4.7 Row Space, Column Space, and Null Space

Row Space and Column Space

Definition

- If A is an m×n matrix, then the subspace of Rⁿ spanned by the row vectors of A is called the row space (列空間) of A, and the subspace of R^m spanned by the column vectors is called the column space (行空間) of A.
- The <u>solution space</u> of the homogeneous system of equation $A\mathbf{x} = \mathbf{0}$, which is <u>a subspace of \mathbb{R}^n </u>, is called the <u>null space (</u> <u>零核空間) of A</u>.

Remarks

- In this section we will be concerned with two questions
 - What relationships exist between the solutions of a linear system Ax=b and the row space, column space, and null space of A.
 - What relationships exist among the row space, column space, and null space of a matrix.

Remarks

• It follows from Formula (10) of Section 1.3

 $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ $A\boldsymbol{x} = x_1\boldsymbol{c}_1 + x_2\boldsymbol{c}_2 + \cdots + x_n\boldsymbol{c}_n = \boldsymbol{b}$

We conclude that Ax=b is consistent if and only if b is expressible as a linear combination of the column vectors of A or, equivalently, if and only if b is in the column space of A.

Theorem 4.7.1

Theorem 4.7.1

• A system of linear equations $A\mathbf{x} = \mathbf{b}$ is consistent if and only if **b** is in the column space of *A*.

Example

• Let $A\mathbf{x} = \mathbf{b}$ be the linear system $\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ -3 \end{bmatrix}$

Show that **b** is in the column space of A, and express **b** as a linear combination of the column vectors of A.

- Solution:
 - Solving the system by Gaussian elimination yields

$$x_1 = 2, x_2 = -1, x_3 = 3$$

- Since the system is consistent, **b** is in the column space of A.
- Moreover, it follows that

$$2\begin{bmatrix} -1\\1\\2\end{bmatrix} - \begin{bmatrix} 3\\2\\1\end{bmatrix} + 3\begin{bmatrix} 2\\-3\\-2\end{bmatrix} = \begin{bmatrix} 1\\-9\\-3\end{bmatrix}$$

General and Particular Solutions

Theorem 4.7.2

□ If \mathbf{x}_0 denotes any single solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$, and if $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ form a basis for the null space of A, (that is, the solution space of the homogeneous system $A\mathbf{x} = \mathbf{0}$), then every solution of $A\mathbf{x} = \mathbf{b}$ can be expressed in the form

 $\mathbf{x} = \mathbf{x}_0 + c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$

Conversely, for all choices of scalars $c_1, c_2, ..., c_k$, the vector **x** in this formula is a solution of A**x** = **b**.

- Assume that \mathbf{x}_0 is any fixed solution of $A\mathbf{x}=\mathbf{b}$ and that \mathbf{x} is an arbitrary solution. Then $A\mathbf{x}_0 = \mathbf{b}$ and $A\mathbf{x} = \mathbf{b}$.
- Subtracting these equations yields

 $A\mathbf{x} - A\mathbf{x}_0 = \mathbf{0}$ or $A(\mathbf{x} - \mathbf{x}_0) = \mathbf{0}$

- Which shows that $\mathbf{x} \cdot \mathbf{x}_0$ is a solution of the homogeneous system $A\mathbf{x} = \mathbf{0}$.
- Since $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ is a basis for the solution space of this system, we can express $\mathbf{x} \cdot \mathbf{x}_0$ as a linear combination of these vectors, say $\mathbf{x} \cdot \mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_k \mathbf{v}_k$. Thus, $\mathbf{x} = \mathbf{x}_0 + c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_k \mathbf{v}_k$.

• Conversely, for all choices of the scalars c_1, c_2, \dots, c_k , we have

$$A\mathbf{x} = A(\mathbf{x}_0 + c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k)$$
$$A\mathbf{x} = A\mathbf{x}_0 + c_1(A\mathbf{v}_1) + c_2(A\mathbf{v}_2) + \dots + c_k(A\mathbf{v}_k)$$

But x₀ is a solution of the nonhomogeneous system, and v₁, v₂, ..., v_k are solutions of the homogeneous system, so the last equation implies that

$$A\mathbf{x} = \mathbf{b} + \mathbf{0} + \mathbf{0} + \ldots + \mathbf{0} = \mathbf{b}$$

• Which shows that \mathbf{x} is a solution of $A\mathbf{x} = \mathbf{b}$.

Remark

Remark

- The vector \mathbf{x}_0 is called a particular solution (特解) of $A\mathbf{x} = \mathbf{b}$.
- □ The expression $\mathbf{x}_0 + c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k$ is called the <u>general</u> solution (通解) of $A\mathbf{x} = \mathbf{b}$, the expression $c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k$ is called the <u>general solution</u> of $A\mathbf{x} = \mathbf{0}$.
- The general solution of $A\mathbf{x} = \mathbf{b}$ is the sum of any particular solution of $A\mathbf{x} = \mathbf{b}$ and the general solution of $A\mathbf{x} = \mathbf{0}$.

Example (General Solution of $A\mathbf{x} = \mathbf{b}$)

The solution to the nonhomogeneous system

is

$$x_1 = -3r - 4s - 2t, x_2 = r,$$

$$x_3 = -2s, x_4 = s,$$

$$x_5 = t, x_6 = 1/3$$

• The result can be written in vector form as

				$oldsymbol{x}_0$			$oldsymbol{x}$			
				$\!$	l					
$\begin{bmatrix} x_1 \end{bmatrix}$		$\left[-3r-4s-2t\right]$		0		-3		-4		-2
<i>x</i> ₂		r		0		1		0		0
<i>x</i> ₃		-2s		0		0		-2		0
<i>x</i> ₄	=	S	=	0	+r	0	+s	1	$+\iota$	0
<i>x</i> ₅		t		0		0		0		1
$\lfloor x_6 \rfloor$		1/3		1/3		0		0		0
				x ₀				x		

which is the general solution.

 The vector x₀ is a <u>particular</u> <u>solution</u> of nonhomogeneous system, and the linear combination x is the <u>general</u> <u>solution</u> of the homogeneous system.

Elementary Row Operation

- Performing an elementary row operation on an augmented matrix does not change the solution set of the corresponding linear system.
- It follows that applying an elementary row operation to a matrix A does not change the solution set of the corresponding linear system Ax=0, or stated another way, it does not change the null space of A.

The <u>solution space</u> of the homogeneous system of equation $A\mathbf{x} = \mathbf{0}$, which is <u>a</u> <u>subspace of R^n , is called the <u>null space of A</u>.</u>

Example

Find a basis for the nullspace of $A = \begin{bmatrix} 2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 1 & 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

Solution

• The nullspace of A is the solution space of the homogeneous system

$$2x_{1} + 2x_{2} - x_{3} + x_{5} = 0$$

-x₁ - x₂ - 2 x₃ - 3x₄ + x₅ = 0
x₁ + x₂ - 2 x₃ - x₅ = 0
x₃ + x₄ + x₅ = 0

□ In Example 10 of Section 4.5 we showed that the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} -1\\1\\0\\0\\0 \end{bmatrix} \text{ and } \mathbf{v}_{2} = \begin{bmatrix} -1\\0\\-1\\0\\1 \end{bmatrix}$$

form a basis for the nullspace.

Theorems 4.7.3 and 4.7.4

Theorem 4.7.3

• Elementary row operations do not change the <u>nullspace</u> of a matrix.

Theorem 4.7.4

Elementary row operations do not change the <u>row space</u> of a matrix.

- Suppose that the row vectors of a matrix *A* are $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$, and let *B* be obtained from *A* by performing an elementary row operation. (We say that *A* and *B* are row equivalent.)
- We shall show that every vector in the row space of *B* is also in that of *A*, and that every vector in the row space of *A* is in that of *B*.
- If the row operation is a row interchange, then *B* and *A* have the same row vectors and consequently have the same row space.

- If the row operation is multiplication of a row by a nonzero scalar or a multiple of one row to another, then the row vector r₁', r₂',..., r_m' of *B* are linear combination of r₁, r₂,..., r_m; thus they lie in the row space of *A*.
- Since a vector space is closed under addition and scalar multiplication, all linear combination of \mathbf{r}_1 , \mathbf{r}_2 , ..., \mathbf{r}_m , will also lie in the row space of A. Therefore, each vector in the row space of B is in the row space of A.

