4.7

Row Space, Column Space, and Null Space

Row Space and Column Space

－Definition
－If A is an $m \times n$ matrix，then the subspace of R^{n} spanned by the row vectors of A is called the row space（列空間）of A ， and the subspace of R^{m} spanned by the column vectors is called the column space（行空間）of A ．
－The solution space of the homogeneous system of equation $A \mathbf{x}=\mathbf{0}$ ，which is a subspace of R^{n} ，is called the null space（零核空間）of A ．

Remarks

- In this section we will be concerned with two questions
- What relationships exist between the solutions of a linear system $A \mathbf{x}=\mathbf{b}$ and the row space, column space, and null space of A.
- What relationships exist among the row space, column space, and null space of a matrix.

Remarks

- It follows from Formula (10) of Section 1.3

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& A \boldsymbol{x}=x_{1} \boldsymbol{c}_{1}+x_{2} \boldsymbol{c}_{2}+\cdots+x_{n} \boldsymbol{c}_{n}=\boldsymbol{b}
\end{aligned}
$$

- We conclude that $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is expressible as a linear combination of the column vectors of A or, equivalently, if and only if b is in the column space of A.

Theorem 4.7.1

- Theorem 4.7.1
- A system of linear equations $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

Example

- Let $A \mathbf{x}=\mathbf{b}$ be the linear system $\left[\begin{array}{ccc}-1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ -9 \\ -3\end{array}\right]$

Show that \mathbf{b} is in the column space of A, and express \mathbf{b} as a linear combination of the column vectors of A.

- Solution:
- Solving the system by Gaussian elimination yields

$$
x_{1}=2, x_{2}=-1, x_{3}=3
$$

- Since the system is consistent, \mathbf{b} is in the column space of A.
- Moreover, it follows that

$$
2\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+3\left[\begin{array}{c}
2 \\
-3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-9 \\
-3
\end{array}\right]
$$

General and Particular Solutions

- Theorem 4.7.2
- If \mathbf{x}_{0} denotes any single solution of a consistent linear system $A \mathbf{x}=\mathbf{b}$, and if $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ form a basis for the null space of A, (that is, the solution space of the homogeneous system $A \mathbf{x}=\mathbf{0}$), then every solution of $A \mathbf{x}=\mathbf{b}$ can be expressed in the form

$$
\mathbf{x}=\mathbf{x}_{0}+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}
$$

Conversely, for all choices of scalars $c_{1}, c_{2}, \ldots, c_{k}$, the vector \mathbf{x} in this formula is a solution of $A \mathbf{x}=\mathbf{b}$.

Proof of Theorem 4.7.2

- Assume that \mathbf{x}_{0} is any fixed solution of $A \mathbf{x}=\mathbf{b}$ and that \mathbf{x} is an arbitrary solution. Then $A \mathbf{x}_{0}=\mathbf{b}$ and $A \mathbf{x}=\mathbf{b}$.
- Subtracting these equations yields

$$
A \mathbf{x}-A \mathbf{x}_{0}=\mathbf{0} \quad \text { or } \quad A\left(\mathbf{x}-\mathbf{x}_{0}\right)=\mathbf{0}
$$

- Which shows that $\mathbf{x}-\mathbf{x}_{0}$ is a solution of the homogeneous system $A \mathbf{x}=\mathbf{0}$.
- Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ is a basis for the solution space of this system, we can express $\mathbf{x}-\mathbf{x}_{0}$ as a linear combination of these vectors, say $\mathbf{x}-\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}$. Thus, $\mathbf{x}=\mathbf{x}_{0}+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}$.

Proof of Theorem 4.7.2

- Conversely, for all choices of the scalars $c_{1}, c_{2}, \ldots, c_{k}$, we have

$$
\begin{gathered}
A \mathbf{x}=A\left(\mathbf{x}_{0}+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}\right) \\
A \mathbf{x}=A \mathbf{x}_{0}+c_{1}\left(A \mathbf{v}_{1}\right)+c_{2}\left(A \mathbf{v}_{2}\right)+\ldots+c_{k}\left(A \mathbf{v}_{k}\right)
\end{gathered}
$$

- But \mathbf{x}_{0} is a solution of the nonhomogeneous system, and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are solutions of the homogeneous system, so the last equation implies that

$$
A \mathbf{x}=\mathbf{b}+\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{b}
$$

- Which shows that \mathbf{x} is a solution of $A \mathbf{x}=\mathbf{b}$.

Remark

－Remark
－The vector \mathbf{x}_{0} is called a particular solution（特解）of $A \mathbf{x}=$ b．
－The expression $\mathbf{x}_{0}+c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}$ is called the general solution（通解）of $A \mathbf{x}=\mathbf{b}$ ，the expression $c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}$ is called the general solution of $A \mathbf{x}=\mathbf{0}$ ．
－The general solution of $A \mathbf{x}=\mathbf{b}$ is the sum of any particular solution of $A \mathbf{x}=\mathbf{b}$ and the general solution of $A \mathbf{x}=\mathbf{0}$ ．

Example (General Solution of $A \mathbf{x}=\mathbf{b}$)

- The solution to the nonhomogeneous system

$$
\begin{aligned}
x_{1}+3 x_{2}-2 x_{3}+2 x_{5} & =0 \\
2 x_{1}+6 x_{2}-5 x_{3}-2 x_{4}+4 x_{5}-3 x_{6} & =-1 \\
5 x_{3}+10 x_{4}+15 x_{6} & =5 \\
2 x_{1}+5 x_{2}+8 x_{4}+4 x_{5}+18 x_{6} & =6
\end{aligned}
$$

is
$x_{1}=-3 r-4 s-2 t, x_{2}=r$,
$x_{3}=-2 s, x_{4}=s$,
$x_{5}=t, x_{6}=1 / 3$

- The result can be written in vector form as

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
-3 r-4 s-2 t \\
r \\
-2 s \\
s \\
t \\
1 / 3
\end{array}\right]=\underbrace{\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
1 / 3
\end{array}\right]}_{\mathbf{x}_{0}}+r \underbrace{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-4 \\
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]}_{\mathbf{x}}
$$

which is the general solution.

- The vector \mathbf{x}_{0} is a particular solution of nonhomogeneous system, and the linear combination \mathbf{x} is the general solution of the homogeneous system.

Elementary Row Operation

- Performing an elementary row operation on an augmented matrix does not change the solution set of the corresponding linear system.
- It follows that applying an elementary row operation to a matrix A does not change the solution set of the corresponding linear system $A \mathbf{x}=\mathbf{0}$, or stated another way, it does not change the null space of A.

The solution space of the homogeneous system of equation $A \mathbf{x}=\mathbf{0}$, which is a subspace of R^{n}, is called the null space of A.

Example

- Find a basis for the nullspace of $A=\left[\begin{array}{ccccc}2 & 2 & -1 & 0 & 1 \\ -1 & -1 & 2 & -3 & 1 \\ 1 & 1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right]$
- Solution
- The nullspace of A is the solution space of the homogeneous system

$$
\begin{aligned}
2 x_{1}+2 x_{2}-x_{3}+x_{5} & =0 \\
-x_{1}-x_{2}-2 x_{3}-3 x_{4}+x_{5} & =0 \\
x_{1}+x_{2}-2 x_{3}-x_{5} & =0 \\
x_{3}+x_{4}+x_{5} & =0
\end{aligned}
$$

- In Example 10 of Section 4.5 we showed that the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \text { and } \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right]
$$

form a basis for the nullspace.

'Theorems 4.7.3 and 4.7.4

- Theorem 4.7.3
- Elementary row operations do not change the nullspace of a matrix.
- Theorem 4.7.4
- Elementary row operations do not change the row space of a matrix.

Proof of Theorem 4.7.4

- Suppose that the row vectors of a matrix A are $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{m}$, and let B be obtained from A by performing an elementary row operation. (We say that A and B are row equivalent.)
- We shall show that every vector in the row space of B is also in that of A, and that every vector in the row space of A is in that of B.
- If the row operation is a row interchange, then B and A have the same row vectors and consequently have the same row space.

Proof of Theorem 4.7.4

- If the row operation is multiplication of a row by a nonzero scalar or a multiple of one row to another, then the row vector $\mathbf{r}_{1}{ }^{\prime}, \mathbf{r}_{2}{ }^{\prime}, \ldots, \mathbf{r}_{m}{ }^{\prime}$ of B are linear combination of $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{m}$; thus they lie in the row space of A.
- Since a vector space is closed under addition and scalar multiplication, all linear combination of $\mathbf{r}_{1}{ }^{\prime}, \mathbf{r}_{2}{ }^{\prime}, \ldots, \mathbf{r}_{m}{ }^{\prime}$ will also lie in the row space of A. Therefore, each vector in the row space of B is in the row space of A.

