
4.7 

Row Space, Column Space, 

and Null Space 
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Row Space and Column Space 

 Definition 

 If A is an mn matrix, then the subspace of Rn spanned by 

the row vectors of A is called the row space (列空間) of A, 

and the subspace of Rm spanned by the column vectors is 

called the column space (行空間) of A.  

 The solution space of the homogeneous system of equation 

Ax = 0, which is a subspace of Rn, is called the null space (

零核空間) of A. 

 

 

 



Remarks 

 In this section we will be concerned with two 

questions 

 What relationships exist between the solutions of a linear 

system Ax=b and the row space, column space, and null 

space of A.  

 What relationships exist among the row space, column 

space, and null space of a matrix.  
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Remarks 

 It follows from Formula (10) of Section 1.3 

 

 

 

 

 We conclude that Ax=b is consistent if and only if b is 

expressible as a linear combination of the column 

vectors of A or, equivalently, if and only if b is in the 

column space of A.  
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Theorem 4.7.1 

 Theorem 4.7.1 

 A system of linear equations Ax = b is consistent if 

and only if b is in the column space of A. 
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Example  

 Let Ax = b be the linear system 

 

Show that b is in the column space of A, and express b as a linear 

combination of the column vectors of A. 

 

 Solution: 

 Solving the system by Gaussian elimination yields  

x1 = 2, x2 = -1, x3 = 3 

 Since the system is consistent, b is in the column space of A.  

 Moreover, it follows that 
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General and Particular Solutions 

 Theorem 4.7.2 

 If x0 denotes any single solution of a consistent linear 
system Ax = b, and if v1, v2, …, vk form a basis for the null 
space of A, (that is, the solution space of the homogeneous 
system Ax = 0), then every solution of Ax = b can be 
expressed in the form  

x = x0 + c1v1 + c2v2 + · · · + ckvk 

 Conversely, for all choices of scalars c1, c2, …, ck, the 
vector x in this formula is a solution of Ax = b. 

 



Proof of Theorem 4.7.2 

 Assume that x0 is any fixed solution of Ax=b and that x is 

an arbitrary solution. Then Ax0 = b and Ax = b.  

 Subtracting these equations yields 

Ax – Ax0 = 0    or    A(x-x0)=0 

 Which shows that x-x0 is a solution of the homogeneous 

system Ax = 0.  

 Since v1, v2, …, vk is a basis for the solution space of this 

system, we can express x-x0 as a linear combination of 

these vectors, say x-x0 = c1v1+c2v2+…+ckvk. Thus, 

x=x0+c1v1+c2v2+…+ckvk.  
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Proof of Theorem 4.7.2 

 Conversely, for all choices of the scalars c1,c2,…,ck, we 

have 

Ax = A(x0+c1v1+c2v2+…+ckvk) 

Ax = Ax0 + c1(Av1) + c2(Av2) + … + ck(Avk) 

 But x0 is a solution of the nonhomogeneous system, and 

v1, v2, …, vk are solutions of the homogeneous system, so 

the last equation implies that  

Ax = b + 0 + 0 + … + 0 = b 

 Which shows that x is a solution of Ax = b.  
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Remark 

 Remark  

 The vector x0 is called a particular solution (特解) of Ax = 
b.  

 The expression x0 + c1v1 + · · · + ckvk is called the general 
solution (通解) of Ax = b, the expression c1v1 + · · · + ckvk 

is called the general solution of Ax = 0. 

 The general solution of Ax = b is the sum of any particular 
solution of Ax = b and the general solution of Ax = 0. 
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Example (General Solution of Ax = b) 

 The solution to the 
nonhomogeneous system 
 

   x1 + 3x2 – 2x3          + 2x5             = 0 

 2x1 + 6x2 – 5x3 – 2x4 + 4x5  – 3x6   = -1 

                    5x3 + 10x4         + 15x6 = 5 

 2x1 + 5x2          + 8x4 + 4x5 + 18x6 = 6 

  
is  
 
x1 = -3r - 4s - 2t, x2 = r,  
x3 = -2s, x4 = s,  
x5 = t, x6 = 1/3 

 

 The result can be written in vector 
form as 

 

 

 

 

 

  
 
which is the general solution. 

 The vector x0 is a particular 
solution of nonhomogeneous 
system, and the linear 
combination x is the general 
solution of the homogeneous 
system. 
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Elementary Row Operation 

 Performing an elementary row operation on an 

augmented matrix does not change the solution set of the 

corresponding linear system.  

 It follows that applying an elementary row operation to a 

matrix A does not change the solution set of the 

corresponding linear system Ax=0, or stated another way, 

it does not change the null space of A.  
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The solution space of the homogeneous system of equation Ax = 0, which is a 

subspace of Rn, is called the null space of A. 
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Example  

 Find a basis for the nullspace of 

 

 

 Solution 
 The nullspace of A is the solution space of the homogeneous system 

   2x1 + 2x2 –    x3                       + x5 = 0 

    -x1  – x2     – 2 x3  – 3x4 + x5  = 0 

     x1  + x2     – 2 x3                 – x5   = 0 

                            x3  +  x4 + x5  = 0 

 In Example 10 of Section 4.5 we showed that the vectors 
 
 
 
 
 
 
 
 
form a basis for the nullspace. 

2 2 1 0 1

1 1 2 3 1

1 1 2 0 1

0 0 1 1 1

A
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1 1

1 0
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Theorems 4.7.3 and 4.7.4 

 Theorem 4.7.3 
 Elementary row operations do not change the nullspace of a 

matrix. 

 

 Theorem 4.7.4 
 Elementary row operations do not change the row space of a 

matrix.  



Proof of Theorem 4.7.4 

 Suppose that the row vectors of a matrix A are r1,r2,…,rm, 

and let B be obtained from A by performing an 

elementary row operation. (We say that A and B are row 

equivalent.) 

 We shall show that every vector in the row space of B is 

also in that of A, and that every vector in the row space of 

A is in that of B.  