- Since *B* is obtained from *A* by performing a row operation, *A* can be obtained from *B* by performing the inverse operation (Sec. 1.5).
- Thus the argument above shows that the row space of *A* is contained in the row space of *B*.

Remarks

- Do elementary row operations change the column space?
 Yes!
- The second column is a scalar multiple of the first, so the column space of *A* consists of all scalar multiplies of the first column vector. $\begin{bmatrix} 1 & 2 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \xrightarrow{\text{Add -2 times the first}} B = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$$

row to the second

Again, the second column is a scalar multiple of the first, so the column space of *B* consists of all scalar multiples of the first column vector. This is not the same as the column space of *A*.

Theorem 4.7.5

Theorem 4.7.5

□ If a matrix *R* is in row echelon form, then the row vectors with the leading 1's (i.e., the nonzero row vectors) form a basis for the row space of *R*, and the column vectors with the leading 1's of the row vectors form a basis for the column space of *R*.

Bases for Row and Column Spaces

The matrix

$$R = \begin{bmatrix} 1 & -2 & 5 & 0 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

is in row-echelon form. From Theorem 5.5.6 the vectors

$$\mathbf{r}_1 = [1 - 2 \ 5 \ 0 \ 3]$$
$$\mathbf{r}_2 = [0 \ 1 \ 3 \ 0 \ 0]$$
$$\mathbf{r}_3 = [0 \ 0 \ 0 \ 1 \ 0]$$

form a basis for the row space of R, and the vectors

$$\mathbf{c}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{c}_{2} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{c}_{4} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

form a basis for the column space of R.

Example

Find bases for the row and column spaces of

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$$

- - Since elementary row operations do not change the row space of a matrix, we can find a basis for the row space of A by finding a basis that of any row-echelon form of A.
 - Reducing A to row-echelon form we obtain

$$R = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• The basis vectors for the row space of *R* and *A*

 $\mathbf{r}_1 = [1 -3 4 -2 5 4]$ $\mathbf{r}_2 = [0 \ 0 \ 1 \ 3 -2 -6]$ $\mathbf{r}_3 = [0 \ 0 \ 0 \ 0 \ 1 \ 5]$

• Keeping in mind that *A* and *R* may have different column spaces, we cannot find a basis for the column space of *A* directly from the column vectors of *R*.

Theorem 4.7.6

Theorem 4.7.6

□ If *A* and *B* are row equivalent matrices, then:

- A given set of column vectors of A is linearly independent if and only if the corresponding column vectors of B are linearly independent.
- A given set of column vectors of A forms a basis for the column space of A if and only if the corresponding column vectors of B form a basis for the column space of B.

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- We can find the basis for the column space of *R*, then *the corresponding column vectors* of *A* will form a basis for the column space of *A*.
- Basis for *R*'s column space

$$\boldsymbol{c}_{1}^{\prime} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad \boldsymbol{c}_{3}^{\prime} = \begin{bmatrix} 4\\1\\0\\0 \end{bmatrix} \qquad \boldsymbol{c}_{5}^{\prime} = \begin{bmatrix} 5\\-2\\1\\0 \end{bmatrix}$$

Basis for *A*'s column space

$$\mathbf{c_1} = \begin{bmatrix} 1\\2\\2\\-1 \end{bmatrix}, \ \mathbf{c_3} = \begin{bmatrix} 4\\9\\9\\-4 \end{bmatrix}, \ \mathbf{c_5} = \begin{bmatrix} 5\\8\\9\\-5 \end{bmatrix}$$

Example (Basis for a Vector Space Using Row Operations)

Find a basis for the space spanned by the row vectors

$$\mathbf{v}_1 = (1, -2, 0, 0, 3), \mathbf{v}_2 = (2, -5, -3, -2, 6),$$

 $\mathbf{v}_3 = (0, 5, 15, 10, 0), \mathbf{v}_4 = (2, 6, 18, 8, 6).$

• Except for a variation in notation, the space spanned by these vectors is the row space of the matrix

$$\begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

□ The <u>nonzero row vectors</u> in this matrix are

 $\mathbf{w}_1 = (1, -2, 0, 0, 3), \mathbf{w}_2 = (0, 1, 3, 2, 0), \mathbf{w}_3 = (0, 0, 1, 1, 0)$

□ These vectors form a basis for the <u>row space</u> and consequently form a basis for the subspace of R^5 spanned by \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 .

Remarks

- Keeping in mind that A and R may have different column spaces, we cannot find a basis for the column space of A *directly* from the column vectors of R.
- However, if we can find a set of column vectors of *R* that forms a basis for the column space of *R*, then the *corresponding* column vectors of *A* will form a basis for the column space of *A*.
- The basis vectors obtained for the column space of A consisted of column vectors of A, but the basis vectors obtained for the row space of A were not all vectors of A.
- **Transpose of the matrix can be used to solve this problem.**

Example (Basis for the Row Space of a Matrix)

• Find a basis for the row space of

$$A = \begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{bmatrix}$$

consisting entirely of row vectors from *A*.

Solution:

$$A^{T} = \begin{bmatrix} 1 & 2 & 0 & 2 \\ -2 & -5 & 5 & 6 \\ 0 & -3 & 15 & 18 \\ 0 & -2 & 10 & 8 \\ 3 & 6 & 0 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 5 & -10 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\Box \quad \text{The column space of } A^T \text{ are }$

$$\mathbf{c_1} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \ \mathbf{c_2} = \begin{bmatrix} 2 \\ -5 \\ -3 \\ -2 \\ 6 \end{bmatrix}, \ \text{and} \ \mathbf{c_4} = \begin{bmatrix} 2 \\ 6 \\ 18 \\ 8 \\ 6 \end{bmatrix}$$

□ Thus, the basis vectors for the row space of *A* are

$$\mathbf{r}_1 = [1 - 2 \ 0 \ 0 \ 3]$$

 $\mathbf{r}_2 = [2 - 5 - 3 - 2 \ 6]$

 $\mathbf{r}_3 = [2\ 6\ 18\ 8\ 6]$

Example (Basis and Linear Combinations)

- (a) Find a subset of the vectors $\mathbf{v}_1 = (1, -2, 0, 3)$, $\mathbf{v}_2 = (2, -5, -3, 6)$, $\mathbf{v}_3 = (0, 1, 3, 0)$, $\mathbf{v}_4 = (2, -1, 4, -7)$, $\mathbf{v}_5 = (5, -8, 1, 2)$ that forms a basis for the space spanned by these vectors.
- (b) Express each vector not in the basis as a linear combination of the basis vectors.

• Thus, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is a basis for the column space of the matrix.

Example

Solution (b):

We can express w₃ as a linear combination of w₁ and w₂, express w₅ as a linear combination of w₁, w₂, and w₄ (Why?). By inspection, these linear combination are

$$\mathbf{w}_3 = 2\mathbf{w}_1 - \mathbf{w}_2$$
$$\mathbf{w}_5 = \mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_4$$

 We call these the dependency equations. The corresponding relationships in the original vectors are

$$\mathbf{v}_3 = 2\mathbf{v}_1 - \mathbf{v}_2$$
$$\mathbf{v}_5 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_4$$

4.8Rank, Nullity, and theFundamental Matrix Spaces

Dimension and Rank

Theorem 4.8.1

- □ If *A* is any matrix, then <u>the row space and column space of *A* have the same dimension</u>.
- Proof: Let *R* be any row-echelon form of *A*. It follows from Theorem 4.7.4 and 4.7.6b that

dim(row space of A) = dim(row space of R).

dim(column space of A) = dim(column space of R)

The dimension of the row space of *R* is the number of nonzero rows = number of leading 1's = dimension of the column space of *R*

Rank and Nullity

Definition

The common dimension of the row and column space of a matrix A is called the <u>rank</u> (秩) of A and is denoted by <u>rank(A)</u>; the dimension of the nullspace of a is called the <u>nullity</u> (零核維數) of A and is denoted by <u>nullity(A)</u>.