Proof of Theorem 4.7.4

- Since B is obtained from A by performing a row operation, A can be obtained from B by performing the inverse operation (Sec. 1.5).
- Thus the argument above shows that the row space of A is contained in the row space of B.

Remarks

- Do elementary row operations change the column space?
- Yes!
- The second column is a scalar multiple of the first, so the column space of A consists of all scalar multiplies of the first column vector.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] \xrightarrow[\substack{\text { Add }-2 \text { times the first } \\
\text { row to the second }}]{\longrightarrow} B=\left[\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right]
$$

- Again, the second column is a scalar multiple of the first, so the column space of B consists of all scalar multiples of the first column vector. This is not the same as the column space of A.

Theorem 4.7.5

- Theorem 4.7.5
- If a matrix R is in row echelon form, then the row vectors with the leading 1 's (i.e., the nonzero row vectors) form a basis for the row space of R, and the column vectors with the leading 1's of the row vectors form a basis for the column space of R.

Bases for Row and Column Spaces

The matrix

$$
R=\left[\begin{array}{ccccc}
1 & -2 & 5 & 0 & 3 \\
0 & 1 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

is in row-echelon form. From Theorem 5.5.6 the vectors

$$
\begin{aligned}
& \mathbf{r}_{1}=\left[\begin{array}{lllll}
1 & -2 & 5 & 0 & 3
\end{array}\right] \\
& \mathbf{r}_{2}=\left[\begin{array}{lllll}
0 & 1 & 3 & 0 & 0
\end{array}\right] \\
& \mathbf{r}_{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

form a basis for the row space of R , and the vectors

$$
\mathbf{c}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \mathbf{c}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{c}_{4}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

form a basis for the column space of R .

Example

- Find bases for the row and column spaces of
- Solution:

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right]
$$

- Since elementary row operations do not change the row space of a matrix, we can find a basis for the row space of A by finding a basis that of any row-echelon form of A.
- Reducing A to row-echelon form we obtain

$$
R=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
0 & 0 & 1 & 3 & -2 & -6 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right] \quad R=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
0 & 0 & 1 & 3 & -2 & -6 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- The basis vectors for the row space of R and A

$$
\begin{aligned}
& \mathbf{r}_{1}=\left[\begin{array}{lllll}
1 & -3 & 4 & -2 & 5
\end{array}\right] \\
& \mathbf{r}_{2}=\left[\begin{array}{lllllll}
0 & 0 & 1 & 3 & -2 & -6
\end{array}\right] \\
& \mathbf{r}_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 5
\end{array}\right]
\end{aligned}
$$

- Keeping in mind that A and R may have different column spaces, we cannot find a basis for the column space of A directly from the column vectors of R.

Theorem 4.7.6

- Theorem 4.7.6
\square If A and B are row equivalent matrices, then:
- A given set of column vectors of A is linearly independent if and only if the corresponding column vectors of B are linearly independent.
- A given set of column vectors of A forms a basis for the column space of A if and only if the corresponding column vectors of B form a basis for the column space of B.

Example

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
2 & -6 & 9 & -1 & 8 & 2 \\
2 & -6 & 9 & -1 & 9 & 7 \\
-1 & 3 & -4 & 2 & -5 & -4
\end{array}\right] \quad R=\left[\begin{array}{cccccc}
1 & -3 & 4 & -2 & 5 & 4 \\
0 & 0 & 1 & 3 & -2 & -6 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- We can find the basis for the column space of R, then the corresponding column vectors of A will form a basis for the column space of A.
- Basis for R 's column space

$$
\boldsymbol{c}_{1}^{\prime}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \boldsymbol{c}_{3}^{\prime}=\left[\begin{array}{l}
4 \\
1 \\
0 \\
0
\end{array}\right] \quad \boldsymbol{c}_{5}^{\prime}=\left[\begin{array}{c}
5 \\
-2 \\
1 \\
0
\end{array}\right]
$$

- Basis for A 's column space

$$
\mathbf{c}_{1}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-1
\end{array}\right], \mathbf{c}_{3}=\left[\begin{array}{c}
4 \\
9 \\
9 \\
-4
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{c}
5 \\
8 \\
9 \\
-5
\end{array}\right]
$$

Example (Basis for a Vector Space Using Row Operations)

- Find a basis for the space spanned by the row vectors

$$
\begin{aligned}
& \mathbf{v}_{1}=(1,-2,0,0,3), \mathbf{v}_{2}=(2,-5,-3,-2,6) \\
& \mathbf{v}_{3}=(0,5,15,10,0), \mathbf{v}_{4}=(2,6,18,8,6)
\end{aligned}
$$

- Except for a variation in notation, the space spanned by these vectors is the row space of the matrix

$$
\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 3 \\
2 & -5 & -3 & -2 & 6 \\
0 & 5 & 15 & 10 & 0 \\
2 & 6 & 18 & 8 & 6
\end{array}\right] \longleftrightarrow\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 3 \\
0 & 1 & 3 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- The nonzero row vectors in this matrix are

$$
\mathbf{w}_{1}=(1,-2,0,0,3), \mathbf{w}_{2}=(0,1,3,2,0), \mathbf{w}_{3}=(0,0,1,1,0)
$$

- These vectors form a basis for the row space and consequently form a basis for the subspace of R^{5} spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4}.

Remarks

- Keeping in mind that A and R may have different column spaces, we cannot find a basis for the column space of A directly from the column vectors of R.
- However, if we can find a set of column vectors of R that forms a basis for the column space of R, then the corresponding column vectors of A will form a basis for the column space of A.
- The basis vectors obtained for the column space of A consisted of column vectors of A, but the basis vectors obtained for the row space of A were not all vectors of A.
- Transpose of the matrix can be used to solve this problem.

Example (Basis for the Row Space of a Matrix)

- Find a basis for the row space of

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 0 & 0 & 3 \\
2 & -5 & -3 & -2 & 6 \\
0 & 5 & 15 & 10 & 0 \\
2 & 6 & 18 & 8 & 6
\end{array}\right]
$$

consisting entirely of row vectors from A.

- The column space of A^{T} are
$\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -2 \\ 0 \\ 0 \\ 3\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{c}2 \\ -5 \\ -3 \\ -2 \\ 6\end{array}\right]$, and $\mathbf{c}_{4}=\left[\begin{array}{c}2 \\ 6 \\ 18 \\ 8 \\ 6\end{array}\right]$
- Thus, the basis vectors for the row space of A are

$$
\begin{aligned}
& \mathbf{r}_{1}=\left[\begin{array}{lllll}
1 & -2 & 0 & 0 & 3
\end{array}\right] \\
& \mathbf{r}_{2}=\left[\begin{array}{lllll}
2 & -5 & -3 & -2 & 6
\end{array}\right] \\
& \mathbf{r}_{3}=\left[\begin{array}{lllll}
2 & 6 & 18 & 8 & 6
\end{array}\right]
\end{aligned}
$$

Example (Basis and Linear Combinations)

- (a) Find a subset of the vectors $\mathbf{v}_{1}=(1,-2,0,3), \mathbf{v}_{2}=(2,-5,-3,6), \mathbf{v}_{3}$ $=(0,1,3,0), \mathbf{v}_{4}=(2,-1,4,-7), \mathbf{v}_{5}=(5,-8,1,2)$ that forms a basis for the space spanned by these vectors.
- (b) Express each vector not in the basis as a linear combination of the basis vectors.
- Solution (a):

$$
\begin{aligned}
& \begin{array}{c}
{\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 5 \\
-2 & -5 & 1 & -1 & -8 \\
0 & -3 & 3 & 4 & 1 \\
3 & 6 & 0 & -7 & 2
\end{array}\right]} \\
\uparrow \\
\uparrow
\end{array} \uparrow \begin{array}{c}
\uparrow \\
\mathbf{v}_{1}
\end{array} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{5} . \\
& \Rightarrow \quad\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- Thus, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a basis for the column space of the matrix.