 If the row operation is a row interchange, then B and A 

have the same row vectors and consequently have the 

same row space.  
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Proof of Theorem 4.7.4 

 If the row operation is multiplication of a row by a 

nonzero scalar or a multiple of one row to another, then 

the row vector r1’,r2’,…,rm’ of B are linear combination 

of r1,r2,…,rm; thus they lie in the row space of A.  

 Since a vector space is closed under addition and scalar 

multiplication, all linear combination of r1’,r2’,…,rm’ will 

also lie in the row space of A. Therefore, each vector in 

the row space of B is in the row space of A.  
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Proof of Theorem 4.7.4 

 Since B is obtained from A by performing a row 

operation, A can be obtained from B by performing the 

inverse operation (Sec. 1.5). 

 Thus the argument above shows that the row space of A is 

contained in the row space of B.  
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Remarks 

 Do elementary row operations change the column space?  

 Yes! 

 The second column is a scalar multiple of the first, so the 

column space of A consists of all scalar multiplies of the 

first column vector.  

 

 

 Again, the second column is a scalar multiple of the first, 

so the column space of B consists of all scalar multiples 

of the first column vector. This is not the same as the 

column space of A.  
18 

Add -2 times the first 

row to the second 



Theorem 4.7.5 

 Theorem 4.7.5 
 If a matrix R is in row echelon form, then the row 

vectors with the leading 1’s (i.e., the nonzero row 
vectors) form a basis for the row space of R, and 
the column vectors with the leading 1’s of the row 
vectors form a basis for the column space of R. 
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Bases for Row and Column Spaces 

1

2

3

The matrix

1 2 5 0 3

0 1 3 0 0
       

0 0 0 1 0

0 0 0 0 0

is in row-echelon form. From Theorem 5.5.6 the vectors

[1 -2 5 0 3]

               [0 1 3 0 0]

               [0 0 0 1 0]

form a

R

 
 
 
 
 
 







               r

r

r

1 2 4

 basis for the row space of R, and the vectors

1 2 0

0 1 0
               ,   ,   

0 0 1

0 0 0

form a basis for the column space of R.

     
     
       
     
     
     

c c c
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Example  

 Find bases for the row and column spaces of 

 

 

 Solution: 

 Since elementary row operations do not change the row space of a 

matrix, we can find a basis for the row space of A by finding a basis that 

of any row-echelon form of A.  

 Reducing A to row-echelon form we obtain 

 

 

 

1 3 4 2 5 4

2 6 9 1 8 2

2 6 9 1 9 7

1 3 4 2 5 4

A

  
 

 
 
  
 
    

1 3 4 2 5 4

0 0 1 3 2 6

0 0 0 0 1 5

0 0 0 0 0 0

R

  
 

 
 
 
 
 



Example 

 The basis vectors for the row space of R and A 

  r1 = [1 -3 4 -2 5 4] 

  r2 = [0 0 1 3 -2 -6]   

  r3 = [0 0 0 0 1 5] 

 Keeping in mind that A and R may have different column 

spaces, we cannot find a basis for the column space of A 

directly from the column vectors of R.  
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1 3 4 2 5 4

0 0 1 3 2 6

0 0 0 0 1 5

0 0 0 0 0 0

R

  
 

 
 
 
 
 

1 3 4 2 5 4

2 6 9 1 8 2

2 6 9 1 9 7

1 3 4 2 5 4

A

  
 

 
 
  
 
    



Theorem 4.7.6 

 Theorem 4.7.6 
 If A and B are row equivalent matrices, then: 

 A given set of column vectors of A is linearly 
independent if and only if the corresponding column 
vectors of B are linearly independent. 

 A given set of column vectors of A forms a basis for the 
column space of A if and only if the corresponding 
column vectors of B form a basis for the column space of 
B. 
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Example 

 We can find the basis for the column space of R, then the 

corresponding column vectors of A will form a basis for the 

column space of A.  

 Basis for R’s column space 

 

 

 

 Basis for A’s column space 
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1 3 4 2 5 4

0 0 1 3 2 6

0 0 0 0 1 5

0 0 0 0 0 0

R

  
 

 
 
 
 
 

1 3 4 2 5 4

2 6 9 1 8 2

2 6 9 1 9 7

1 3 4 2 5 4

A

  
 

 
 
  
 
    

1 4 5

2 9 8
,  ,  

2 9 9

1 4 5
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Example (Basis for a Vector Space 

Using Row Operations ) 
 Find a basis for the space spanned by the row vectors 

v1= (1, -2, 0, 0, 3), v2 = (2, -5, -3, -2, 6),  

v3 = (0, 5, 15, 10, 0), v4 = (2, 6, 18, 8, 6). 

 Except for a variation in notation, the space spanned by these 
vectors is the row space of the matrix 

 

 

 

 

 The nonzero row vectors in this matrix are  

w1= (1, -2, 0, 0, 3), w2 = (0, 1, 3, 2, 0), w3 = (0, 0, 1, 1, 0)  

 These vectors form a basis for the row space and consequently form a 
basis for the subspace of R5 spanned by v1, v2, v3, and v4. 

1 2 0 0 3

2 5 3 2 6

0 5 15 10 0

2 6 18 8 6

 
 

  
 
 
 
 

1 2 0 0 3

0 1 3 2 0

0 0 1 1 0

0 0 0 0 0
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Remarks  

 Keeping in mind that A and R may have different column spaces, we 

cannot find a basis for the column space of A directly from the 

column vectors of R. 

 However, if we can find a set of column vectors of R that forms a 

basis for the column space of R, then the corresponding column 

vectors of A will form a basis for the column space of A. 

 

 The basis vectors obtained for the column space of A consisted 

of column vectors of A, but the basis vectors obtained for the 

row space of A were not all vectors of A. 

 Transpose of the matrix can be used to solve this problem. 
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Example (Basis for the Row Space of a 

Matrix ) 
 Find a basis for the row space of  

 

 

 

 

 

consisting entirely of row vectors 

from A. 