Example (Rank and Nullity)

• Find the rank and nullity of the matrix

$$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$$

Solution:

• The reduced row-echelon form of A is

[1	0	-4	-28	-37	13
0	1	-2	-12	-16	5
0	0	0	0	0	0
0	0	0	0	0	0

□ Since there are two nonzero rows (two leading 1's), the row space and column space are both two-dimensional, so rank(A) = 2.

Example (Rank and Nullity)

- To find the nullity of A, we must find the dimension of the solution space of the linear system Ax=0.
- The corresponding system of equations will be

$$x_1 - 4x_3 - 28x_4 - 37x_5 + 13x_6 = 0$$

$$x_2 - 2x_3 - 12x_4 - 16x_5 + 5x_6 = 0$$

□ It follows that the general solution of the system is

$$x_1 = 4r + 28s + 37t - 13u, x_2 = 2r + 12s + 16t - 5u,$$

$$x_3 = r, x_4 = s, x_5 = t, x_6 = u$$

Or
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = r \begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 28 \\ 12 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 37 \\ 16 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -13 \\ -5 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Thus, nullity(A) = 4.

Example

- What is the maximum possible rank of an $m \times n$ matrix A that is not square?
- Solution: The row space of A is at most n-dimensional and the column space is at most m-dimensional. Since the rank of A is the common dimension of its row and column space, it follows that the rank is at most the smaller of m and n.

 $rank(A) \le \min(m, n)$

Theorem 4.8.2

- Theorem 4.8.2 (Dimension Theorem for Matrices)
 - □ If *A* is a matrix with *n* columns, then rank(A) + nullity(A) = n.
- Proof:
- Since *A* has *n* columns, $A\mathbf{x} = \mathbf{0}$ has *n* unknowns. These fall into two categories: the leading variables and the free variables. variables. $\begin{bmatrix} \text{number of} \\ \text{leading variables} \end{bmatrix} + \begin{bmatrix} \text{number of} \\ \text{free variables} \end{bmatrix} = n$
- The number of leading 1's in the reduced row-echelon form of A is the rank of A

 $\operatorname{rank}(A) + \begin{bmatrix} \operatorname{number of} \\ \operatorname{free variables} \end{bmatrix} = n$
Theorem 4.8.2

The number of free variables is equal to the nullity of A. This is so because the nullity of A is the dimension of the solution space of Ax=0, which is the same as the number of parameters in the general solution, which is the same as the number of free variables. Thus

rank(A) + nullity(A) = n

$$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$$

This matrix has 6 columns, so rank(A) + nullity(A) = 6
In previous example, we know rank(A) = 4 and nullity(A) = 2

Theorem 4.8.3

Theorem 4.8.3

- If A is an $m \times n$ matrix, then:
 - rank(A) = Number of leading variables in the solution of A**x** = **0**.
 - nullity(A) = Number of parameters in the general solution of $A\mathbf{x} = \mathbf{0}$.

Example

- Find the number of parameters in the general solution of $A\mathbf{x} = \mathbf{0}$ if *A* is a 5×7 matrix of rank 3.
- Solution:
 - nullity(A) = n rank(A) = 7 3 = 4
 - Thus, there are four parameters.

Theorem 4.8.4 (Equivalent

Statements)

- If A is an $n \times n$ matrix, and if $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is multiplication by A, then the following are equivalent:
 - $\Box \qquad A \text{ is invertible.}$
 - $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - The reduced row-echelon form of A is I_n .
 - *A* is expressible as a product of elementary matrices.
 - $\Box \qquad A\mathbf{x} = \mathbf{b} \text{ is consistent for every } n \times 1 \text{ matrix } \mathbf{b}.$
 - $\Box \qquad A\mathbf{x} = \mathbf{b} \text{ has exactly one solution for every } n \times 1 \text{ matrix } \mathbf{b}.$
 - $\Box \quad \det(A) \neq 0.$
 - The column vectors of *A* are linearly independent.
 - The row vectors of *A* are linearly independent.
 - The column vectors of A span \mathbb{R}^n .
 - The row vectors of A span \mathbb{R}^n .
 - The column vectors of A form a basis for \mathbb{R}^n .
 - The row vectors of A form a basis for \mathbb{R}^n .
 - A has rank n.
 - $\Box \qquad A \text{ has nullity } 0.$

Overdetermined System

- A linear system with more equations than unknowns is called an overdetermined linear system (超定線性方程組). With fewer unknowns than equations, it's called an underdetermined system.
- Theorem 4.8.5
 - □ If $A\mathbf{x} = \mathbf{b}$ is a consistent linear system of *m* equations in *n* unknowns, and if *A* has rank *r*, then the general solution of the system contains n - rparameters.
- If A is a 5 × 7 matrix with rank 4, and if Ax=b is a consistent linear system, then the general solution of the system contains 7-4=3 parameters.

Theorem 4.8.6

- Let A be an $m \times n$ matrix
- (a) (Overdetemined Case) If m> n, then the linear system
 Ax=b is inconsistent for at least one vector b in Rⁿ.
- (b) (Underdetermined Case) If *m* < *n*, then for each vector **b** in *R^m* the linear system *A***x**=**b** is either inconsistent or has infinitely many solutions.

Proof of Theorem 4.8.6 (a)

Assume that m>n, in which case the column vectors of A cannot span R^m (fewer vectors than the dimension of R^m). Thus, there is at least one vector **b** in R^m that is not in the column space of A, and for that **b** the system A**x**=**b** is inconsistent by Theorem 4.7.1.

Proof of Theorem 4.8.6 (b)

- Assume that *m*<*n*. For each vector **b** in *Rⁿ* there are two possibilities: either the system *A***x**=**b** is consistent or it is inconsistent.
- If it is inconsistent, then the proof is complete.
- If it is consistent, then Theorem 4.8.5 implies that the general solution has *n*-*r* parameters, where *r*=rank(*A*).
- But rank(A) is the smaller of m and n, so n-r = n-m > 0
- This means that the general solution has at least one parameter and hence there are infinitely many solutions.

Example

- What can you say about the solutions of an overdetermined system Ax=b of 7 equations in 5 unknowns in which A has rank = 4?
- What can you say about the solutions of an underdetermined system Ax=b of 5 equations in 7 unknowns in which A has rank = 4?
- Solution:
 - □ (a) the system is consistent for some vector **b** in R^7 , and for any such **b** the number of parameters in the general solution is n-r=5-4=1
 - (b) the system may be consistent or inconsistent, but if it is consistent for the vector **b** in R^5 , then the general solution has n-r=7-4=3 parameters.

$$x_1 - 2x_2 = b_1$$

$$x_1 - x_2 = b_2$$

The linear system
$$x_1 + x_2 = b_3$$

$$x_1 + 2x_2 = b_4$$

$$x_1 + 3x_2 = b_5$$

is overdetermined, so it cannot be consistent for all possible values of b_1 , b_2 , b_3 , b_4 , and b_5 . Exact conditions under which the system is consistent can be obtained by solving the linear system by Gauss-Jordan elimination.

$$\begin{bmatrix} 1 & 0 & 2b_2 - b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 - 3b_2 + 2b_1 \\ 0 & 0 & b_4 - 4b_2 + 3b_1 \\ 0 & 0 & b_5 - 5b_2 + 4b_1 \end{bmatrix}$$

Example

• Thus, the system is consistent if and only if b_1 , b_2 , b_3 , b_4 , and b_5 satisfy the conditions

$$2b_{1} - 3b_{2} + b_{3} = 0$$

$$2b_{1} - 4b_{2} + b_{4} = 0$$

$$4b_{1} - 5b_{2} + b_{5} = 0$$

or, on solving this homogeneous linear system, $b_1=5r-4s$, $b_2=4r-3s$, $b_3=2r-s$, $b_4=r$, $b_5=s$ where *r* and *s* are arbitrary.