Example

- Solution (b):
- We can express \mathbf{w}_{3} as a linear combination of \mathbf{w}_{1} and \mathbf{w}_{2}, express \mathbf{w}_{5} as a linear combination of $\mathbf{w}_{1}, \mathbf{w}_{2}$, and \mathbf{w}_{4} (Why?). By inspection, these linear combination are

$$
\begin{aligned}
& \mathbf{w}_{3}=2 \mathbf{w}_{1}-\mathbf{w}_{2} \\
& \mathbf{w}_{5}=\mathbf{w}_{1}+\mathbf{w}_{2}+\mathbf{w}_{4}
\end{aligned}
$$

\square We call these the dependency equations. The corresponding relationships in the original vectors are

$$
\begin{aligned}
& \mathbf{v}_{3}=2 \mathbf{v}_{1}-\mathbf{v}_{2} \\
& \mathbf{v}_{5}=\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{4}
\end{aligned}
$$

4.8

Rank, Nullity, and the
Fundamental Matrix Spaces

Dimension and Rank

- Theorem 4.8.1
- If A is any matrix, then the row space and column space of A have the same dimension.
- Proof: Let R be any row-echelon form of A. It follows from Theorem 4.7.4 and 4.7.6b that
$\operatorname{dim}($ row space of $A)=\operatorname{dim}($ row space of $R)$. $\operatorname{dim}($ column space of $A)=\operatorname{dim}($ column space of $R)$
- The dimension of the row space of R is the number of nonzero rows $=$ number of leading 1's $=$ dimension of the column space of R

Rank and Nullity

－Definition
－The common dimension of the row and column space of a matrix A is called the rank（秩）of A and is denoted by $\operatorname{rank}(A)$ ；the dimension of the nullspace of a is called the nullity（零核維數） of A and is denoted by nullity (A) ．

Example (Rank and Nullity)

- Find the rank and nullity of the matrix

$$
A=\left[\begin{array}{cccccc}
-1 & 2 & 0 & 4 & 5 & -3 \\
3 & -7 & 2 & 0 & 1 & 4 \\
2 & -5 & 2 & 4 & 6 & 1 \\
4 & -9 & 2 & -4 & -4 & 7
\end{array}\right]
$$

- Solution:
- The reduced row-echelon form of A is

$$
\left[\begin{array}{cccccc}
1 & 0 & -4 & -28 & -37 & 13 \\
0 & 1 & -2 & -12 & -16 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Since there are two nonzero rows (two leading 1's), the row space and column space are both two-dimensional, $\operatorname{so} \operatorname{rank}(A)=2$.

Example (Rank and Nullity)

- To find the nullity of A, we must find the dimension of the solution space of the linear system $A \mathbf{x}=\mathbf{0}$.
- The corresponding system of equations will be

$$
\begin{aligned}
& x_{1}-4 x_{3}-28 x_{4}-37 x_{5}+13 x_{6}=0 \\
& x_{2}-2 x_{3}-12 x_{4}-16 x_{5}+5 x_{6}=0
\end{aligned}
$$

- It follows that the general solution of the system is

$$
\begin{gathered}
x_{1}=4 r+28 s+37 t-13 u, x_{2}=2 r+12 s+16 t-5 u \\
x_{3}=r, x_{4}=s, x_{5}=t, x_{6}=u
\end{gathered}
$$

or

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=r\left[\begin{array}{l}
4 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
28 \\
12 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
37 \\
16 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+u\left[\begin{array}{c}
-13 \\
-5 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Thus, $\operatorname{nullity}(A)=4$.

Example

- What is the maximum possible rank of an $m \times n$ matrix A that is not square?
- Solution: The row space of A is at most n-dimensional and the column space is at most m-dimensional. Since the rank of A is the common dimension of its row and column space, it follows that the rank is at most the smaller of m and n.

$$
\operatorname{rank}(A) \leq \min (m, n)
$$

Theorem 4.8.2

- Theorem 4.8.2 (Dimension Theorem for Matrices)
- If A is a matrix with n columns, then $\underline{\operatorname{rank}(A)+\operatorname{nullity}(A)=n}$.
- Proof:
- Since A has n columns, $A \mathbf{x}=\mathbf{0}$ has n unknowns. These fall into two categories: the leading variables and the free variables. $\left[\begin{array}{c}\text { number of } \\ \text { leading variables }\end{array}\right]+\left[\begin{array}{c}\text { number of } \\ \text { free variables }\end{array}\right]=n$
- The number of leading 1 's in the reduced row-echelon form of A is the rank of A

$$
\operatorname{rank}(A)+\left[\begin{array}{c}
\text { number of } \\
\text { free variables }
\end{array}\right]=n
$$

Theorem 4.8.2

- The number of free variables is equal to the nullity of A. This is so because the nullity of A is the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$, which is the same as the number of parameters in the general solution, which is the same as the number of free variables. Thus

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

Example

$$
A=\left[\begin{array}{cccccc}
-1 & 2 & 0 & 4 & 5 & -3 \\
3 & -7 & 2 & 0 & 1 & 4 \\
2 & -5 & 2 & 4 & 6 & 1 \\
4 & -9 & 2 & -4 & -4 & 7
\end{array}\right]
$$

- This matrix has 6 columns, so $\operatorname{rank}(A)+\operatorname{nullity}(A)=6$
- In previous example, we know $\operatorname{rank}(A)=4$ and nullity (A)
$=2$

Theorem 4.8.3

- Theorem 4.8.3
- If A is an $m \times n$ matrix, then:
- $\operatorname{rank}(A)=$ Number of leading variables in the solution of $A \mathbf{x}=\mathbf{0}$.
- $\operatorname{nullity}(A)=$ Number of parameters in the general solution of $A \mathbf{x}=\mathbf{0}$.

Example

- Find the number of parameters in the general solution of $A \mathbf{x}=\mathbf{0}$ if A is a 5×7 matrix of rank 3 .
- Solution:
- $\operatorname{nullity}(A)=n-\operatorname{rank}(A)=7-3=4$
- Thus, there are four parameters.

Theorem 4.8.4 (Equivalent

Statements)

- If A is an $n \times n$ matrix, and if $T_{A}: R^{n} \rightarrow R^{n}$ is multiplication by A, then the following are equivalent:
- $\quad A$ is invertible.
- $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
- The reduced row-echelon form of A is I_{n}.
- $\quad A$ is expressible as a product of elementary matrices.
- $\quad A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}.
- $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b}.
- $\operatorname{det}(A) \neq 0$.
- The column vectors of A are linearly independent.
- The row vectors of A are linearly independent.
- The column vectors of A span R^{n}.
- The row vectors of $A \operatorname{span} R^{n}$.
- The column vectors of A form a basis for R^{n}.
- The row vectors of A form a basis for R^{n}.
- $\quad A$ has rank n.
- $\quad A$ has nullity 0 .

Overdetermined System

－A linear system with more equations than unknowns is called an overdetermined linear system（超定線性方程組）．With fewer unknowns than equations，it＇s called an underdetermined system．
－Theorem 4．8．5
－If $A \mathbf{x}=\mathbf{b}$ is a consistent linear system of m equations in n unknowns， and if A has rank r ，then the general solution of the system contains $n-r$ parameters．
－If A is a 5×7 matrix with rank 4 ，and if $A \mathbf{x}=\mathbf{b}$ is a consistent linear system，then the general solution of the system contains $7-4=3$ parameters．

Theorem 4.8.6

- Let A be an $m \times n$ matrix
- (a) (Overdetemined Case) If $m>n$, then the linear system $A \mathbf{x}=\mathbf{b}$ is inconsistent for at least one vector \mathbf{b} in R^{n}.
- (b) (Underdetermined Case) If $m<n$, then for each vector \mathbf{b} in R^{m} the linear system $A \mathbf{x}=\mathbf{b}$ is either inconsistent or has infinitely many solutions.

Proof of Theorem 4.8.6 (a)

- Assume that $m>n$, in which case the column vectors of A cannot span R^{m} (fewer vectors than the dimension of R^{m}). Thus, there is at least one vector \mathbf{b} in R^{m} that is not in the column space of A, and for that \mathbf{b} the system $A \mathbf{x}=\mathbf{b}$ is inconsistent by Theorem 4.7.1.

Proof of Theorem 4.8.6 (b)

- Assume that $m<n$. For each vector \mathbf{b} in R^{n} there are two possibilities: either the system $A \mathbf{x}=\mathbf{b}$ is consistent or it is inconsistent.
- If it is inconsistent, then the proof is complete.
- If it is consistent, then Theorem 4.8.5 implies that the general solution has $n-r$ parameters, where $r=\operatorname{rank}(A)$.
- But $\operatorname{rank}(A)$ is the smaller of m and n, so $n-r=n-m>0$
- This means that the general solution has at least one parameter and hence there are infinitely many solutions.

Example

- What can you say about the solutions of an overdetermined system $A \mathbf{x}=\mathbf{b}$ of 7 equations in 5 unknowns in which A has rank $=4$?
- What can you say about the solutions of an underdetermined system $A \mathbf{x}=\mathbf{b}$ of 5 equations in 7 unknowns in which A has rank $=4$?
- Solution:
- (a) the system is consistent for some vector \mathbf{b} in R^{7}, and for any such \mathbf{b} the number of parameters in the general solution is $n-r=5-4=1$
- (b) the system may be consistent or inconsistent, but if it is consistent for the vector \mathbf{b} in R^{5}, then the general solution has $n-r=7-4=3$ parameters.