 

 Solution:  

 

 

 

 

 The column space of AT are 

 

 

 

 

 

 

 Thus, the basis vectors for the row 

space of A are 

  r1 = [1 -2 0 0 3] 

  r2 = [2 -5 -3 -2 6] 

  r3 = [2 6 18 8 6] 

1 2 0 0 3

2 5 3 2 6

0 5 15 10 0

2 6 18 8 6

A

 
 

  
 
 
 
 

1 2 0 2

2 5 5 6

0 3 15 18

0 2 10 8

3 6 0 6

TA

 
 
 
 
  
 

 
  

1 2 0 2

0 1 5 10

0 0 0 1

0 0 0 0

0 0 0 0

 
 


 
 
 
 
  

1 2 2

2 5 6

,  ,  and  0 3 18

0 2 8

3 6 6

     
     
 
     
       
     

     
          

1 2 4c c c
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 (a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -5, -3, 6), v3 
= (0, 1, 3, 0), v4 = (2, -1, 4, -7), v5 = (5, -8, 1, 2) that forms a basis 
for the space spanned by these vectors. 

 (b) Express each vector not in the basis as a linear combination of 
the basis vectors. 

 

 Solution (a):  

 

 

 

 

 

 Thus, {v1, v2, v4} is a basis for the column space of the matrix. 

Example (Basis and Linear Combinations) 

54321                     

                          

27063

14330

81152

52021

vvvvv



























54321         

                 

00000

11000

10110

10201

wwwww

























29 

Example 

 Solution (b): 

 We can express w3 as a linear combination of w1 and w2, express 

w5 as a linear combination of w1, w2, and w4 (Why?). By 

inspection, these linear combination are 

    w3 = 2w1 – w2 

    w5 = w1 + w2 + w4 

 We call these the dependency equations. The corresponding 

relationships in the original vectors are  

    v3 = 2v1 – v2 

    v5 = v1 + v2 + v4 



4.8 

Rank, Nullity, and the 

Fundamental Matrix Spaces 
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Dimension and Rank 

 Theorem 4.8.1 

 If A is any matrix, then the row space and column space of A 

have the same dimension. 

 Proof: Let R be any row-echelon form of A. It follows from 

Theorem 4.7.4 and 4.7.6b that  

dim(row space of A) = dim(row space of R).  

dim(column space of A) = dim(column space of R) 

 The dimension of the row space of R is the number of nonzero 

rows = number of leading 1’s = dimension of the column 

space of R  

 



Rank and Nullity 

 Definition 

 The common dimension of the row and column space of a matrix 

A is called the rank (秩) of A and is denoted by rank(A); the 

dimension of the nullspace of a is called the nullity (零核維數) 

of A and is denoted by nullity(A). 
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Example (Rank and Nullity) 

 Find the rank and nullity of the matrix 

 

 

 

 

 Solution: 

 The reduced row-echelon form of A is 

 

 

 

 

 Since there are two nonzero rows (two leading 1’s), the row space and 
column space are both two-dimensional, so rank(A) = 2. 

1 2 0 4 5 3

3 7 2 0 1 4

2 5 2 4 6 1

4 9 2 4 4 7

A

  
 


 
 
 

   

1 0 4 28 37 13

0 1 2 12 16 5

0 0 0 0 0 0

0 0 0 0 0 0
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Example (Rank and Nullity) 

 To find the nullity of A, we must find the dimension of the 
solution space of the linear system Ax=0. 

 The corresponding system of equations will be  

x1 – 4x3 – 28x4 – 37x5 + 13x6 = 0 

x2 – 2x3 – 12x4 – 16 x5+ 5 x6 = 0 

 It follows that the general solution of the system is 

x1 = 4r + 28s + 37t – 13u, x2 = 2r + 12s + 16t – 5u, 

x3 = r, x4 = s, x5 = t, x6 = u 

 or 

 

 

 

1

2

3

4

5

6

4 28 37 13

2 12 16 5

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x

x

x
r s t u

x

x

x

         
         


         
         

            
         
         
         

                 

Thus, nullity(A) = 4. 



Example 

 What is the maximum possible rank of an            matrix A that 

is not square?  

 Solution: The row space of A is at most n-dimensional and the 

column space is at most m-dimensional. Since the rank of A is 

the common dimension of its row and column space, it follows 

that the rank is at most the smaller of m and n.  
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Theorem 4.8.2 

 Theorem 4.8.2 (Dimension Theorem for Matrices) 

 If A is a matrix with n columns, then rank(A) + nullity(A) = n. 

 Proof:  

 Since A has n columns, Ax = 0 has n unknowns. These 

fall into two categories: the leading variables and the free 

variables.  

 

 The number of leading 1’s in the reduced row-echelon 

form of A is the rank of A 

 

 

 

 



Theorem 4.8.2 

 The number of free variables is equal to the nullity of A. 

This is so because the nullity of A is the dimension of the 

solution space of Ax=0, which is the same as the number 

of parameters in the general solution, which is the same 

as the number of free variables. Thus 

rank(A) + nullity(A) = n 
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Example 

 

 

 

 This matrix has 6 columns, so rank(A) + nullity(A) = 6 

 In previous example, we know rank(A) = 4 and nullity(A) 

= 2 
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1 2 0 4 5 3

3 7 2 0 1 4

2 5 2 4 6 1

4 9 2 4 4 7

A

  
 


 
 
 

   



Theorem 4.8.3 

 Theorem 4.8.3 

 If A is an mn matrix, then: 

 rank(A) = Number of leading variables in the solution of Ax = 0. 

 nullity(A) = Number of parameters in the general solution of Ax = 0. 

 

39 



40 

Example  

 Find the number of parameters in the general solution of 

Ax = 0 if A is a 57 matrix of rank 3. 

 Solution:  

 nullity(A) = n – rank(A) = 7 – 3 = 4 

 Thus, there are four parameters. 
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Theorem 4.8.4 (Equivalent 

Statements) 
 If A is an nn matrix, and if TA : R

n  Rn is multiplication by A, then the following are 
equivalent: 

 A is invertible. 

 Ax = 0 has only the trivial solution. 

 The reduced row-echelon form of A is In. 