Fundamental Spaces of a Matrix

- Six important vector spaces associated with a matrix *A*
- **Row space of** A, row space of A^T
- Column space of A, column space of A^T
- Null space of A, null space of A^T
- Transposing a matrix converts row vectors into column vectors
 - Row space of A^T = column space of A
 - Column space of A^T = row space of A
- These are called the fundamental spaces of a matrix *A*

Theorem 4.8.7

- if A is any matrix, then $rank(A) = rank(A^T)$
- Proof:
 - □ Rank(A) = dim(row space of A) = dim(column space of A^T) = rank(A^T)
- If *A* is an $m \times n$ matrix, then rank(*A*)+nullity(*A*)=*n*. rank(*A^T*)+nullity(*A^T*) = *m*
- The dimensions of fundamental spaces

Fundamental Space	Dimension
Row space of A	r
Column space of A	r
Nullspace of A	n-r
Nullspace of A^T	m-r

Recap

- Theorem 3.4.3: If *A* is an $m \times n$ matrix, then the solution set of the homogeneous linear system $A\mathbf{x}=\mathbf{0}$ consists of all vectors in \mathbb{R}^n that are orthogonal to every row vector of *A*.
- The null space of *A* consists of those vectors that are orthogonal to each of the row vectors of *A*.

Orthogonality

Definition

- □ Let *W* be a subspace of \mathbb{R}^n , the set of all vectors in \mathbb{R}^n that are orthogonal to every vector in *W* is called the orthogonal complement (正交補餘) of *W*, and is denoted by W^{\perp}
- If V is a plane through the origin of R³ with Euclidean inner product, then the set of all vectors that are orthogonal to every vector in V forms the line L through the origin that is perpendicular to V.

Theorem 4.8.8

Theorem 4.8.8

- If W is a subspace of a finite-dimensional space R^n , then:
 - W^{\perp} is a subspace of \mathbb{R}^n . (read "W perp")
 - The only vector common to W and W^{\perp} is **0**; that is $W \cap W^{\perp} = \mathbf{0}$.
 - The orthogonal complement of W^{\perp} is W; that is , $(W^{\perp})^{\perp} = W$.

Orthogonal complements

Theorem 4.8.9

Theorem 4.8.9

- □ If *A* is an $m \times n$ matrix, then:
 - The <u>null space of A</u> and the <u>row space of A</u> are orthogonal complements in \mathbb{R}^n .
 - The <u>null space of A^T and the column space of A are orthogonal complements in R^m .</u>

Theorem 4.8.10 (Equivalent

Statements)

- If A is an $m \times n$ matrix, and if $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is multiplication by A, then the following are equivalent:
 - $\Box \qquad A \text{ is invertible.}$
 - $\Box \qquad A\mathbf{x} = \mathbf{0} \text{ has only the trivial solution.}$
 - The reduced row-echelon form of A is I_n .
 - A is expressible as a product of elementary matrices.
 - $\Box \qquad A\mathbf{x} = \mathbf{b} \text{ is consistent for every } n \times 1 \text{ matrix } \mathbf{b}.$
 - $\Box \qquad A\mathbf{x} = \mathbf{b} \text{ has exactly one solution for every } n \times 1 \text{ matrix } \mathbf{b}.$
 - $\Box \quad \det(A) \neq 0.$
 - The column vectors of *A* are linearly independent.
 - The row vectors of *A* are linearly independent.
 - $\Box \qquad \text{The column vectors of } A \text{ span } \mathbb{R}^n.$
 - $\Box \qquad \text{The row vectors of } A \text{ span } R^n.$
 - The column vectors of A form a basis for R^n .
 - The row vectors of A form a basis for \mathbb{R}^n .
 - A has rank n.
 - $\Box \qquad A \text{ has nullity } 0.$
 - The orthogonal complement of the nullspace of A is \mathbb{R}^n .
 - The orthogonal complement of the row space of A is $\{0\}$.

Applications of Rank

- Digital data are commonly stored in matrix form.
- Rank plays a role because it measures the "redundancy" in a matrix.
- If A is an m × n matrix of rank k, then n-k of the column vectors and m-k of the row vectors can be expressed in terms of k linearly independently column or row vectors.
- The essential idea in many data compression schemes is to approximate the original data set by a data set with smaller rank that conveys nearly the same information.

4.9Matrix Transformations from Rⁿto R^m

Functions from \mathbb{R}^n to \mathbb{R}

- A function is a rule *f* that associates with each element in a set *A* one and only one element in a set *B*.
- If f associates the element a with the element b, then we write b = f(a) and say that b is the image of a under f or that f(a) is the value of f at a.
- The set A is called the domain (定義域) of f and the set B is called the codomain (對應域) of f.
- The subset of the codomain B consisting of all possible values for f as a varies over A is called the range (值域) of f.

Formula	Example	Classification	Description
f(x)	$f(x) = x^2$	Real-valued function of a real variable	Function from <i>R</i> to <i>R</i>
f(x, y)	$f(x, y) = x^2 + y^2$	Real-valued function of two real variables	Function from R^2 to R
f(x, y, z)	$f(x, y, z) = x^{2}$ $+ y^{2} + z^{2}$	Real-valued function of three real variables	Function from R^3 to R
$f(x_1, x_2,, x_n)$	$f(x_1, x_2,, x_n) = x_1^2 + x_2^2 + + x_n^2$	Real-valued function of <i>n</i> real variables	Function from R^n to R

Function from \mathbb{R}^n to \mathbb{R}^m

Suppose $f_1, f_2, ..., f_m$ are real-valued functions of n real variables, say

$$w_1 = f_1(x_1, x_2, \dots, x_n)$$

 $w_2 = f_2(x_1, x_2, \dots, x_n)$

$$w_m = f_m(x_1, x_2, \dots, x_n)$$

These *m* equations assign a unique point $(w_1, w_2, ..., w_m)$ in R^m to each point $(x_1, x_2, ..., x_n)$ in R^n and thus define a transformation from R^n to R^m . If we denote this transformation by $T: R^n \to R^m$ then

$$T(x_1, x_2, \dots, x_n) = (w_1, w_2, \dots, w_m)$$

Function from \mathbb{R}^n to \mathbb{R}^m

■ If m = n the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called an operator (運算子) on \mathbb{R}^n .

Example: A Transformation from R² to R³

$$w_1 = x_1 + x_2$$

 $w_2 = 3x_1x_2$
 $w_3 = x_1^2 - x_2^2$

- Define a transform $T: \mathbb{R}^2 \to \mathbb{R}^3$
- With this transformation, the image of the point (x_1, x_2) is $T(x_1, x_2) = (x_1 + x_2, 3x_1x_2, x_1^2 - x_2^2)$
- Thus, for example, T(1,-2) = (-1, -6, -3)

Linear Transformations from \mathbb{R}^n to \mathbb{R}^m

• A linear transformation (or a linear operator if m = n) $T: \mathbb{R}^n \to \mathbb{R}^m$ is defined by equations of the form

 $w_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$ $w_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \quad \text{or}$ $\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$ $w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$ $w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$ $w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$ $w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$ $w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$ $w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$ $w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$

 $\mathbf{w} = A\mathbf{x}$

The matrix $A = [a_{ij}]$ is called the standard matrix for the linear transformation *T*, and *T* is called multiplication by *A*.