Example

$$
\begin{aligned}
& x_{1}-2 x_{2}=b_{1} \\
& x_{1}-x_{2}=b_{2}
\end{aligned}
$$

- The linear system $x_{1}+x_{2}=b_{3}$

$$
\begin{aligned}
& x_{1}+2 x_{2}=b_{4} \\
& x_{1}+3 x_{2}=b_{5}
\end{aligned}
$$

is overdetermined, so it cannot be consistent for all possible values of $b_{1}, b_{2}, b_{3}, b_{4}$, and b_{5}. Exact conditions under which the system is consistent can be obtained by solving the linear system by Gauss-Jordan elimination.

$$
\left[\begin{array}{ccc}
1 & 0 & 2 b_{2}-b_{1} \\
0 & 1 & b_{2}-b_{1} \\
0 & 0 & b_{3}-3 b_{2}+2 b_{1} \\
0 & 0 & b_{4}-4 b_{2}+3 b_{1} \\
0 & 0 & b_{5}-5 b_{2}+4 b_{1}
\end{array}\right]
$$

Example

- Thus, the system is consistent if and only if $b_{1}, b_{2}, b_{3}, b_{4}$, and b_{5} satisfy the conditions

$$
\begin{array}{lr}
2 b_{1}-3 b_{2}+b_{3} & =0 \\
2 b_{1}-4 b_{2}+b_{4} & =0 \\
4 b_{1}-5 b_{2} & +b_{5}=0
\end{array}
$$

or, on solving this homogeneous linear system, $b_{1}=5 r-4 s$, $b_{2}=4 r-3 s, b_{3}=2 r-s, b_{4}=r, b_{5}=s$ where r and s are arbitrary.

Fundamental Spaces of a Matrix

- Six important vector spaces associated with a matrix A
- Row space of \boldsymbol{A}, row space of A^{T}
- Column space of \boldsymbol{A}, column space of A^{T}
- Null space of A, null space of \boldsymbol{A}^{T}
- Transposing a matrix converts row vectors into column vectors
- Row space of $A^{T}=$ column space of A
- Column space of $A^{T}=$ row space of A
- These are called the fundamental spaces of a matrix A

Theorem 4.8.7

- if A is any matrix, then $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
- Proof:
- $\operatorname{Rank}(A)=\operatorname{dim}($ row space of $A)=\operatorname{dim}\left(\right.$ column space of $\left.A^{T}\right)=$ $\operatorname{rank}\left(A^{T}\right)$
- If A is an $m \times n$ matrix, then $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$. $\operatorname{rank}\left(A^{T}\right)+\operatorname{nullity}\left(A^{T}\right)=m$
- The dimensions of fundamental spaces

Fundamental Space	Dimension
Row space of A	r
Column space of A	r
Nullspace of A	$n-r$
Nullspace of A^{T}	$m-r$

Recap

- Theorem 3.4.3: If A is an $m \times n$ matrix, then the solution set of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ consists of all vectors in R^{n} that are orthogonal to every row vector of A.
- The null space of A consists of those vectors that are orthogonal to each of the row vectors of A.

Orthogonality

－Definition
－Let W be a subspace of R^{n} ，the set of all vectors in R^{n} that are orthogonal to every vector in W is called the orthogonal complement（正交補餘）of W ，and is denoted by W^{\perp}
－If V is a plane through the origin of R^{3} with Euclidean inner product，then the set of all vectors that are orthogonal to every vector in V forms the line L through the origin that is perpendicular to V ．

Theorem 4.8.8

- Theorem 4.8.8
- If W is a subspace of a finite-dimensional space R^{n}, then:
- W^{\perp} is a subspace of R^{n}. (read " W perp")
- The only vector common to W and W^{\perp} is $\mathbf{0}$; that is,$W \cap W^{\perp}=\mathbf{0}$.
- The orthogonal complement of W^{\perp} is W; that is , $\left(W^{\perp}\right)^{\perp}=W$.

Example

- Orthogonal complements

Theorem 4.8.9

- Theorem 4.8.9
\square If A is an $m \times n$ matrix, then:
- The null space of A and the row space of A are orthogonal complements in R^{n}.
- The null space of A^{T} and the column space of A are orthogonal complements in R^{m}.

Theorem 4.8.10 (Equivalent

Statements)

- If A is an $m \times n$ matrix, and if $T_{A}: R^{n} \rightarrow R^{n}$ is multiplication by A, then the following are equivalent:
A is invertible.
- $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
- The reduced row-echelon form of A is I_{n}.
- $\quad A$ is expressible as a product of elementary matrices.
- $\quad A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}.
- $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b}.
- $\quad \operatorname{det}(A) \neq 0$.
- The column vectors of A are linearly independent.
- The row vectors of A are linearly independent.
- The column vectors of A span R^{n}.
- The row vectors of A span R^{n}.
- The column vectors of A form a basis for R^{n}.
- The row vectors of A form a basis for R^{n}.
- $\quad A$ has rank n.
- $\quad A$ has nullity 0 .
- The orthogonal complement of the nullspace of A is R^{n}.
- The orthogonal complement of the row space of A is $\{\mathbf{0}\}$.

Applications of Rank

- Digital data are commonly stored in matrix form.
- Rank plays a role because it measures the "redundancy" in a matrix.
- If A is an $m \times n$ matrix of rank k, then $n-k$ of the column vectors and $m-k$ of the row vectors can be expressed in terms of k linearly independently column or row vectors.
- The essential idea in many data compression schemes is to approximate the original data set by a data set with smaller rank that conveys nearly the same information.
4.9

Matrix Transformations from R^{n} to R^{m}

Functions from R^{n} to R

－A function is a rule f that associates with each element in a set A one and only one element in a set B ．
－If f associates the element a with the element b ，then we write $b=f(a)$ and say that b is the image of a under f or that $f(a)$ is the value of f at a ．
－The set A is called the domain（定義域）of f and the set B is called the codomain（對應域）of f ．
－The subset of the codomain B consisting of all possible values for f as a varies over A is called the range（值域） of f ．

Examples

Formula	Example	Classification	Description
$f(x)$	$f(x)=x^{2}$	Real-valued function of a real variable	Function from R to R
$f(x, y)$	$f(x, y)=x^{2}+y^{2}$	Real-valued function of two real variables	Function from R^{2} to R
$f(x, y, z)$	$f(x, y, z)=x^{2}$ $+y^{2}+z^{2}$	Real-valued function of three real variables	Function from R^{3} to R
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$	$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}$	Real-valued function of n real variables	Function from R^{n} to R

Function from R^{n} to R^{m}

- Suppose $f_{1}, f_{2}, \ldots, f_{m}$ are real-valued functions of n real variables, say

$$
\begin{gathered}
w_{1}=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
w_{2}=f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\ldots \\
w_{m}=f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

These m equations assign a unique point $\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ in R^{m} to each point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in R^{n} and thus define a transformation from R^{n} to R^{m}. If we denote this transformation by $T: R^{n} \rightarrow R^{m}$ then

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(w_{1}, w_{2}, \ldots, w_{m}\right)
$$

Function from R^{n} to R^{m}

－If $m=n$ the transformation $T: R^{n} \rightarrow R^{m}$ is called an operator（運算子）on R^{n} ．

Example: A Transformation from R^{2} to R^{3}

$$
\begin{aligned}
& w_{1}=x_{1}+x_{2} \\
& w_{2}=3 x_{1} x_{2} \\
& w_{3}=x_{1}^{2}-x_{2}^{2}
\end{aligned}
$$

- Define a transform $T: R^{2} \rightarrow R^{3}$
- With this transformation, the image of the point $\left(x_{1}, x_{2}\right)$ is

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 3 x_{1} x_{2}, x_{1}^{2}-x_{2}^{2}\right)
$$

- Thus, for example, $T(1,-2)=(-1,-6,-3)$

Linear Transformations from R^{n} to R^{m}

- A linear transformation (or a linear operator if $m=n$) $T: R^{n} \rightarrow R^{m}$ is defined by equations of the form

$$
\begin{gathered}
w_{1}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
w_{2}=a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
\vdots \\
\vdots \\
w_{m}=a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}
\end{gathered} \quad \text { or } \quad\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{13} \\
a_{21} & a_{22} & \cdots & a_{23} \\
\vdots & \vdots & & \vdots \\
a_{m n} & a_{m n} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]
$$

or

$$
\mathbf{w}=A \mathbf{x}
$$

- The matrix $A=\left[a_{i j}\right]$ is called the standard matrix for the linear transformation T, and T is called multiplication by A.

