0 & 1
\end{array}\right|=2 \boldsymbol{i}-7 \boldsymbol{j}-6 \boldsymbol{k}
$$

Cross Product

- It's not true in general that $\boldsymbol{u} \times(\boldsymbol{v} \times \boldsymbol{w})=(\boldsymbol{u} \times \boldsymbol{v}) \times \boldsymbol{w}$
- For example:

$$
\begin{aligned}
& \boldsymbol{i} \times(\boldsymbol{j} \times \boldsymbol{j})=\boldsymbol{i} \times \mathbf{0}=\mathbf{0} \\
& (\boldsymbol{i} \times \boldsymbol{j}) \times \boldsymbol{j}=\boldsymbol{k} \times \boldsymbol{j}=-\boldsymbol{i}
\end{aligned}
$$

- Right-hand rule
- If the fingers of the right hand are cupped so they point in the direction of rotation, then the thumb indicates the direction of $\boldsymbol{u} \times \boldsymbol{v}$

Geometric Interpretation of Cross Product

- From Lagrange's identity, we have

$$
\begin{aligned}
& \|\boldsymbol{u} \times \boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}-(\boldsymbol{u} \cdot \boldsymbol{v})^{2} \quad \boldsymbol{u} \cdot \boldsymbol{v}=\|\boldsymbol{u}\|\|\boldsymbol{v}\| \cos \theta \\
& \|\boldsymbol{u} \times \boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}-\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2} \cos ^{2} \theta \\
& =\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2} \sin ^{2} \theta
\end{aligned}
$$

- Since $0 \leq \theta \leq \pi$, it follows that $\sin \theta \geq 0$ so $\quad\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$

Geometric Interpretation of Cross Product

- From Lagrange's identity in Theorem 3.5.1

$$
\|\boldsymbol{u} \times \boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}-(\boldsymbol{u} \cdot \boldsymbol{v})^{2}
$$

- If θ denotes the angle between \mathbf{u} and \mathbf{v}, then $\boldsymbol{u} \cdot \boldsymbol{v}=\|\boldsymbol{u}\|\|\boldsymbol{v}\| \cos \theta$

$$
\begin{aligned}
& \|\boldsymbol{u} \times \boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}-\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2} \cos ^{2} \theta \\
& =\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2} \sin ^{2} \theta
\end{aligned}
$$

- Since $0 \leq \theta \leq \pi$, it follows that $\sin \theta \geq 0$, thus

$$
\|\boldsymbol{u} \times \boldsymbol{v}\|=\|\boldsymbol{u}\|\|\boldsymbol{v}\| \sin \theta
$$

Geometric Interpretation of Cross

Product

$$
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
$$

－$\|\boldsymbol{v}\| \sin \theta$ is the altitude（頂垂線）of the parallelogram determined by \mathbf{u} and \mathbf{v} ．Thus，the area A of this parallelogram is given by

$$
A=\|\boldsymbol{u}\|\|\boldsymbol{v}\| \sin \theta=\|\boldsymbol{u} \times \boldsymbol{v}\|
$$

－This result is even correct if \mathbf{u} and \mathbf{v} are collinear，since we have $\|\boldsymbol{u} \times \boldsymbol{v}\|=\mathbf{0}$ when $\theta=0$

Area of a Parallelogram

- Theorem 3.5.3 (Area of a Parallelogram)
- If \mathbf{u} and \mathbf{v} are vectors in 3-space, then $\|\mathbf{u} \times \mathbf{v}\|$ is equal to the area of the parallelogram determined by \mathbf{u} and \mathbf{v}.
- Example
- Find the area of the triangle determined by the point $(2,2,0),(-1,0,2)$, and $(0,4,3)$.

$$
\begin{aligned}
& \overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=(-3,-2,2) \times(-2,2,3) \\
& =(-10,5,-10) \\
& A=\frac{1}{2}\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\|=\frac{1}{2}(15)=\frac{15}{2}
\end{aligned}
$$

Triple Product

－Definition
－If \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors in 3－space，then $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$ is called the scalar triple product（純量三乘積）of \mathbf{u}, \mathbf{v} and \mathbf{w} ．

$$
\begin{gathered}
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right| \\
\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=\boldsymbol{u} \cdot\left(\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| \boldsymbol{i}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| \boldsymbol{j}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| \boldsymbol{k}\right) \\
=\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| u_{1}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| u_{2}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| u_{3}=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
\end{gathered}
$$