 A is expressible as a product of elementary matrices. 

 Ax = b is consistent for every n1 matrix b. 

 Ax = b has exactly one solution for every n1 matrix b. 

 det(A)≠0. 

 The column vectors of A are linearly independent. 

 The row vectors of A are linearly independent. 

 The column vectors of A span Rn. 

 The row vectors of A span Rn. 

 The column vectors of A form a basis for Rn. 

 The row vectors of A form a basis for Rn. 

 A has rank n. 

 A has nullity 0. 
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Overdetermined System 

 A linear system with more equations than unknowns is called 

an overdetermined linear system  (超定線性方程組). With 

fewer unknowns than equations, it’s called an 

underdetermined system.  

 Theorem 4.8.5 

 If Ax = b is a consistent linear system of m equations in n unknowns, 

and if A has rank r, then the general solution of the system contains n – r 

parameters. 

 

 If A is a          matrix with rank 4, and if Ax=b is a consistent 

linear system, then the general solution of the system contains 

7-4=3 parameters.  
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Theorem 4.8.6  

 Let A be an           matrix 

 (a) (Overdetemined Case) If m> n, then the linear system 

Ax=b is inconsistent for at least one vector b in Rn.  

 (b) (Underdetermined Case) If m < n, then for each vector b in 

Rm the linear system Ax=b is either inconsistent or has 

infinitely many solutions.  



Proof of Theorem 4.8.6 (a) 

 Assume that m>n, in which case the column vectors of A 

cannot span Rm (fewer vectors than the dimension of Rm). 

Thus, there is at least one vector b in Rm that is not in the 

column space of A, and for that b the system Ax=b is 

inconsistent by Theorem 4.7.1.  
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Proof of Theorem 4.8.6 (b) 

 Assume that m<n. For each vector b in Rn there are two 

possibilities: either the system Ax=b is consistent or it is 

inconsistent.  

 If it is inconsistent, then the proof is complete.  

 If it is consistent, then Theorem 4.8.5 implies that the 

general solution has n-r parameters, where r=rank(A).  

 But rank(A) is the smaller of m and n, so n-r = n-m > 0 

 This means that the general solution has at least one 

parameter and hence there are infinitely many solutions.  
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Example 

 What can you say about the solutions of an overdetermined 

system Ax=b of 7 equations in 5 unknowns in which A has 

rank = 4?  

 What can you say about the solutions of an underdetermined 

system Ax=b of 5 equations in 7 unknowns in which A has 

rank = 4?  

 Solution:  

 (a) the system is consistent for some vector b in R7, and for any such b 

the number of parameters in the general solution is n-r=5-4=1 

 (b) the system may be consistent or inconsistent, but if it is consistent 

for the vector b in R5, then the general solution has n-r=7-4=3 

parameters.  
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Example  

 The linear system  

 

 

is overdetermined, so it cannot be consistent for all 

possible values of b1, b2, b3, b4, and b5. Exact conditions 

under which the system is consistent can be obtained by 

solving the linear system by Gauss-Jordan elimination. 

1 2 1

1 2 2

1 2 3

1 2 4

1 2 5

2

  

  

2

3

x x b

x x b

x x b

x x b

x x b

 

 

 

 

 

2 1

2 1

3 2 1

4 2 1

5 2 1

1 0 2

0 1

0 0 3 2

0 0 4 3

0 0 5 4

b b

b b

b b b

b b b

b b b
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Example  

 Thus, the system is consistent if and only if b1, b2, b3, b4, 

and b5 satisfy the conditions  

 

 

 

 

or, on solving this homogeneous linear system, b1=5r-4s, 

b2=4r-3s, b3=2r-s, b4=r,  b5=s where r and s are arbitrary. 

1 2 3

1 2 4

1 2 5

2 3                =0

2 4               =0

4 5                =0

b b b

b b b

b b b

 

 

 



Fundamental Spaces of a Matrix 

 Six important vector spaces associated with a matrix A 

 Row space of A, row space of AT 

 Column space of A, column space of AT 

 Null space of A, null space of AT 

 Transposing a matrix converts row vectors into column 

vectors 

 Row space of AT = column space of A 

 Column space of AT = row space of A 

 These are called the fundamental spaces of a matrix A 
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Theorem 4.8.7 

 if A is any matrix, then rank(A) = rank(AT) 

 Proof:  

 Rank(A) = dim(row space of A) = dim(column space of AT) = 

rank(AT) 

 If A is an          matrix, then rank(A)+nullity(A)=n. 

rank(AT)+nullity(AT) = m 

 The dimensions of fundamental spaces 
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Fundamental Space Dimension 

Row space of A r 

Column space of A r 

Nullspace of A n – r  

Nullspace of AT m – r  



Recap 

 Theorem 3.4.3: If A is an m × n matrix, then the solution 

set of the homogeneous linear system Ax=0 consists of all 

vectors in Rn that are orthogonal to every row vector of A.  

 The null space of A consists of those vectors that are 

orthogonal to each of the row vectors of A.  
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Orthogonality  

 Definition 

 Let W be a subspace of Rn, the set of all vectors in Rn that 
are orthogonal to every vector in W is called the orthogonal 
complement (正交補餘) of W, and is denoted by W  

 If V is a plane through the origin of R3 with Euclidean inner 
product, then the set of all vectors that are orthogonal to 
every vector in V forms the line L through the origin that 
is perpendicular to V.   

L 

V 



Theorem 4.8.8 

 Theorem 4.8.8 

 If W is a subspace of a finite-dimensional space Rn, then: 

 W is a subspace of Rn. (read “W perp”) 

 The only vector common to W and W is 0; that is ,W  W = 0.  

 The orthogonal complement of W is W; that is , (W) = W. 
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Example 

 Orthogonal complements 
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x 

y 
W 

W⊥ 

L 

V 



Theorem 4.8.9 

 Theorem 4.8.9 

 If A is an mn matrix, then: 

 The null space of A and the row space of A are 
orthogonal complements in Rn. 