Example (Transformation and Linear Transformation)

• The linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^3$ defined by the equations

$$w_{1} = 2x_{1} - 3x_{2} + x_{3} - 5x_{4}$$

$$w_{2} = 4x_{1} + x_{2} - 2x_{3} + x_{4}$$

$$w_{3} = 5x_{1} - x_{2} + 4x_{3}$$
the standard matrix for T (i.e., $\mathbf{w} = A\mathbf{x}$) is $A = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix}$

$$\begin{bmatrix} w_{1} \\ w_{2} \\ w_{3} \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}$$

Notations

• Notations:

□ If it is important to emphasize that *A* is the standard matrix for *T*, we denote the linear transformation *T*: $R^n \rightarrow R^m$ by $T_A: R^n \rightarrow R^m$. Thus,

$T_A(\mathbf{x}) = A\mathbf{x}$

■ We can also denote the standard matrix for *T* by the symbol [*T*], or

 $T(\mathbf{x}) = [T]\mathbf{x}$

Theorem 4.9.1

For every matrix *A* the matrix transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ has the following properties for all vectors **u** and **v** in \mathbb{R}^n and for every scalar *k*

a (a)
$$T_A(0) = 0$$

- (b) $T_A(k\mathbf{u}) = kT_A(\mathbf{u})$ [Homogeneity property]
- $\Box T_A(\mathbf{u}+\mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v}) \quad [\text{Additivity property}]$

$$\Box T_A(\mathbf{u}-\mathbf{v}) = T_A(\mathbf{u}) - T_A(\mathbf{v})$$

Proof: $A\mathbf{0} = \mathbf{0}$, $A(k\mathbf{u}) = k(A\mathbf{u})$, $A(\mathbf{u}+\mathbf{v}) = A\mathbf{u} + A\mathbf{v}$, $A(\mathbf{u}-\mathbf{v})=A\mathbf{u}-A\mathbf{v}$

Remark

• A matrix transformation maps linear combinations of vectors in *Rⁿ* into the corresponding linear combinations in *R^m* in the sense that

 $T_A(k_1\mathbf{u}_1 + k_2\mathbf{u}_2 + \ldots + k_r\mathbf{u}_r) = k_1T_A(\mathbf{u}_1) + k_2T_A(\mathbf{u}_2) + \ldots + k_rT_A(\mathbf{u}_r)$

Depending on whether *n*-tuples and *m*-tuples are regarded as vectors or points, the geometric effect of a matrix transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is to map each vector (point) in \mathbb{R}^n into a vector in \mathbb{R}^m

Theorem 4.9.2

If $T_A: R^n \to R^m$ and $T_B: R^n \to R^m$ are matrix transformations, and if $T_A(\mathbf{x}) = T_B(\mathbf{x})$ for every vector \mathbf{x} in R^n , then A=B.

Proof:

- To say that $T_A(\mathbf{x}) = T_B(\mathbf{x})$ for every vector \mathbf{x} in \mathbb{R}^n is the same as saying that $A\mathbf{x} = B\mathbf{x}$ for every vector \mathbf{x} in \mathbb{R}^n .
- □ This is true, in particular, if **x** is any of the standard basis vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ for R^n ; that is $A\mathbf{e}_j = B\mathbf{e}_j$ (*j*=1,2,...,*n*)
- □ Since every entry of \mathbf{e}_j is 0 except for the *j*th, which is 1, it follows from Theorem 1.3.1 that $A\mathbf{e}_j$ is the *j*th column of *A*, and $B\mathbf{e}_j$ is the *j*th column of *B*. Therefore, A = B.

Zero Transformation

- Zero Transformation from R^n to R^m
 - If 0 is the m×n zero matrix and 0 is the zero vector in Rⁿ, then for every vector x in Rⁿ

$$T_0(\mathbf{x}) = \mathbf{0}\mathbf{x} = \mathbf{0}$$

So multiplication by zero maps every vector in Rⁿ into the zero vector in R^m. We call T₀ the zero transformation from Rⁿ to R^m.

Identity Operator

- Identity Operator on Rⁿ
 - If *I* is the $n \times n$ identity, then for every vector **x** in \mathbb{R}^n $T_I(\mathbf{x}) = I\mathbf{x} = \mathbf{x}$
 - So multiplication by *I* maps every vector in *Rⁿ* into itself.
 - We call T_I the identity operator on \mathbb{R}^n .

A Procedure for Finding Standard Matrices

- To find the standard matrix *A* for a matrix transformations from *Rⁿ* to *R^m*:
- $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ are the standard basis vectors for \mathbb{R}^n .
- Suppose that the images of these vectors under the transformation T_A are

$$T_A(\mathbf{e}_1) = A\mathbf{e}_1, T_A(\mathbf{e}_2) = A\mathbf{e}_2, \dots, T_A(\mathbf{e}_n) = A\mathbf{e}_n$$

• $A\mathbf{e}_j$ is just the *j*th column of the matrix A, Thus, $A = [T] = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) \mid \dots \mid T(\mathbf{e}_n)]$
Reflection Operators

- In general, operators on R^2 and R^3 that map each vector into its symmetric image about some line or plane are called reflection (倒影) operators.
- Such operators are linear.

If we let w=T(x), then the equations relating the components of x and w are

$$w_1 = -x = -x + 0y$$
$$w_2 = y = 0x + y$$

or, in matrix form

$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• The standard matrix for *T* is $\begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix}$

Reflection Operators (2-Space)

Operator	Illustration	Equations	Standard Matrix
Reflection about the y-axis	$(-x, y) \qquad $	$w_1 = -x$ $w_2 = y$	$\left[\begin{array}{rr} -1 & 0\\ 0 & 1 \end{array}\right]$
Reflection about the <i>x</i> -axis	$\mathbf{w} = T(\mathbf{x})$	$w_1 = x$ $w_2 = -y$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the line $y = x$	$\mathbf{w} = T(\mathbf{x})$ $y = x$ $\mathbf{x} (x, y) = x$	$w_1 = y$ $w_2 = x$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reflection Operators (3-Space)

Operator	Illustration	Equations	Standard Matrix
Reflection about the <i>xy</i> -plane	x $(x, y, z)(x, y, -z)$	$w_1 = x$ $w_2 = y$ $w_3 = -z$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the <i>xz</i> -plane	$(x, -y, z) \xrightarrow{z} (x, y, z)$	$w_1 = x$ $w_2 = -y$ $w_3 = z$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the <i>yz</i> -plane	x	$w_1 = -x$ $w_2 = y$ $w_3 = z$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Projection Operators

- In general, a projection operator (or more precisely an orthogonal projection operator) on R² or R³ is any operator that maps each vector into its orthogonal projection on a line or plane through the origin.
- The projection operators are linear.

• Consider the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ that maps each vector into its orthogonal projection on the *x*-axis. The equations relating the components of **x** and $\mathbf{w}=T(\mathbf{x})$ are

$$w_1 = x = x + 0y$$
$$w_2 = 0 = 0x + 0y$$

 $\begin{vmatrix} w_1 \\ w_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix}$

or, in matrix form

The standard matrix for T is
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Projection Operators

Operator	Illustration	Equations	Standard Matrix
Orthogonal projection on the <i>x</i> -axis	$\mathbf{x} = (x, y)$ $\mathbf{x} = (x, 0)$ \mathbf{x}	$w_1 = x$ $w_2 = 0$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection on the y-axis	$(0, y) \xrightarrow{y} (x, y)$	$w_1 = 0$ $w_2 = y$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Projection Operators

Operator	Illustration	Equations	Standard Matrix
Orthogonal projection on the <i>xy</i> -plane	x $(x, y, z)y$ $(x, y, 0)$	$w_1 = x$ $w_2 = y$ $w_3 = 0$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection on the <i>xz</i> -plane	$(x, 0, z) \xrightarrow{z} (x, y, z)$ $w \xrightarrow{x} y$	$w_1 = x$ $w_2 = 0$ $w_3 = z$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection on the <i>yz</i> -plane	$x = \begin{pmatrix} z & (0, y, z) \\ \vdots & (x, y, z) \\ y \end{pmatrix}$	$w_1 = 0$ $w_2 = y$ $w_3 = z$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Rotation Operators

- The rotation operator *T*:*R*² → *R*² moves points counterclockwise about the origin through an angle θ
- Find the standard matrix

•
$$T(\mathbf{e}_1) = T(1,0) = (\cos\theta, \sin\theta)$$

•
$$T(\mathbf{e}_2) = T(0,1) = (-\sin\theta, \cos\theta)$$

Operator	Illustration	Equations	Standard Matrix
Rotation through an angle θ	$\begin{array}{c} \begin{array}{c} y \\ w \\ \theta \\ x \end{array} (x, y) \\ x \end{array} x$	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

If each vector in R² is rotated through an angle of π/6 (30°), then the image w of a vector

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

is
$$\mathbf{w} = \begin{bmatrix} \cos \frac{\pi}{6} & -\sin \frac{\pi}{6} \\ \sin \frac{\pi}{6} & \cos \frac{\pi}{6} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & -\frac{1}{2} \\ \frac{1}{2} & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & x -\frac{1}{2} & y \\ \frac{1}{2} & x + \sqrt{3}/2 & y \end{bmatrix}$$

• For example, the image of the vector

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ is } \mathbf{w} = \begin{bmatrix} \frac{\sqrt{3} - 1}{2} \\ \frac{1 + \sqrt{3}}{2} \end{bmatrix}$$

A Rotation of Vectors in \mathbb{R}^3

- A rotation of vectors in *R*³ is usually described in relation to a ray emanating from (發源自) the origin, called the axis of rotation.
- As a vector revolves around the axis of rotation it sweeps out some portion of a cone (圓錐體).
- The angle of rotation is described as "clockwise" or "counterclockwise" in relation to a viewpoint that is along the axis of rotation *looking toward the origin*.
- The axis of rotation can be specified by a nonzero vector **u** that runs along the axis of rotation and has its initial point at the origin.
- The counterclockwise direction for a rotation about its axis can be determined by a "righthand rule".