Example (Transformation and Linear Transformation)

- The linear transformation $T: R^{4} \rightarrow R^{3}$ defined by the equations

$$
\begin{aligned}
& w_{1}=2 x_{1}-3 x_{2}+x_{3}-5 x_{4} \\
& w_{2}=4 x_{1}+x_{2}-2 x_{3}+x_{4} \\
& w_{3}=5 x_{1}-x_{2}+4 x_{3}
\end{aligned}
$$

the standard matrix for T (i.e., $\mathbf{w}=A \mathbf{x}$) is $\quad A=\left[\begin{array}{rrrr}4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0\end{array}\right]$

$$
\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -3 & 1 & -5 \\
4 & 1 & -2 & 1 \\
5 & -1 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Notations

- Notations:
- If it is important to emphasize that A is the standard matrix for T, we denote the linear transformation T : $R^{n} \rightarrow R^{m}$ by $T_{A}: R^{n} \rightarrow R^{m}$. Thus,

$$
T_{A}(\mathrm{x})=A \mathbf{x}
$$

\square We can also denote the standard matrix for T by the symbol [T], or

$$
T(\mathbf{x})=[T] \mathbf{x}
$$

Theorem 4.9.1

- For every matrix A the matrix transformation $T_{A}: R^{n} \rightarrow R^{m}$ has the following properties for all vectors \mathbf{u} and \mathbf{v} in R^{n} and for every scalar k
- (a) $T_{A}(\mathbf{0})=\mathbf{0}$
- (b) $T_{A}(k \mathbf{u})=k T_{A}(\mathbf{u}) \quad$ [Homogeneity property]
- $T_{A}(\mathbf{u}+\mathbf{v})=T_{A}(\mathbf{u})+T_{A}(\mathbf{v}) \quad$ [Additivity property]
- $T_{A}(\mathbf{u}-\mathbf{v})=T_{A}(\mathbf{u})-T_{A}(\mathbf{v})$
- Proof: $A \mathbf{0}=\mathbf{0}, A(k \mathbf{u})=k(A \mathbf{u}), A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}, A(\mathbf{u}-$ $\mathbf{v})=A \mathbf{u}-A \mathbf{v}$

Remark

- A matrix transformation maps linear combinations of vectors in R^{n} into the corresponding linear combinations in R^{m} in the sense that

$$
T_{A}\left(k_{1} \mathbf{u}_{1}+k_{2} \mathbf{u}_{2}+\ldots+k_{r} \mathbf{u}_{r}\right)=k_{1} T_{A}\left(\mathbf{u}_{1}\right)+k_{2} T_{A}\left(\mathbf{u}_{2}\right)+\ldots+k_{r} T_{A}\left(\mathbf{u}_{r}\right)
$$

- Depending on whether n-tuples and m-tuples are regarded as vectors or points, the geometric effect of a matrix transformation $T_{A}: R^{n} \rightarrow R^{m}$ is to map each vector (point) in R^{n} into a vector in R^{m}

Theorem 4.9.2

- If $T_{A}: R^{n} \rightarrow R^{m}$ and $T_{B}: R^{n} \rightarrow R^{m}$ are matrix transformations, and if $T_{A}(\mathbf{x})=T_{B}(\mathbf{x})$ for every vector \mathbf{x} in R^{n}, then $A=B$.
- Proof:
- To say that $T_{A}(\mathbf{x})=T_{B}(\mathbf{x})$ for every vector \mathbf{x} in R^{n} is the same as saying that $A \mathbf{x}=B \mathbf{x}$ for every vector \mathbf{x} in R^{n}.
- This is true, in particular, if \mathbf{x} is any of the standard basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ for R^{n}; that is $A \mathbf{e}_{j}=B \mathbf{e}_{j}(j=1,2, \ldots, n)$
- Since every entry of \mathbf{e}_{j} is 0 except for the j th, which is 1 , it follows from Theorem 1.3.1 that $A \mathbf{e}_{j}$ is the j th column of A, and $B \mathbf{e}_{j}$ is the j th column of B. Therefore, $A=B$.

Zero Transformation

- Zero Transformation from R^{n} to R^{m}
- If 0 is the $m \times n$ zero matrix and $\mathbf{0}$ is the zero vector in R^{n}, then for every vector \mathbf{x} in R^{n}

$$
T_{0}(\mathbf{x})=0 \mathbf{x}=\mathbf{0}
$$

- So multiplication by zero maps every vector in R^{n} into the zero vector in R^{m}. We call T_{0} the zero transformation from R^{n} to R^{m}.

Identity Operator

- Identity Operator on R^{n}
- If I is the $n \times n$ identity, then for every vector \mathbf{x} in R^{n}

$$
T_{I}(\mathbf{x})=I \mathbf{x}=\mathbf{x}
$$

- So multiplication by I maps every vector in R^{n} into itself.
- We call T_{I} the identity operator on R^{n}.

A Procedure for Finding Standard

Matrices

- To find the standard matrix A for a matrix transformations from R^{n} to R^{m} :
- $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are the standard basis vectors for R^{n}.
- Suppose that the images of these vectors under the transformation T_{A} are

$$
T_{A}\left(\mathbf{e}_{1}\right)=A \mathbf{e}_{1}, T_{A}\left(\mathbf{e}_{2}\right)=A \mathbf{e}_{2}, \ldots, T_{A}\left(\mathbf{e}_{n}\right)=A \mathbf{e}_{n}
$$

- $A \mathbf{e}_{j}$ is just the j th column of the matrix A, Thus,

$$
A=[T]=\left[T\left(\mathbf{e}_{1}\right)\left|T\left(\mathbf{e}_{2}\right)\right| \ldots \mid T\left(\mathbf{e}_{n}\right)\right]
$$

Reflection Operators

- In general, operators on R^{2} and R^{3} that map each vector into its symmetric image about some line or plane are called reflection (倒影) operators.
- Such operators are linear.

Example

- If we let $\mathbf{w}=T(\mathbf{x})$, then the equations relating the components of \mathbf{x} and \mathbf{w} are

$$
\begin{aligned}
& w_{1}=-x=-x+0 y \\
& w_{2}=y=0 x+y
\end{aligned}
$$

or, in matrix form

$$
\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- The standard matrix for T is $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$

Reflection Operators (2-Space)

Operator	Illustration	Equations	Standard Matrix
Reflection about the y-axis		$\begin{aligned} & w_{1}=-x \\ & w_{2}=y \end{aligned}$	$\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
Reflection about the x-axis		$\begin{aligned} & w_{1}=x \\ & w_{2}=-y \end{aligned}$	$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Reflection about the line $y=x$		$\begin{aligned} & w_{1}=y \\ & w_{2}=x \end{aligned}$	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Reflection Operators (3-Space)

Operator	Hlustration	Equations	Standard Matrix
Reflection about the $x y$-plane		$\begin{aligned} & w_{1}=x \\ & w_{2}=y \\ & w_{3}=-z \end{aligned}$	$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
Reflection about the $x z$-plane		$\begin{aligned} & w_{1}=x \\ & w_{2}=-y \\ & w_{3}=z \end{aligned}$	$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Reflection about the $y z$-plane		$\begin{aligned} & w_{1}=-x \\ & w_{2}=y \\ & w_{3}=z \end{aligned}$	$\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Projection Operators

- In general, a projection operator (or more precisely an orthogonal projection operator) on R^{2} or R^{3} is any operator that maps each vector into its orthogonal projection on a line or plane through the origin.
- The projection operators are linear.