 The null space of AT and the column space of A are 
orthogonal complements in Rm. 
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Theorem 4.8.10 (Equivalent 

Statements) 
 If A is an mn matrix, and if TA : R

n  Rn is multiplication by A, then the following are 
equivalent: 

 A is invertible. 

 Ax = 0 has only the trivial solution. 

 The reduced row-echelon form of A is In. 

 A is expressible as a product of elementary matrices. 

 Ax = b is consistent for every n1 matrix b. 

 Ax = b has exactly one solution for every n1 matrix b. 

 det(A)≠0. 

 The column vectors of A are linearly independent. 

 The row vectors of A are linearly independent. 

 The column vectors of A span Rn. 

 The row vectors of A span Rn. 

 The column vectors of A form a basis for Rn. 

 The row vectors of A form a basis for Rn. 

 A has rank n. 

 A has nullity 0. 

 The orthogonal complement of the nullspace of A is Rn. 

 The orthogonal complement of the row space of A is {0}. 



Applications of Rank 

 Digital data are commonly stored in matrix form.  

 Rank plays a role because it measures the “redundancy” 

in a matrix.  

 If A is an m × n matrix of rank k, then n-k of the column 

vectors and m-k of the row vectors can be expressed in 

terms of k linearly independently column or row vectors.  

 The essential idea in many data compression schemes is 

to approximate the original data set by a data set with 

smaller rank that conveys nearly the same information.  
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4.9 

Matrix Transformations from Rn 

to Rm 
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Functions from Rn to R 

 A function is a rule f that associates with each element in 

a set A one and only one element in a set B. 

 If f associates the element a with the element b, then we 

write b = f(a) and say that b is the image of a under f or 

that f(a) is the value of f at a. 

 The set A is called the domain (定義域) of f and the set B 

is called the codomain (對應域) of f. 

 The subset of the codomain B consisting of all possible 

values for f as a varies over A is called the range (值域) 

of f. 
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Examples 

Formula Example Classification Description 

Real-valued function of a 

real variable 
Function from 

R to R 

Real-valued function of 

two real variables 
Function from 

R2 to R 

Real-valued function of 

three real variables 
Function from 

R3 to R 

Real-valued function of 

n real variables 
Function from 

Rn to R 
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Function from Rn to Rm  

 Suppose f1, f2, …, fm are real-valued functions of n 
real variables, say 

w1 = f1(x1,x2,…,xn) 

w2 = f2(x1,x2,…,xn) 

… 

wm = fm(x1,x2,…,xn) 

 These m equations assign a unique point 
(w1,w2,…,wm) in Rm to each point (x1,x2,…,xn) in Rn 
and thus define a transformation from Rn to Rm. If we 
denote this transformation by T: Rn  Rm then 

T (x1,x2,…,xn) = (w1,w2,…,wm) 
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Function from Rn to Rm  

 If m = n the transformation T: Rn  Rm is called an 
operator (運算子) on Rn. 

 

 



Example: A Transformation from R2 

to R3 

 Define a transform T: R2 → R3 

 With this transformation, the image of the point (x1, x2) is  

 

 Thus, for example, T(1,-2) = (-1, -6, -3) 
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Linear Transformations from Rn to Rm 

 A linear transformation (or a linear operator if m = n) T: Rn  Rm is 
defined by equations of the form 
 
 
                                                or  
 
 
 
or  

w = Ax 

 

 The matrix A = [aij] is called the standard matrix for the linear 
transformation T, and T is called multiplication by A. 
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Example (Transformation and Linear 

Transformation) 

 The linear transformation T : R4  R3 defined by the equations 

  w1 = 2x1 – 3x2 + x3 – 5x4 

  w2 = 4x1 + x2 – 2x3 + x4 

  w3 = 5x1 – x2 + 4x3 

 the standard matrix for T (i.e., w = Ax) is 
























0      4      1    5

1      2    1      4

5     1      3   2

A
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Notations 

 Notations: 

 If it is important to emphasize that A is the standard 

matrix for T, we denote the linear transformation T: 

Rn  Rm by TA: Rn  Rm . Thus,  

TA(x) = Ax  

 We can also denote the standard matrix for T by the 

symbol [T], or 

T(x) = [T]x  

 



Theorem 4.9.1 

 For every matrix A the matrix transformation TA:Rn → Rm 

has the following properties for all vectors u and v in Rn 

and for every scalar k 

 (a) TA(0) = 0 

 (b) TA(ku) = kTA(u)  [Homogeneity property] 

 TA(u+v) = TA(u) + TA(v) [Additivity property] 

 TA(u-v) = TA(u) – TA(v) 

 Proof: A0 = 0, A(ku) = k(Au), A(u+v) = Au + Av, A(u-

v)=Au-Av 
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Remark 

 A matrix transformation maps linear combinations of vectors 

in Rn into the corresponding linear combinations in Rm in the 

sense that  

TA(k1u1+k2u2+…+krur) = k1TA(u1)+k2TA(u2)+…+krTA(ur) 

 Depending on whether n-tuples and m-tuples are regarded as 

vectors or points, the geometric effect of a matrix 

transformation TA:Rn → Rm is to map each vector (point) in Rn 

into a vector in Rm 

68 

Rn Rm 

x T(x) 



Theorem 4.9.2 

 If TA:Rn → Rm and TB: Rn → Rm are matrix 

transformations, and if TA(x) = TB(x) for every vector x in 

Rn, then A=B. 

 Proof:  

 To say that TA(x) = TB(x) for every vector x in Rn is the same as 

saying that Ax = Bx for every vector x in Rn.  

 This is true, in particular, if x is any of the standard basis vectors 

e1,e2, …,en for Rn; that is Aej = Bej (j=1,2,…,n) 

 Since every entry of ej is 0 except for the jth, which is 1, it 

follows from Theorem 1.3.1 that Aej is the jth column of A, and 

Bej is the jth column of B. Therefore, A = B.  
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Zero Transformation 

 Zero Transformation from Rn to Rm 

 If 0 is the mn zero matrix and 0 is the zero vector 
in Rn, then for every vector x in Rn 

T0(x)  = 0x = 0       

 So multiplication by zero maps every vector in Rn 
into the zero vector in Rm. We call T0 the zero 
transformation from Rn to Rm. 
 