Example

- $\mathbf{u}=3 \mathbf{i}-2 \mathbf{j}-5 \mathbf{k}, \mathbf{v}=\mathbf{i}+4 \mathbf{j}-4 \mathbf{k}, \mathbf{w}=3 \mathbf{j}+2 \mathbf{k}$

$$
\begin{aligned}
& \boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=\left|\begin{array}{ccc}
3 & -2 & -5 \\
1 & 4 & -4 \\
0 & 3 & 2
\end{array}\right| \\
& =3\left|\begin{array}{cc}
4 & -4 \\
3 & 3
\end{array}\right|-(-2)\left|\begin{array}{cc}
1 & -4 \\
0 & 2
\end{array}\right|+(-5)\left|\begin{array}{ll}
1 & 4 \\
0 & 3
\end{array}\right| \\
& =60+4-15=49
\end{aligned}
$$

Triple Product

- Remarks:
- The symbol ($\mathbf{u} \cdot \mathbf{v}$) $\times \mathbf{w}$ make no sense because we cannot form the cross product of a scalar and a vector.
- $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})=\mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})$, since the determinants that represent these products can be obtained from one another by two row interchanges.
$\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=\left|\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right| \quad \boldsymbol{w} \cdot(\boldsymbol{u} \times \boldsymbol{v})=\left|\begin{array}{lll}w_{1} & w_{2} & w_{3} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$

$$
\boldsymbol{v} \cdot(\boldsymbol{w} \times \boldsymbol{u})=\left|\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3} \\
u_{1} & u_{2} & u_{3}
\end{array}\right|
$$

Theorem 3.5.4

- The absolute value of the determinant $\operatorname{det}\left[\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right]$
is equal to the area of the parallelogram in 2 -space determined by the vectors $\mathbf{u}=\left(u_{1}, u_{2}\right)$, and $\mathbf{v}=\left(v_{1}, v_{2}\right)$,
- The absolute value of the determinant

$$
\operatorname{det}\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right]
$$

is equal to the volume of the parallelepiped in 3 -space determined by the vectors $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$,

Proof of Theorem 3.5.4(a)

- View \mathbf{u} and \mathbf{v} as vectors in the $x y$-plane of an $x y z$ coordinate system. Express $\mathbf{u}=\left(u_{1}, u_{2}, 0\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, 0\right)$

$$
\boldsymbol{u} \times \boldsymbol{v}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
u_{1} & u_{2} & 0 \\
v_{1} & v_{2} & 0
\end{array}\right|=\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \boldsymbol{k}=\operatorname{det}\left[\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right] \boldsymbol{k}
$$

- It follows from Theorem 3.5.3 and the fact that $\|\boldsymbol{k}\|=1$ that the area A of the parallelogram determined by \mathbf{u} and \mathbf{v} is

$$
\begin{aligned}
& A=\|\boldsymbol{u} \times \boldsymbol{v}\|=\left\|\operatorname{det}\left[\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right] \boldsymbol{k}\right\|=\left|\operatorname{det}\left[\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right]\right|\|\boldsymbol{k}\| \\
& =\left|\operatorname{det}\left[\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right]\right|
\end{aligned}
$$

Proof of Theorem 3.5.4(b)

- The area of the base is $\|\boldsymbol{v} \times \boldsymbol{w}\|$
- The height h of the parallelepiped is the length of the orthogonal projection of \mathbf{u} on $\boldsymbol{v} \times \boldsymbol{w}$

$$
\begin{equation*}
h=\left\|\operatorname{proj}_{\boldsymbol{v} \times \boldsymbol{w}} \boldsymbol{u}\right\|=\frac{|\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})|}{\|\boldsymbol{v} \times \boldsymbol{w}\|} \tag{b}
\end{equation*}
$$

- The volume V of the parallelepiped is

Remark

$$
\begin{array}{ll}
V=\left|\operatorname{det}\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right]\right| \quad V=\left[\begin{array}{c}
\text { volume of parallelepiped } \\
\text { determined by } \mathbf{u}, \mathbf{v}, \text { and } \mathbf{w}
\end{array}\right]=|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})| \\
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right| &
\end{array}
$$

Remark

$$
V=|\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})|
$$

- We can conclude that

$$
\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})= \pm V
$$

where + or - results depending on whether \mathbf{u} makes an acute or an obtuse angle with $\boldsymbol{v} \times \boldsymbol{w}$

Theorem 3.5.5

- If the vectors $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, and $\mathbf{w}=\left(w_{1}\right.$, w_{2}, w_{3}) have the same initial point, then they lie in the same plane if and only if

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=0
$$