Example

- Consider the operator $T: R^{2} \rightarrow R^{2}$ that maps each vector into its orthogonal projection on the x-axis. The equations relating the components of \mathbf{x} and $\mathbf{w}=T(\mathbf{x})$ are

$$
\begin{aligned}
& w_{1}=x=x+0 y \\
& w_{2}=0=0 x+0 y
\end{aligned}
$$

or, in matrix form

$$
\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- The standard matrix for T is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Projection Operators

| Operator |
| :--- | :--- | :--- | :--- | Illustration | Equations |
| :--- | | Standard
 Matrix |
| :--- |
| Orthogonal projection
 on the x-axis |

Projection Operators

Operator	Illustration	Equations	Standard Matrix
Orthogonal projection on the $x y$-plane		$\begin{aligned} & w_{1}=x \\ & w_{2}=y \\ & w_{3}=0 \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
Orthogonal projection on the $x z$-plane		$\begin{aligned} & w_{1}=x \\ & w_{2}=0 \\ & w_{3}=z \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
Orthogonal projection on the $y z$-plane		$\begin{aligned} & w_{1}=0 \\ & w_{2}=y \\ & w_{3}=z \end{aligned}$	$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Rotation Operators

- The rotation operator $T: R^{2} \rightarrow R^{2}$ moves points counterclockwise about the origin through an angle θ
- Find the standard matrix
- $T\left(\mathbf{e}_{1}\right)=T(1,0)=(\cos \theta, \sin \theta)$
- $T\left(\mathbf{e}_{2}\right)=T(0,1)=(-\sin \theta, \cos \theta)$

Operator	Illustration	Equations	Standard Matrix
Rotation through an angle θ	$\xrightarrow[y y y y]{c \mid} \quad$$w_{1}=x \cos \theta-y \sin \theta$ $w_{2}=x \sin \theta+y \cos \theta$	$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$	

Example

- If each vector in R^{2} is rotated through an angle of $\pi / 6$ $\left(30^{\circ}\right)$, then the image \mathbf{w} of a vector

$$
\begin{aligned}
\mathbf{x} & =\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\text { is } \quad \mathbf{w} & =\left[\begin{array}{ll}
\cos \pi / 6 & -\sin \pi / 6 \\
\sin \pi / 6 & \cos \pi / 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
\sqrt{3} / 2 x-1 / 2 y \\
1 / 2 x+\sqrt{3} / 2 y
\end{array}\right]
\end{aligned}
$$

- For example, the image of the vector

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { is } \mathbf{w}=\left[\begin{array}{l}
\frac{\sqrt{3}-1}{2} \\
\frac{1+\sqrt{3}}{2}
\end{array}\right]
$$

A Rotation of Vectors in R^{3}

－A rotation of vectors in R^{3} is usually described in relation to a ray emanating from（發源自）the origin，called the axis of rotation．
－As a vector revolves around the axis of rotation it sweeps out some portion of a cone（圓錐體）．
－The angle of rotation is described as＂clockwise＂ or＂counterclockwise＂in relation to a viewpoint that is along the axis of rotation looking toward the origin．
－The axis of rotation can be specified by a nonzero vector \mathbf{u} that runs along the axis of rotation and has its initial point at the origin．
－The counterclockwise direction for a rotation about its axis can be determined by a＂right－ hand rule＂．

（a）Angle of rotation

（b）Right－hand rule

A Rotation of Vectors in R^{3}

Operator	Illustration	Equations	Standard Matrix
Counterclockwise rotation about the positive x-axis through an angle θ		$\begin{aligned} & w_{1}=x \\ & w_{2}=y \cos \theta-z \sin \theta \\ & w_{3}=y \sin \theta+z \cos \theta \end{aligned}$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$
Counterclockwise rotation about the positive y-axis through an angle $\boldsymbol{\theta}$		$\begin{aligned} & w_{1}=x \cos \theta+z \sin \theta \\ & w_{2}=y \\ & w_{3}=-x \sin \theta+z \cos \theta \end{aligned}$	$\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$
Counterclockwise rotation about the positive z-axis through an angle θ		$\begin{aligned} & w_{1}=x \cos \theta-y \sin \theta \\ & w_{2}=x \sin \theta+y \cos \theta \\ & w_{3}=z \end{aligned}$	$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

Dilation and Contraction Operators

－If k is a nonnegative scalar，the operator on R^{2} or R^{3} is called a contraction with factor k if $0 \leq k \leq 1$（以因素 k 收縮）and a dilation with factor k if $k \geq 1$（以因素 k 膨脹）．

Compression or Expansion

- If $T: R^{2} \rightarrow R^{2}$ is a compression ($0<k<1$) or expansion $(k>1)$ in the x-direction with factor k, then

$$
T\left(\boldsymbol{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
k \\
0
\end{array}\right] \quad T\left(\boldsymbol{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

so the standard matrix for T is $\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]$.

- Similarly, the standard matrix for a compression or expansion in the y-direction is
$\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]$

Shears

- A shear (剪) in the \boldsymbol{x}-direction with factor \boldsymbol{k} is a transformation that moves each point (x, y) parallel to the x-axis by an amount $k y$ to the new position $(x+k y, y)$.
- Points farther from the x-axis move a greater distance than those closer.

$k>0$

Shears

- If $T: R^{2} \rightarrow R^{2}$ is a shear with factor k in the x-direction, then

$$
\begin{aligned}
& T\left(\boldsymbol{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
x+k y \\
y
\end{array}\right]=\left[\begin{array}{c}
1+k 0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\boldsymbol{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
x+k y \\
y
\end{array}\right]=\left[\begin{array}{c}
0+k 1 \\
1
\end{array}\right]=\left[\begin{array}{c}
k \\
1
\end{array}\right]
\end{aligned}
$$

- The standard matrix for T is $\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$
- Similarly, the standard matrix for a shear in the y-direction with factor k is $\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$

Example (Standard Matrix for a Projection

 Operator)- Let l be the line in the $x y$-plane that passes through the origin and makes an angle θ with the positive x-axis, where $0 \leq \theta \leq \pi$. Let $T: R^{2} \rightarrow R^{2}$ be a linear operator that maps each vector into orthogonal projection on l.
- Find the standard matrix for T.
- Find the orthogonal projection of the vector $\mathbf{x}=(1,5)$ onto the line through the origin that makes an angle of $\theta=\pi / 6$ with the positive x-axis.

Example

- The standard matrix for T can be written as

$$
[T]=\left[T\left(\mathbf{e}_{1}\right) \mid T\left(\mathbf{e}_{2}\right)\right]
$$

- Consider the case $0 \leq \theta \leq \pi / 2$.
- $\left\|T\left(\mathbf{e}_{1}\right)\right\|=\cos \theta$
$\Longrightarrow T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}\left\|T\left(\mathbf{e}_{\mathbf{1}}\right)\right\| \cos \theta \\ \left\|T\left(\mathbf{e}_{1}\right)\right\| \sin \theta\end{array}\right]=\left[\begin{array}{c}\cos ^{2} \theta \\ \sin \theta \cos \theta\end{array}\right]$
- $\left\|T\left(\mathbf{e}_{2}\right)\right\|=\sin \theta$
$\Longrightarrow T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}\left\|T\left(\mathbf{e}_{2}\right)\right\| \cos \theta \\ \left\|T\left(\mathbf{e}_{2}\right)\right\| \sin \theta\end{array}\right]=\left[\begin{array}{c}\sin \theta \cos \theta \\ \sin ^{2} \theta\end{array}\right]$
$\Longrightarrow[T]=\left[\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta\end{array}\right]$

Example $\quad[T]=\left[\begin{array}{cc}\cos ^{2} \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta\end{array}\right]$

- Since $\sin (\pi / 6)=1 / 2$ and $\cos (\pi / 6)=\sqrt{3} / 2$, it follows from part (a) that the standard matrix for this projection operator is

$$
[T]=\left[\begin{array}{lc}
3 / 4 & \sqrt{3} / 4 \\
\sqrt{3} / 4 & 1 / 4
\end{array}\right]
$$

Thus,

$$
T\left(\left[\begin{array}{l}
1 \\
5
\end{array}\right]\right)=\left[\begin{array}{lc}
3 / 4 & \sqrt{3} / 4 \\
\sqrt{3} / 4 & 1 / 4
\end{array}\right]\left[\begin{array}{l}
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
\frac{3+5 \sqrt{3}}{4} \\
\frac{\sqrt{3}+5}{4}
\end{array}\right]
$$

Reflections About Lines Through the

 Origin- Let P_{θ} denote the standard matrix of orthogonal projections on lines through the origin
$P_{\theta} \mathbf{x}-\mathbf{x}=(1 / 2)\left(H_{\theta} \mathbf{x}-\mathbf{x}\right)$, or equivalently $H_{\theta} \mathbf{x}=\left(2 P_{\theta}-I\right) \mathbf{x}$
- $H_{\theta}=\left(2 P_{\theta}-I\right)$

$$
H_{\theta}=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]
$$

4.10

Properties of Matrix
Transformations

Composition of T_{B} with T_{A}

- Definition
- If $T_{A}: R^{n} \rightarrow R^{k}$ and $T_{B}: R^{k} \rightarrow R^{m}$ are linear transformations, the composition of T_{B} with T_{A}, denoted by $T_{B} \circ T_{A}$ (read " T_{B} circle $T_{A}{ }^{\prime \prime}$), is the function defined by the formula

$$
\left(T_{B} \circ T_{A}\right)(\mathbf{x})=T_{B}\left(T_{A}(\mathbf{x})\right)
$$

where \mathbf{x} is a vector in R^{n}.