Identity Operator 

 Identity Operator on Rn 

 If I is the nn identity, then for every vector x in Rn 

TI(x) = Ix = x 

 So multiplication by I maps every vector in Rn into 
itself. 

 We call TI the identity operator on Rn. 
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A Procedure for Finding Standard 

Matrices 
 To find the standard matrix A for a matrix transformations 

from Rn to Rm:  

 e1,e2, …, en are the standard basis vectors for Rn.  

 Suppose that the images of these vectors under the 

transformation TA are  

TA(e1)=Ae1, TA(e2)=Ae2, …, TA(en) = Aen 

 Aej is just the jth column of the matrix A, Thus,  

A = [T] = [T(e1) | T(e2) | … | T(en)] 
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Reflection Operators 

 In general, operators on R2 and R3 that map each 

vector into its symmetric image about some line or 

plane are called reflection (倒影) operators.  

 Such operators are linear. 



Example 

 If we let w=T(x), then the equations relating the 

components of x and w are  

  w1 = -x = -x + 0y 

  w2 = y = 0x + y 

or, in matrix form  

 

 

 The standard matrix for T is 
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(x, y) (-x, y) 

x w=T(x) 
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Reflection Operators (2-Space) 
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Reflection Operators (3-Space) 
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Projection Operators 

 In general, a projection operator (or more precisely an 

orthogonal projection operator) on R2 or R3 is any 

operator that maps each vector into its orthogonal 

projection on a line or plane through the origin.  

 The projection operators are linear. 



Example 

 Consider the operator T: R2 → R2 that maps each vector 

into its orthogonal projection on the x-axis. The equations 

relating the components of x and w=T(x) are  

  w1 = x = x + 0y 

  w2 = 0 = 0x + 0y 

or, in matrix form 

 

 

 The standard matrix for T is 
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(x, y) 

x 

w=T(x) (x, 0) 
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Projection Operators 
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Projection Operators 



Rotation Operators 

 The rotation operator T:R2 → R2 moves points 

counterclockwise about the origin through an angle  

 Find the standard matrix 

 T(e1) = T(1,0) = (cos, sin) 

 T(e2) = T(0,1) = (-sin, cos) 
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e1 

e2 
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Example 

 If each vector in R2 is rotated through an angle of  /6 

(30) ,then the image w of a vector 

 

 

 

 

 For example, the image of the vector 
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A Rotation of Vectors in R3 

 A rotation of vectors in R3 is usually described 
in relation to a ray emanating from (發源自) the 
origin, called the axis of rotation.  

 As a vector revolves around the axis of rotation 
it sweeps out some portion of a cone (圓錐體).  

 The angle of rotation is described as “clockwise” 
or “counterclockwise” in relation to a viewpoint 
that is along the axis of rotation looking toward 
the origin.  

 The axis of rotation can be specified by a 
nonzero vector u that runs along the axis of 
rotation and has its initial point at the origin.  

 The counterclockwise direction for a rotation 
about its axis can be determined by a “right-
hand rule”. 
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A Rotation of Vectors in R3 
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Dilation and Contraction Operators 

 If k is a nonnegative scalar, the operator on R2 or R3 is 

called a contraction with factor k if 0 ≤ k ≤ 1 (以因素k收
縮) and a dilation with factor k if k ≥ 1 (以因素k膨脹). 

 



Compression or Expansion 

 If T: R2 → R2 is a compression (0<k<1) or expansion 

(k>1) in the x-direction with factor k, then  

 

 

 

so the standard matrix for T is           . 

 

 Similarly, the standard matrix for a compression or 

expansion in the y-direction is  
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(x,y) 
(kx,y) 

(x,y) 

(x,ky) 



Shears 

 A shear (剪) in the x-direction with factor k is a 

transformation that moves each point (x,y) parallel to the 

x-axis by an amount ky to the new position (x+ky,y).  

 Points farther from the x-axis move a greater distance 

than those closer.  
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x 

y 

(x,y) 

x 

y 

(x+ky,y) 

x 

y 
(x+ky,y) 

k > 0 k < 0 



Shears 

 If T: R2 → R2 is a shear with factor k in the x-direction, then 

 

 

 

 

 The standard matrix for T is  

 

 Similarly, the standard matrix for a shear in the y-direction 

with factor k is 
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Example (Standard Matrix for a Projection 

Operator) 

 Let l be the line in the xy-plane that passes through the 

origin and makes an angle  with the positive x-axis, 

where 0 ≤  ≤ . Let T: R2  R2 be a linear operator that 

maps each vector into orthogonal projection on l. 

 Find the standard matrix for T. 

 Find the orthogonal projection of  

the vector x = (1,5) onto the line  

through the origin that makes an  

angle of  = /6 with the positive  

x-axis. 
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Example  

 The standard matrix for T can be written as  

   [T] = [T(e1) | T(e2)]  

 Consider the case 0    /2. 

 ||T(e1)|| = cos  

 

 

 ||T(e2)|| = sin  
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Example  

 Since sin (/6) = 1/2  and cos (/6)  =      /2, it follows 

from part (a) that the standard matrix for this projection 

operator is  

 

 

 Thus, 

3














41    43

43     43
][T
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Reflections About Lines Through the 

Origin 
 Let P denote the standard matrix of orthogonal projections on 

lines through the origin 

Px – x = (1/2)(H x – x), or equivalently H x = (2 P – I)x 

 H  = (2 P – I) 
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L 

x 

H x 

P x 



4.10 

Properties of Matrix 

Transformations 
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Composition of TB with TA 

 Definition 

 If TA : R
n  Rk and TB : R

k  Rm are linear transformations, 

the composition of TB with TA, denoted by TB。TA  (read “TB  

circle TA ”), is the function defined by the formula  

(TB。TA)(x) = TB(TA(x)) 

 where x is a vector in Rn. 