A Rotation of Vectors in \mathbb{R}^3

Operator	Illustration	Equations	Standard Matrix
Counterclockwise rotation about the positive x-axis through an angle θ	y y x	$w_1 = x$ $w_2 = y \cos \theta - z \sin \theta$ $w_3 = y \sin \theta + z \cos \theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x y y	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive <i>z</i> -axis through an angle θ	x x x	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

Dilation and Contraction Operators

■ If *k* is a nonnegative scalar, the operator on R^2 or R^3 is called a contraction with factor *k* if $0 \le k \le 1$ (以因素*k*收 縮) and a dilation with factor *k* if $k \ge 1$ (以因素*k*膨脹).

Operator	Illustration	Equations	Standard Matrix
Contraction with factor k on R^3 $(0 \le k \le 1)$	$x = \begin{pmatrix} z \\ x \\ w \\ (kx, ky, kz) \\ y \\ y \\ x \\ x$	$w_1 = kx$ $w_2 = ky$ $w_3 = kz$	$\begin{bmatrix} k & 0 & 0 \end{bmatrix}$
Dilation with factor k on R^3 $(k \ge 1)$	x x (kx, ky, kz) (kx, ky, kz) (x, y, z) y	$w_1 = kx$ $w_2 = ky$ $w_3 = kz$	$\begin{bmatrix} 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$

Compression or Expansion

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a compression (0 < k < 1) or expansion (k>1) in the x-direction with factor k, then $T(\mathbf{e}_1) = T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}k\\0\end{bmatrix} \qquad T(\mathbf{e}_2) = T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$

so the standard matrix for *T* is $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$.

Similarly, the standard matrix for a compression or expansion in the y-direction is $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$

Shears

- A shear (剪) in the *x*-direction with factor *k* is a transformation that moves each point (*x*,*y*) parallel to the *x*-axis by an amount *ky* to the new position (*x*+*ky*,*y*).
- Points farther from the *x*-axis move a greater distance than those closer.

Shears

• If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a shear with factor k in the x-direction, then

$$T(\boldsymbol{e}_1) = T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}x+ky\\y\end{bmatrix} = \begin{bmatrix}1+k0\\0\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}$$
$$T(\boldsymbol{e}_2) = T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}x+ky\\y\end{bmatrix} = \begin{bmatrix}0+k1\\1\end{bmatrix} = \begin{bmatrix}k\\1\end{bmatrix}$$

- The standard matrix for *T* is $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
- Similarly, the standard matrix for a shear in the y-direction with factor k is $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Example (Standard Matrix for a Projection Operator)

- Let *l* be the line in the *xy*-plane that passes through the origin and makes an angle θ with the positive *x*-axis, where $0 \le \theta \le \pi$. Let $T: R^2 \rightarrow R^2$ be a linear operator that maps each vector into orthogonal projection on *l*.
 - Find the standard matrix for *T*.
 - Find the orthogonal projection of the vector $\mathbf{x} = (1,5)$ onto the line through the origin that makes an angle of $\theta = \pi/6$ with the positive *x*-axis.

The standard matrix for T can be written as $[T] = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)]$ Consider the case $0 \le \theta \le \pi/2$. $||T(\mathbf{e}_1)|| = \cos \theta$ $T(\mathbf{e}_1) = \begin{vmatrix} \|T(\mathbf{e}_1)\|\cos\theta \\ \|T(\mathbf{e}_1)\|\sin\theta \end{vmatrix} = \begin{vmatrix} \cos^2\theta \\ \sin\theta\cos\theta \end{vmatrix}$ $||T(\mathbf{e}_2)|| = \sin \theta$ $T(\mathbf{e}_2) = \begin{vmatrix} \|T(\mathbf{e}_2)\|\cos\theta \\ \|T(\mathbf{e}_2)\|\sin\theta \end{vmatrix} = \begin{bmatrix} \sin\theta\cos\theta \\ \sin^2\theta \end{bmatrix}$ $[T] = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$

$$[T] = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

Since sin $(\pi/6) = 1/2$ and cos $(\pi/6) = \sqrt{3}/2$, it follows from part (a) that the standard matrix for this projection operator is

$$[T] = \begin{bmatrix} 3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 1/4 \end{bmatrix}$$

Thus,

$$T\left(\begin{bmatrix}1\\5\end{bmatrix}\right) = \begin{bmatrix}3/4 & \sqrt{3}/4\\\sqrt{3}/4 & 1/4\end{bmatrix}\begin{bmatrix}1\\5\end{bmatrix} = \begin{bmatrix}\frac{3+5\sqrt{3}}{4}\\\frac{\sqrt{3}+5}{4}\end{bmatrix}$$

Reflections About Lines Through the

Origin

• Let P_{θ} denote the standard matrix of orthogonal projections on lines through the origin

 $P_{\theta}\mathbf{x} - \mathbf{x} = (1/2)(H_{\theta}\mathbf{x} - \mathbf{x}), \text{ or equivalently } H_{\theta}\mathbf{x} = (2 P_{\theta} - I)\mathbf{x}$ $H_{\theta} = (2 P_{\theta} - I)$

$$H_{\theta} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

4.10Properties of MatrixTransformations

Composition of T_B with T_A

Definition

□ If $T_A : R^n \to R^k$ and $T_B : R^k \to R^m$ are linear transformations, *the composition of* T_B *with* T_A , denoted by $T_B \circ T_A$ (read " T_B circle T_A "), is the function defined by the formula

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x}))$$

where **x** is a vector in \mathbb{R}^n .

Composition of T_B with T_A

This composition is itself a matrix transformation since

 $(T_B \circ T_A)(\mathbf{x}) = (T_B(T_A(\mathbf{x})) = B(T_A(\mathbf{x})) = B(A\mathbf{x}) = (BA)\mathbf{x}$

• It is multiplication by *BA*, i.e. $T_B \circ T_A = T_{BA}$

The compositions can be defined for more than two linear transformations.

For example, if $T_1: U \to V$ and $T_2: V \to W$, and $T_3: W \to Y$ are linear transformations, then the composition $T_3 \circ T_2 \circ T_1$ is defined by $(T_3 \circ T_2 \circ T_1)(\mathbf{u}) = T_3 (T_2 (T_1 (\mathbf{u})))$

Remark

- It is not true, in general, that AB = BA
- So it is not true, in general, that $T_B \circ T_A = T_A \circ T_B$

- Let $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ be the matrix operators that rotate vectors through the angles θ_1 and θ_2 , respectively.
- The operation $(T_2 \circ T_1)(\mathbf{x}) = T_2(T_1(\mathbf{x}))$ first rotates \mathbf{x} through the angle θ_1 , then rotates $T_1(\mathbf{x})$ through the angle θ_2 .

$$[T_1] = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} [T_2] = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix}$$
$$[T_2 \circ T_1] = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}$$
$$[T_2][T_1] = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix} \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos \theta_2 \cos \theta_1 - \sin \theta_2 \sin \theta_1 & -(\cos \theta_2 \sin \theta_1 + \sin \theta_2 \cos \theta_1) \\ \sin \theta_2 \cos \theta_1 + \cos \theta_2 \sin \theta_1 & -\sin \theta_2 \sin \theta_1 + \cos \theta_2 \cos \theta_1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix} = [T_2 \circ T_1]$$