Composition of T_{B} with T_{A}

- This composition is itself a matrix transformation since

$$
\left(T_{B} \circ T_{A}\right)(\mathbf{x})=\left(T_{B}\left(T_{A}(\mathbf{x})\right)=B\left(T_{A}(\mathbf{x})\right)=B(A \mathbf{x})=(B A) \mathbf{x}\right.
$$

- It is multiplication by $B A$, i.e. $T_{B}{ }^{\circ} T_{A}=T_{B A}$
- The compositions can be defined for more than two linear transformations.
- For example, if $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$, and $T_{3}: W \rightarrow$ Y are linear transformations, then the composition $T_{3}{ }^{\circ}$ $T_{2} \circ T_{1}$ is defined by $\left(T_{3} \circ T_{2} \circ T_{1}\right)(\mathbf{u})=T_{3}\left(T_{2}\left(T_{1}\right.\right.$ (u)))

Remark

- It is not true, in general, that $A B=B A$
- So it is not true, in general, that $T_{B} \circ T_{A}=T_{A} \circ T_{B}$

Example

- Let $T_{1}: R^{2} \rightarrow R^{2}$ and $T_{2}: R^{2} \rightarrow R^{2}$ be the matrix operators that rotate vectors through the angles θ_{1} and θ_{2}, respectively.
- The operation $\left(T_{2} \circ T_{I}\right)(\mathbf{x})=T_{2}\left(T_{1}(\mathbf{x})\right)$ first rotates \mathbf{x} through the angle θ_{1}, then rotates $T_{1}(\mathbf{x})$ through the angle θ_{2}.

$$
\begin{aligned}
& {\left[T_{1}\right]=\left[\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right] \quad\left[T_{2}\right]=\left[\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right]} \\
& {\left[T_{2} \circ T_{1}\right]=\left[\begin{array}{cc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]} \\
& {\left[T_{2}\right]\left[T_{1}\right]=\left[\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\cos \theta_{2} \cos \theta_{1}-\sin \theta_{2} \sin \theta_{1} & -\left(\cos \theta_{2} \sin \theta_{1}+\sin \theta_{2} \cos \theta_{1}\right) \\
\sin \theta_{2} \cos \theta_{1}+\cos \theta_{2} \sin \theta_{1} & -\sin \theta_{2} \sin \theta_{1}+\cos \theta_{2} \cos \theta_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]=\left[\begin{array}{lll}
T_{2} & \circ & T_{1}
\end{array}\right]
\end{aligned}
$$

Composition is Not Commutative

- Let T_{1} be the reflection operator
- Let T_{2} be the orthogonal projection on the y-axis

$$
\begin{aligned}
& {\left[T_{1} \circ T_{2}\right]=\left[T_{1}\right]\left[T_{2}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]} \\
& {\left[T_{2} \circ T_{1}\right]=\left[T_{2}\right]\left[T_{1}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]} \\
& \operatorname{so}\left[T_{1} \circ T_{2}\right] \neq\left[T_{2} \circ T_{1}\right]
\end{aligned}
$$

(a) $T_{2} \circ T_{1}$

(b) $T_{1} \circ T_{2}$

Composition of Two Reflections

- Let T_{1} be the reflection about the y-axis, and let T_{2} be the reflection about the x-axis. In this case, $T_{1} \circ T_{2}$ and $T_{2} \circ$ T_{1} are the same.

$$
\begin{aligned}
& \left(T_{1} \circ T_{2}\right)(x, y)=T_{1}(x,-y)=(-x,-y) \\
& \left(T_{2} \circ T_{1}\right)(x, y)=T_{2}(-x, y)=(-x,-y) \\
& {\left[T_{1} \circ T_{2}\right]=\left[T_{1}\right]\left[T_{2}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]} \\
& {\left[T_{2} \circ T_{1}\right]=\left[T_{2}\right]\left[T_{1}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]}
\end{aligned}
$$

One-to-One Linear transformations

- Definition
- A linear transformation $T: R^{n} \rightarrow R^{m}$ is said to be one-to-one if T maps distinct vectors (points) in R^{n} into distinct vectors (points) in R^{m}
- Remark:
- That is, for each vector \mathbf{w} in the range of a one-to-one linear transformation T, there is exactly one vector \mathbf{x} such that $T(\mathbf{x})=\mathbf{w}$.

Example

One-to-one linear transformation

Distinct vectors \mathbf{u} and \mathbf{v} are rotated into distinct vectors $T(\mathbf{u})$ and $T(\mathbf{v})$.

Not one-to-one linear transformation

The distinct points P and Q are mapped into the same point M.

Theorem 4.10.1 (Equivalent

 Statements)- If A is an $n \times n$ matrix and $T_{A}: R^{n} \rightarrow R^{n}$ is multiplication by A, then the following statements are equivalent.
- A is invertible
- The range of T_{A} is R^{n}
- T_{A} is one-to-one

Proof of Theorem 4.10.1

- (a) \rightarrow (b): Assume A is invertible. $A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} in R^{n}. This implies that T_{A} maps \mathbf{x} into the arbitrary vector \mathbf{b} in R^{n}, which implies the range of T_{A} is R^{n}.
- (b) \rightarrow (c): Assume the range of T_{A} is R^{n}. For every vector \mathbf{b} in R^{n} there is some vector \mathbf{x} in R^{n} for which $T_{A}(\mathbf{x})=\mathbf{b}$ and hence the linear system $A \mathbf{x}=\mathbf{b}$ is consistent for every vector \mathbf{b} in R^{n}. But we know $A \mathbf{x}=\mathbf{b}$ has a unique solution, and hence for every vector \mathbf{b} in the range of T_{A} there is exactly one vector \mathbf{x} in R^{n} such that $T_{A}(\mathbf{x})=\mathbf{b}$.

Example

- The rotation operator $T: R^{2} \rightarrow R^{2}$ is one-to-one
- The standard matrix for T is

$$
[T]=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- $[T]$ is invertible since

$$
\operatorname{det}\left|\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right|=\cos ^{2} \theta+\sin ^{2} \theta=1 \neq 0
$$

Example

- The projection operator $T: R^{3} \rightarrow R^{3}$ is not one-to-one
- The standard matrix for T is

$$
[T]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- $[T]$ is not invertible since $\operatorname{det}[T]=0$

Inverse of a One-to-One Linear Operator

- Suppose $T_{A}: R^{n} \rightarrow R^{n}$ is a one-to-one linear operator \Rightarrow The matrix A is invertible.
$\Rightarrow T_{A^{-1}}: R^{n} \rightarrow R^{n}$ is itself a linear operator; it is called the inverse of T_{A}.

$$
\begin{aligned}
\Rightarrow & T_{A}\left(T_{A^{-1}}(\mathbf{x})\right)=A A^{-1} \mathbf{x}=I \mathbf{x}=\mathbf{x} \text { and } \\
& T_{A^{-1}}\left(T_{A}(\mathbf{x})\right)=A^{-1} A \mathbf{x}=I \mathbf{x}=\mathbf{x} \\
\Rightarrow & T_{A} \circ T_{A^{-1}}=T_{A A^{-1}=T_{I} \quad \text { and }} \\
& T_{A^{-1}} \circ T_{A}=T_{A^{-1} A}=T_{I}
\end{aligned}
$$

Inverse of a One-to-One Linear Operator

- If \mathbf{w} is the image of \mathbf{x} under T_{A}, then $T_{A}{ }^{-1}$ maps \mathbf{w} back into \mathbf{x}, since

$$
T_{A^{-1}}(\mathbf{w})=T_{A^{-1}}\left(T_{A}(\mathbf{x})\right)=\mathbf{x}
$$

- When a one-to-one linear operator on R^{n} is written as $T: R^{n} \rightarrow R^{n}$, then the inverse of the operator T is denoted by T^{-1}.
- Thus, by the standard matrix, we have $\left[T^{-1}\right]=[T]^{-1}$

Example

- Let $T: R^{2} \rightarrow R^{2}$ be the operator that rotates each vector in R^{2} through the angle θ :

$$
[T]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- Undo the effect of T means rotate each vector in R^{2} through the angle $-\theta$.
- This is exactly what the operator T^{-1} does: the standard matrix T^{-1} is

$$
\left[T^{-1}\right]=[T]^{-1}=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]
$$

- The only difference is that the angle θ is replaced by $-\theta$

Example

- Show that the linear operator $T: R^{2} \rightarrow R^{2}$ defined by the equations

$$
\begin{aligned}
& w_{1}=2 x_{1}+x_{2} \\
& w_{2}=3 x_{1}+4 x_{2}
\end{aligned}
$$

is one-to-one, and find $T^{-1}\left(w_{1}, w_{2}\right)$.