 

x TA(x) TB(TA(x)) 

TB。TA 

TA TB 

Rn Rk Rm 



Composition of TB with TA 

 This composition is itself a matrix transformation since 

(TB。TA)(x)=(TB(TA(x))=B(TA(x))=B(Ax)=(BA)x 

 It is multiplication by BA, i.e. TB。TA = TBA 

 The compositions can be defined for more than two linear 

transformations.  

 For example, if T1 : U  V and T2 : V  W  ,and T3 : W  

Y are linear transformations, then the composition T3 。 
T2 。 T1  is defined by (T3 。 T2 。 T1 )(u) = T3 (T2 (T1 

(u)))  
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Remark 

 It is not true, in general, that AB = BA 

 So it is not true, in general, that TB。TA = TA。TB 
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Example 

 Let T1:R
2 → R2 and T2:R

2 → R2 be the matrix operators that 

rotate vectors through the angles θ1 and θ2, respectively.  

 The operation (T2。T1)(x)=T2(T1(x)) first rotates x through the 

angle θ1, then rotates T1(x) through the angle θ2.  
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Composition is Not Commutative 

 Let T1 be the reflection operator 

 Let T2 be the orthogonal projection 

on the y-axis 
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Composition of Two Reflections 

 Let T1 be the reflection about the y-axis, and let T2 be the 

reflection about the x-axis. In this case, T1。T2 and T2。
T1 are the same.  
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One-to-One Linear transformations 

 Definition 

 A linear transformation T : Rn →Rm is said to be one-to-one if T 

maps distinct vectors (points) in Rn into distinct vectors (points) 

in Rm 

 

 Remark: 

 That is, for each vector w in the range of a one-to-one linear 

transformation T, there is exactly one vector x such that T(x) = w. 



Example 
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u 

T(u) 

v 

T(v) 

Distinct vectors u and v 

are rotated into distinct 

vectors T(u) and T(v). 

P 

Q 

M 

The distinct points P and 

Q are mapped into the 

same point M. 

One-to-one linear 

transformation 

Not one-to-one linear 

transformation 
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Theorem 4.10.1 (Equivalent 

Statements) 
 If A is an nn matrix and TA : R

n  Rn is multiplication by 

A, then the following statements are equivalent. 

 A is invertible 

 The range of TA is Rn 

 TA is one-to-one 



Proof of Theorem 4.10.1 

 (a)→(b): Assume A is invertible. Ax=b is consistent for every 

n × 1 matrix b in Rn. This implies that TA maps x into the 

arbitrary vector b in Rn, which implies the range of TA is Rn.  

 (b)→(c): Assume the range of TA is Rn. For every vector b in 

Rn there is some vector x in Rn for which TA(x)=b and hence 

the linear system Ax=b is consistent for every vector b in Rn. 

But we know Ax=b has a unique solution, and hence for every 

vector b in the range of TA there is exactly one vector x in Rn 

such that TA(x)=b.  
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Example 

 The rotation operator T : R2  R2 is one-to-one  

 The standard matrix for T is  

 

 [T] is invertible since 

 

 








 


 cos       sin

sin    cos
][




T

01sincos
cos       sin

sin    cos
det 22 










Example 

 The projection operator T : R3  R3 is not one-to-one 

 The standard matrix for T is  

 

 

 [T] is not invertible since det[T] = 0 
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0   0   0

0   1   0

0   0   1

][T
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Inverse of a One-to-One Linear Operator 

 Suppose TA : R
n  Rn is a one-to-one linear operator  

  The matrix A is invertible.  

  TA
-1 : Rn  Rn is itself a linear operator; it is called 

the inverse of TA. 

    TA(TA
-1(x)) = AA-1x = Ix = x  and  

 TA
-1(TA

 (x)) = A-1Ax = Ix = x 

    TA 。 TA
-1 = TAA

-1 = TI     and      

 TA
-1

 。 TA
 = TA

-1
A

 = TI 

 
 



Inverse of a One-to-One Linear Operator 

 If w is the image of x under TA, then TA
-1 maps w 

back into x, since 

TA
-1(w) = TA

-1(TA
 (x)) = x 

 

 When a one-to-one linear operator on Rn is written as 

T : Rn  Rn, then the inverse of the operator T is 

denoted by T-1. 

 Thus, by the standard matrix, we have [T-1]=[T]-1 
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Example 

 Let T : R2  R2 be the operator that rotates each vector in R2 through 

the angle : 

 

 Undo the effect of T means rotate each vector in R2 through the 

angle -.  

 

 This is exactly what the operator T-1 does: the standard matrix T-1 is 

 

 

 The only difference is that the angle  is replaced by - 
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Example  

 Show that the linear operator T : R2  R2 defined by the equations 

   w1= 2x1+ x2 

   w2 = 3x1+ 4x2 

 is one-to-one, and find T-1(w1,w2). 

 Solution: 
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Linearity Properties 

 Theorem 4.10.2 (Properties of Linear 

Transformations) 

 A transformation T : Rn  Rm is linear if and only if the 

following relationships hold for all vectors u and v in Rn 

and every scalar c. 

 T(u + v) = T(u) + T(v) 

 T(cu) = cT(u) 

 



Proof of Theorem 4.10.2 

 Conversely, assume that properties (a) and (b) hold for 

the transformation T. We can prove that T is linear by 

finding a matrix A with the property that T(x) = Ax for all 

vectors x in Rn.  

 The property (a) can be extended to three or more terms.  