Composition is Not Commutative

- Let T_1 be the reflection operator
- Let T₂ be the orthogonal projection on the y-axis

$$\begin{bmatrix} T_1 \circ T_2 \end{bmatrix} = \begin{bmatrix} T_1 \end{bmatrix} \begin{bmatrix} T_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} T_2 \circ T_1 \end{bmatrix} = \begin{bmatrix} T_2 \end{bmatrix} \begin{bmatrix} T_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
so
$$\begin{bmatrix} T_1 \circ T_2 \end{bmatrix} \neq \begin{bmatrix} T_2 \circ T_1 \end{bmatrix}$$

Composition of Two Reflections

• Let T_1 be the reflection about the y-axis, and let T_2 be the reflection about the x-axis. In this case, $T_1 \circ T_2$ and $T_2 \circ T_1$ are the same.

$$(T_1 \circ T_2)(x, y) = T_1(x, -y) = (-x, -y)$$

 $(T_2 \circ T_1)(x, y) = T_2(-x, y) = (-x, -y)$

$$\begin{bmatrix} T_1 \circ T_2 \end{bmatrix} = \begin{bmatrix} T_1 \end{bmatrix} \begin{bmatrix} T_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\begin{bmatrix} T_2 \circ T_1 \end{bmatrix} = \begin{bmatrix} T_2 \end{bmatrix} \begin{bmatrix} T_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

One-to-One Linear transformations

Definition

■ A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if T maps distinct vectors (points) in \mathbb{R}^n into distinct vectors (points) in \mathbb{R}^m

Remark:

□ That is, for each vector **w** in the range of a one-to-one linear transformation *T*, there is exactly one vector **x** such that $T(\mathbf{x}) = \mathbf{w}$.

One-to-one linear transformation

Distinct vectors \mathbf{u} and \mathbf{v} are rotated into distinct vectors $T(\mathbf{u})$ and $T(\mathbf{v})$.

Not one-to-one linear transformation

The distinct points P and Q are mapped into the same point M.

Theorem 4.10.1 (Equivalent Statements)

- If *A* is an $n \times n$ matrix and $T_A : R^n \to R^n$ is multiplication by *A*, then the following statements are equivalent.
 - A is invertible
 - The range of T_A is R^n
 - \Box T_A is one-to-one

Proof of Theorem 4.10.1

- (a) \rightarrow (b): Assume *A* is invertible. $A\mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix **b** in \mathbb{R}^n . This implies that T_A maps **x** into the arbitrary vector **b** in \mathbb{R}^n , which implies the range of T_A is \mathbb{R}^n .
- (b) \rightarrow (c): Assume the range of T_A is R^n . For every vector **b** in R^n there is some vector **x** in R^n for which $T_A(\mathbf{x})=\mathbf{b}$ and hence the linear system $A\mathbf{x}=\mathbf{b}$ is consistent for every vector **b** in R^n . But we know $A\mathbf{x}=\mathbf{b}$ has a unique solution, and hence for every vector **b** in the range of T_A there is exactly one vector **x** in R^n such that $T_A(\mathbf{x})=\mathbf{b}$.

• The rotation operator $T : \mathbb{R}^2 \to \mathbb{R}^2$ is one-to-one

• The standard matrix for T is
$$[T] = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

• [T] is invertible since

$$\det \begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix} = \cos^2\theta + \sin^2\theta = 1 \neq 0$$

- The projection operator $T : \mathbb{R}^3 \to \mathbb{R}^3$ is not one-to-one • The standard matrix for T is $[T] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - $\Box [T] is not invertible since det[T] = 0$

Inverse of a One-to-One Linear Operator

- Suppose $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is a one-to-one linear operator \Rightarrow The matrix A is invertible.
 - $\Rightarrow T_A^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is itself a linear operator; it is called the inverse of T_A .

$$\Rightarrow T_A(T_A^{-1}(\mathbf{x})) = AA^{-1}\mathbf{x} = I\mathbf{x} = \mathbf{x} \text{ and}$$
$$T_A^{-1}(T_A(\mathbf{x})) = A^{-1}A\mathbf{x} = I\mathbf{x} = \mathbf{x}$$

$$\Rightarrow T_A \circ T_{A^{-1}} = T_{AA^{-1}} = T_I \text{ and}$$
$$T_{A^{-1}} \circ T_A = T_{A^{-1}A} = T_I$$

Inverse of a One-to-One Linear Operator

• If w is the image of x under T_A , then T_A^{-1} maps w back into x, since

$$T_{A}^{-1}(\mathbf{w}) = T_{A}^{-1}(T_{A}(\mathbf{x})) = \mathbf{x}$$

- When a one-to-one linear operator on \mathbb{R}^n is written as $T: \mathbb{R}^n \to \mathbb{R}^n$, then the inverse of the operator *T* is denoted by T^{-1} .
- Thus, by the standard matrix, we have $[T^{-1}] = [T]^{-1}$

- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the operator that rotates each vector in \mathbb{R}^2 through the angle θ : $[T] = \begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix}$
- Undo the effect of T means rotate each vector in R^2 through the angle $-\theta$.
- This is exactly what the operator T^{-1} does: the standard matrix T^{-1} is $[T^{-1}] = [T]^{-1} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$
 - The only difference is that the angle θ is replaced by $-\theta$
Show that the linear operator $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equations

$$w_1 = 2x_1 + x_2 w_2 = 3x_1 + 4x_2$$

is one-to-one, and find $T^{-1}(w_1, w_2)$.

Solution:

$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies [T] = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \implies [T^{-1}] = [T]^{-1} = \begin{bmatrix} \frac{4}{5} & -\frac{1}{5} \\ -\frac{3}{5} & \frac{2}{5} \end{bmatrix}$$

$$\begin{bmatrix} T^{-1} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} & -\frac{1}{5} \\ -\frac{3}{5} & \frac{2}{5} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} w_1 - \frac{1}{5} w_2 \\ -\frac{3}{5} w_1 + \frac{2}{5} w_2 \end{bmatrix}$$

$$\implies T^{-1}(w_1, w_2) = (\frac{4}{5} w_1 - \frac{1}{5} w_2, -\frac{3}{5} w_1 + \frac{2}{5} w_2)$$

Linearity Properties

- Theorem 4.10.2 (Properties of Linear Transformations)
 - □ A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear if and only if the following relationships hold for all vectors **u** and **v** in \mathbb{R}^n and every scalar *c*.

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

• $T(c\mathbf{u}) = cT(\mathbf{u})$

Proof of Theorem 4.10.2

- Conversely, assume that properties (a) and (b) hold for the transformation *T*. We can prove that *T* is linear by finding a matrix *A* with the property that *T*(**x**) = *A***x** for all vectors **x** in *Rⁿ*.
- The property (a) can be extended to three or more terms. $T(\mathbf{u}+\mathbf{v}+\mathbf{w}) = T(\mathbf{u}+(\mathbf{v}+\mathbf{w})) = T(\mathbf{u})+T(\mathbf{v}+\mathbf{w}) = T(\mathbf{u})+T(\mathbf{v})+T(\mathbf{w})$
- More generally, for any vectors v₁, v₂, ..., v_k in Rⁿ, we have

$$T(\mathbf{v}_1 + \mathbf{v}_2 + \ldots + \mathbf{v}_k) = T(\mathbf{v}_1) + T(\mathbf{v}_2) + \ldots + T(\mathbf{v}_k)$$

Proof of Theorem 4.10.2

Now, to find the matrix A, let $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ be the vectors

• Let *A* be the matrix whose successive column vectors are $T(\mathbf{e}_1), T(\mathbf{e}_2), \dots, T(\mathbf{e}_n)$; that is $A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) \mid \dots \mid T(\mathbf{e}_n)]$

Proof of Theorem 4.10.2

• If
$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 is any vector in R^n , then as discussed in

Section 1.3, the product $A\mathbf{x}$ is a linear combination of the column vectors of A with coefficients \mathbf{x} , so

$$A\mathbf{x} = x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2) + \dots + x_n T(\mathbf{e}_n)$$

= $T(x_1 \mathbf{e}_1) + T(x_2 \mathbf{e}_2) + \dots + T(x_n \mathbf{e}_n)$
= $T(x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n)$
= $T(\mathbf{x})$

Theorem 4.10.3

Every linear transformation from Rⁿ to R^m is a matrix transformation, and conversely, every matrix transformation from Rⁿ to R^m is a linear transformation.