T(u+v+w) = T(u+(v+w)) = T(u)+T(v+w) = T(u)+T(v)+ 

T(w) 

 More generally, for any vectors v1, v2, …, vk in Rn, we 

have  

 T(v1+v2+…+vk) = T(v1) + T(v2) + … + T(vk) 
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Proof of Theorem 4.10.2 

 Now, to find the matrix A, let e1, e2, …, en be the vectors 

 

 

 

 

 

 Let A be the matrix whose successive column vectors are 

T(e1), T(e2), …, T(en); that is 

A = [T(e1) | T(e2) | … | T(en)] 

 

112 

…… 



Proof of Theorem 4.10.2 

 If                    is any vector in Rn, then as discussed in  

 

 

Section 1.3, the product Ax is a linear combination of the 

column vectors of A with coefficients x, so 

 

Ax = x1T(e1) + x2T(e2) + … + xnT(en) 

      = T(x1e1) + T(x2e2) + … + T(xnen) 

      = T(x1e1 + x2e2 + .. + xnen) 

      = T(x) 
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Theorem 4.10.3 

 Every linear transformation from Rn to Rm is a matrix 

transformation, and conversely, every matrix 

transformation from Rn to Rm is a linear 

transformation.  
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Theorem 4.10.4 (Equivalent 

Statements) 
 If A is an mn matrix, and if TA : R

n  Rn is multiplication by A, then the following are 
equivalent: 

 A is invertible. 

 Ax = 0 has only the trivial solution. 

 The reduced row-echelon form of A is In. 

 A is expressible as a product of elementary matrices. 

 Ax = b is consistent for every n1 matrix b. 

 Ax = b has exactly one solution for every n1 matrix b. 

 det(A)≠0. 

 The column vectors of A are linearly independent. 

 The row vectors of A are linearly independent. 

 The column vectors of A span Rn. 

 The row vectors of A span Rn. 

 The column vectors of A form a basis for Rn. 

 The row vectors of A form a basis for Rn. 

 A has rank n. 

 A has nullity 0. 

 The orthogonal complement of the nullspace of A is Rn. 

 The orthogonal complement of the row space of A is {0}. 

 The range of TA is Rn. 

 TA is one-to-one.  



4.11 

Geometry of Matrix Operations 



Example: Transforming with Diagonal 

Matrices 
 Suppose that the xy-plane first is compressed or expanded by a 

factor of k1 in the x-direction and then is compressed or 

expanded by a factor of k2 in the y-direction. Find a single 

matrix operator that performs both operations.  

 

 

 

 

 

 If k1=k2=k, this is a contraction or dilation.  

117 

x-compression (expansion) y-compression (expansion) 



Example 

 Find a matrix transformation from R2 to R2 that first shears by 

a factor of 2 in the x-direction and then reflects about y = x.  

 The standard matrix for the shear is  

 

and for the reflection is 

 

 Thus the standard matrix for the sear followed by the 

reflection is  
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Example 

 Find a matrix transformation from R2 to R2 that first reflects 

about y = x and then shears by a factor of 2 in the x-direction.  

 

 

 

 Note that  
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Geometry 
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Geometry of One-to-One Matrix 

Operators 
 A matrix transformation TA is one-to-one if and only if A is 

invertible and can be expressed as a product of elementary 

matrices.  

 

 Theorem 4.11.1: If E is an elementary matrix, then TE: R2→ 

R2 is one of the following:  

 A shear along a coordinate axis 

 A reflection about y=x 

 A compression along a coordinate axis 

 An expansion along a coordinate axis 

 A reflection about a coordinate axis 

 A compression or expansion along a coordinante axis followed by a 

reflection about a coordinate axis 
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Proof of Theorem 4.11.1 

 Because a            elementary matrix results from performing a 

single elementary row operation on the           identity matrix, 

it must have one of the following forms:  

 

 

 

             and            represent shears along coordinates axes.  

 

           represents a reflection about y = x.  
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Proof of Theorem 4.11.1 

 If k > 0,           and          represent compressions or  

 

expansion along coordinate axes, depending on whether  

                 (compression) or           (expansion).  

 If k < 0, and if we express k in the form k=-k1, where k1>0, 

then  
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Proof of Theorem 4.11.1 

 It represents a compression or expansion along the x-axis 

followed by a reflection about the y-axis.  

 

 

 

 It represents a compression or expansion along the y-axis 

followed by a reflection about the x-axis.  
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Theorem 4.11.2 

 If TA:R2→ R2 is multiplication by an invertible matrix 

A, then the geometric effect of TA is the same as an 

appropriate succession of shears, compressions, 

expansions, and reflections.  
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Example: Geometric Effect of 

Multiplication by a Matrix 
 Assuming that k1 and k2 are positive, express the diagonal  

 

matrix                      as a product of elementary matrices, and 

describe the geometric effect of multiplication by A in terms of 

compressions and expansions.  

 We know 

 

 

which shows the geometric effect of compressing or 

expanding by a factor of k1 in the x-direction and then 

compressing or expanding by a factor of k2 in the y-direction.  
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interchangeable! 



Example 

 Express A as a product of elementary matrices, and then 

describe the geometric effect of multiplication by A in terms of 

shears, compressions, expansion, and reflections.  

 A can be reduced to I as follows:  

 

 

 

 The three successive row operations can be performed by 

multiplying on the left successively by  
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Add -3 times the first 

row to the second 

Multiply the  second 

row by -1/2 

Add -2 times the second 

row to the first 



Example 

 Inverting these matrices  

 

 

 Reading from right to left and noting that  

 

 

it follows that the effect of multiplying by A is equivalent to 

1. shearing by a factor of 2 in the x-direction, 

2. then expanding by a factor of 2 in the y-direction, 

3. then reflecting about the x-axis, 

4. then shearing by a factor of 3 in the y-direction.  
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Theorem 4.11.3 

 If T:R2→ R2 is multiplication by an invertible matrix, then 

 (a) the image of a straight line is a straight line. 

 (b) the image of a straight line through the origin is a straight line 

through the origin.  

 (c) the images of parallel straight lines are parallel straight lines.  

 (d) the images of the line segment joining points P and Q is the 

line segment joining the images of P and Q.  

 (e) the images of three points lie on a line if and only if the points 

themselves line on some line.  
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Example: Image of a Square 

 Sketch the images of the unit square under multiplication by  

 

 

 Since  
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Example: Image of a Line 

 The invertible matrix maps the line y=2x+1 into another line. Find its 

equation.  

 Let (x,y) be a point on the line y=2x+1, and let (x’,y’) be its image under 

multiplication by A. Then 

 

 

 

 

 So  

 

 Thus (x’, y’) satisfies                      , which is the equation we want.  
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