Theorem 4.10.4 (Equivalent

Statements)

- If A is an $m \times n$ matrix, and if $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is multiplication by A, then the following are equivalent:
 - $\Box \qquad A \text{ is invertible.}$
 - $\Box \qquad A\mathbf{x} = \mathbf{0} \text{ has only the trivial solution.}$
 - The reduced row-echelon form of A is I_n .
 - A is expressible as a product of elementary matrices.
 - $\Box \qquad A\mathbf{x} = \mathbf{b} \text{ is consistent for every } n \times 1 \text{ matrix } \mathbf{b}.$
 - $\Box \qquad A\mathbf{x} = \mathbf{b} \text{ has exactly one solution for every } n \times 1 \text{ matrix } \mathbf{b}.$
 - $\Box \quad \det(A) \neq 0.$
 - The column vectors of *A* are linearly independent.
 - The row vectors of *A* are linearly independent.
 - $\Box \qquad \text{The column vectors of } A \text{ span } \mathbb{R}^n.$
 - $\Box \qquad \text{The row vectors of } A \text{ span } \mathbb{R}^n.$
 - The column vectors of A form a basis for \mathbb{R}^n .
 - The row vectors of A form a basis for \mathbb{R}^n .
 - A has rank n.
 - $\Box \qquad A \text{ has nullity } 0.$
 - The orthogonal complement of the nullspace of A is \mathbb{R}^n .
 - The orthogonal complement of the row space of A is $\{0\}$.
 - The range of T_A is R^n .
 - $\Box \quad T_A \text{ is one-to-one.}$

4.11Geometry of Matrix Operations

Example: Transforming with Diagonal Matrices

Suppose that the *xy*-plane first is compressed or expanded by a factor of k₁ in the *x*-direction and then is compressed or expanded by a factor of k₂ in the *y*-direction. Find a single matrix operator that performs both operations.

$$\begin{bmatrix} k_1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x$$
-compression (expansion) y-compression (expansion)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & k_2 \end{bmatrix} \begin{bmatrix} k_1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$$

If $k_1 = k_2 = k$, this is a contraction or dilation. $A = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$

- Find a matrix transformation from R^2 to R^2 that first shears by a factor of 2 in the *x*-direction and then reflects about y = x.
- The standard matrix for the shear is $A_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

and for the reflection is $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Thus the standard matrix for the sear followed by the reflection is $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$

$$A_2 A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$

Find a matrix transformation from R^2 to R^2 that first reflects about y = x and then shears by a factor of 2 in the *x*-direction.

$$A_1 A_2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$

• Note that $A_1A_2 \neq A_2A_1$

Geometry

Geometry of One-to-One Matrix

Operators

A matrix transformation T_A is **one-to-one** if and only if A is **invertible** and **can be expressed as a product of elementary matrices**. $A = E_1 E_2 \cdots E_n$

$$T_A = T_{E_1 E_2 \cdots E_r} = T_{E_1} \circ T_{E_2} \circ \cdots \circ T_{E_r}$$

- **Theorem 4.11.1:** If *E* is an elementary matrix, then $T_E: \mathbb{R}^2 \to \mathbb{R}^2$ is one of the following:
 - □ A shear along a coordinate axis
 - □ A reflection about y=x
 - □ A compression along a coordinate axis
 - An expansion along a coordinate axis
 - □ A reflection about a coordinate axis
 - A compression or expansion along a coordinante axis followed by a reflection about a coordinate axis

Proof of Theorem 4.11.1

Because a 2 × 2 elementary matrix results from performing a single elementary row operation on the 2 × 2 identity matrix, it must have one of the following forms:

$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$
 and
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$
 represent shears along coordinates axes.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 represents a reflection about $y = x$.

Proof of Theorem 4.11.1

$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$$

$$If k > 0, \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} and \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} represent compressions or$$

expansion along coordinate axes, depending on whether $0 \le k \le 1$ (compression) or $k \ge 1$ (expansion).

• If k < 0, and if we express k in the form $k = -k_1$, where $k_1 > 0$, then $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -k_1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} k_1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & k \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & -k_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Proof of Theorem 4.11.1

$$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -k_1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} k_1 & 0 \\ 0 & 1 \end{bmatrix}$$

It represents a compression or expansion along the x-axis followed by a reflection about the y-axis.

$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -k_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & k_1 \end{bmatrix}$$

It represents a compression or expansion along the y-axis followed by a reflection about the x-axis.

Theorem 4.11.2

If T_A:R²→ R² is multiplication by an invertible matrix A, then the geometric effect of T_A is the same as an appropriate succession of shears, compressions, expansions, and reflections.

Example: Geometric Effect of Multiplication by a Matrix

Assuming that k_1 and k_2 are positive, express the diagonal matrix $A = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$ as a product of elementary matrices, and describe the geometric effect of multiplication by A in terms of compressions and expansions. *interchangeable!*

We know

$$A = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & k_2 \end{bmatrix} \begin{bmatrix} k_1 & 0 \\ 0 & 1 \end{bmatrix}$$

which shows the geometric effect of compressing or expanding by a factor of k_1 in the *x*-direction and then compressing or expanding by a factor of k_2 in the *y*-direction.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

- Express A as a product of elementary matrices, and then describe the geometric effect of multiplication by A in terms of shears, compressions, expansion, and reflections.
- *A* can be reduced to *I* as follows:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Add -3 times the first
row to the secondMultiply the second
row by -1/2Add -2 times the second
row to the first

The three successive row operations can be performed by multiplying on the left successively by

$$E_1 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \qquad E_2 = \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} \qquad E_3 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

- Inverting these matrices $A = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 3 & 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
- Reading from right to left and noting that $\begin{bmatrix}
 1 & 0 \\
 0 & -2
 \end{bmatrix} =
 \begin{bmatrix}
 1 & 0 \\
 0 & -1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 \\
 0 & 2
 \end{bmatrix}$

it follows that the effect of multiplying by A is equivalent to

- 1. shearing by a factor of 2 in the *x*-direction,
- 2. then expanding by a factor of 2 in the y-direction,
- 3. then reflecting about the *x*-axis,
- 4. then shearing by a factor of 3 in the y-direction.

Theorem 4.11.3

- If $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is multiplication by an invertible matrix, then
 - (a) the image of a straight line is a straight line.
 - (b) the image of a straight line through the origin is a straight line through the origin.
 - (c) the images of parallel straight lines are parallel straight lines.
 - (d) the images of the line segment joining points P and Q is the line segment joining the images of P and Q.
 - (e) the images of three points lie on a line if and only if the points themselves line on some line.

Example: Image of a Square

Sketch the images of the unit square under multiplication by

 $A = \begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix}$ Since $\begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix} \begin{vmatrix} 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix} \begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = \begin{vmatrix} -1 \\ 2 \end{vmatrix}$ $\begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix} \begin{vmatrix} 0 \\ 1 \end{vmatrix} = \begin{vmatrix} 2 \\ -1 \end{vmatrix} \qquad \begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix} \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ (0,1) (1,1)(1,1) (0,0)(1,0)(0,0)X

Example: Image of a Line $A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$

- The invertible matrix maps the line y=2x+1 into another line. Find its equation.
- Let (x,y) be a point on the line y=2x+1, and let (x',y') be its image under multiplication by A. Then

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 3 & 1\\2 & 1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} \implies \begin{bmatrix} x\\y \end{bmatrix} \implies \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 3 & 1\\2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 1 & -1\\-2 & 3 \end{bmatrix} \begin{bmatrix} x'\\y' \end{bmatrix}$$

So
$$\begin{aligned} x = x' - y'\\y = -2x' + 3y' \qquad \Longrightarrow \qquad y' = \frac{4}{5}x' + \frac{1}{5} \end{aligned}$$

• Thus (x', y') satisfies $y = \frac{4}{5}x + \frac{1}{5}$, which is the equation we want.