- Solution:

$$
\begin{aligned}
& \text { Solution: }\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow[T]=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right] \Longrightarrow\left[T^{-1}\right]=[T]^{-1}=\left[\begin{array}{rr}
\frac{4}{5} & -\frac{1}{5} \\
-\frac{3}{5} & \frac{2}{5}
\end{array}\right] \\
& \longrightarrow\left[T^{-1}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{rr}
\frac{4}{5} & -\frac{1}{5} \\
-\frac{3}{5} & \frac{2}{5}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{4}{5} w_{1}-\frac{1}{5} w_{2} \\
-\frac{3}{5} w_{1}+\frac{2}{5} w_{2}
\end{array}\right] \\
& \longrightarrow T^{-1}\left(w_{1}, w_{2}\right)=\left(\frac{4}{5} w_{1}-\frac{1}{5} w_{2},-\frac{3}{5} w_{1}+\frac{2}{5} w_{2}\right)
\end{aligned}
$$

Linearity Properties

- Theorem 4.10.2 (Properties of Linear Transformations)
- A transformation $T: R^{n} \rightarrow R^{m}$ is linear if and only if the following relationships hold for all vectors \mathbf{u} and \mathbf{v} in R^{n} and every scalar c.
- $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
- $T(c \mathbf{u})=c T(\mathbf{u})$

Proof of Theorem 4.10.2

- Conversely, assume that properties (a) and (b) hold for the transformation T. We can prove that T is linear by finding a matrix A with the property that $T(\mathbf{x})=A \mathbf{x}$ for all vectors \mathbf{x} in R^{n}.
- The property (a) can be extended to three or more terms. $T(\mathbf{u}+\mathbf{v}+\mathbf{w})=T(\mathbf{u}+(\mathbf{v}+\mathbf{w}))=T(\mathbf{u})+T(\mathbf{v}+\mathbf{w})=T(\mathbf{u})+T(\mathbf{v})+$ $T(\mathbf{w})$
- More generally, for any vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ in R^{n}, we have

$$
T\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\ldots+\mathbf{v}_{k}\right)=T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)+\ldots+T\left(\mathbf{v}_{k}\right)
$$

Proof of Theorem 4.10.2

- Now, to find the matrix A, let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ be the vectors

$$
\boldsymbol{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \boldsymbol{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \ldots \ldots . \quad \boldsymbol{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

- Let A be the matrix whose successive column vectors are $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), \ldots, T\left(\mathbf{e}_{n}\right)$; that is
$A=\left[T\left(\mathbf{e}_{1}\right)\left|T\left(\mathbf{e}_{2}\right)\right| \ldots \mid T\left(\mathbf{e}_{n}\right)\right]$

Proof of Theorem 4.10.2

- If $\boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is any vector in R^{n}, then as discussed in

Section 1.3, the product $A \mathbf{x}$ is a linear combination of the column vectors of A with coefficients \mathbf{x}, so

$$
\begin{aligned}
A \mathbf{x} & =x_{1} T\left(\mathbf{e}_{1}\right)+x_{2} T\left(\mathbf{e}_{2}\right)+\ldots+x_{n} T\left(\mathbf{e}_{n}\right) \\
& =T\left(x_{1} \mathbf{e}_{1}\right)+T\left(x_{2} \mathbf{e}_{2}\right)+\ldots+T\left(x_{n} \mathbf{e}_{n}\right) \\
& =T\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\ldots+x_{n} \mathbf{e}_{n}\right) \\
& =T(\mathbf{x})
\end{aligned}
$$

Theorem 4.10.3

- Every linear transformation from R^{n} to R^{m} is a matrix transformation, and conversely, every matrix transformation from R^{n} to R^{m} is a linear transformation.

Theorem 4.10.4 (Equivalent

Statements)

- If A is an $m \times n$ matrix, and if $T_{A}: R^{n} \rightarrow R^{n}$ is multiplication by A, then the following are equivalent:
A is invertible.
$A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
The reduced row-echelon form of A is I_{n}.
A is expressible as a product of elementary matrices.
- $\quad A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}.
- $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b}.
- $\quad \operatorname{det}(A) \neq 0$.
- The column vectors of A are linearly independent.
- The row vectors of A are linearly independent.
- The column vectors of A span R^{n}.
- The row vectors of A span R^{n}.
- The column vectors of A form a basis for R^{n}.
- The row vectors of A form a basis for R^{n}.
- $\quad A$ has rank n.
- $\quad A$ has nullity 0 .
- The orthogonal complement of the nullspace of A is R^{n}.
- The orthogonal complement of the row space of A is $\{\mathbf{0}\}$.
- The range of T_{A} is R^{n}.
- $\quad T_{A}$ is one-to-one.
4.11

Geometry of Matrix Operations

Example: Transforming with Diagonal

 Matrices- Suppose that the $x y$-plane first is compressed or expanded by a factor of k_{1} in the x-direction and then is compressed or expanded by a factor of k_{2} in the y-direction. Find a single matrix operator that performs both operations.

$$
\begin{gathered}
{\left[\begin{array}{cc}
k_{1} & 0 \\
0 & 1
\end{array}\right]} \\
x \text {-compression (expansion) }
\end{gathered}\left[\begin{array}{cc}
1 & 0 \\
0 & k_{2}
\end{array}\right]
$$

- If $k_{1}=k_{2}=k$, this is a contraction or dilation. $\quad A=\left[\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right]$

Example

- Find a matrix transformation from R^{2} to R^{2} that first shears by a factor of 2 in the x-direction and then reflects about $y=x$.
- The standard matrix for the shear is $A_{1}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and for the reflection is $A_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- Thus the standard matrix for the sear followed by the reflection is

$$
A_{2} A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right]
$$

Example

- Find a matrix transformation from R^{2} to R^{2} that first reflects about $y=x$ and then shears by a factor of 2 in the x-direction.

$$
A_{1} A_{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]
$$

- Note that $A_{1} A_{2} \neq A_{2} A_{1}$

Geometry

Geometry of One-to-One Matrix

Operators

- A matrix transformation T_{A} is one-to-one if and only if A is invertible and can be expressed as a product of elementary matrices.

$$
\begin{gathered}
A=E_{1} E_{2} \cdots E_{r} \\
T_{A}=T_{E_{1} E_{2} \cdots E_{r}}=T_{E_{1}} \circ T_{E_{2}} \circ \cdots \circ T_{E_{r}}
\end{gathered}
$$

- Theorem 4.11.1: If E is an elementary matrix, then $T_{E}: R^{2} \rightarrow$ R^{2} is one of the following:
- A shear along a coordinate axis
- A reflection about $\mathrm{y}=\mathrm{x}$
- A compression along a coordinate axis
- An expansion along a coordinate axis
- A reflection about a coordinate axis
- A compression or expansion along a coordinante axis followed by a reflection about a coordinate axis

Proof of Theorem 4.11.1

- Because a 2×2 elementary matrix results from performing a single elementary row operation on the 2×2 identity matrix, it must have one of the following forms:

$$
\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
k & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right]
$$

- $\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$ represent shears along coordinates axes.
- $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ represents a reflection about $y=x$.

Proof of Theorem 4.11.1

$$
\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
k & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & k
\end{array}\right]
$$

- If $k>0,\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]$ represent compressions or
expansion along coordinate axes, depending on whether $0 \leq k \leq 1$ (compression) or $k \geq 1$ (expansion).
- If $k<\mathbf{0}$, and if we express k in the form $k=-k_{1}$, where $k_{1}>\mathbf{0}$, then

$$
\begin{aligned}
& {\left[\begin{array}{ll}
k & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-k_{1} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
k_{1} & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -k_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & k_{1}
\end{array}\right]}
\end{aligned}
$$

Proof of Theorem 4.11.1

$$
\left[\begin{array}{ll}
k & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-k_{1} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
k_{1} & 0 \\
0 & 1
\end{array}\right]
$$

- It represents a compression or expansion along the x-axis followed by a reflection about the y-axis.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -k_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & k_{1}
\end{array}\right]
$$

- It represents a compression or expansion along the y-axis followed by a reflection about the x-axis.

Theorem 4.11.2

- If $T_{A}: R^{2} \rightarrow R^{2}$ is multiplication by an invertible matrix A, then the geometric effect of T_{A} is the same as an appropriate succession of shears, compressions, expansions, and reflections.

Example: Geometric Effect of Multiplication by a Matrix

- Assuming that k_{1} and k_{2} are positive, express the diagonal matrix $A=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]$ as a product of elementary matrices, and describe the geometric effect of multiplication by A in terms of compressions and expansions.
- We know

$$
A=\left[\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & k_{2}
\end{array}\right]\left[\begin{array}{cc}
k_{1} & 0 \\
0 & 1
\end{array}\right]
$$

which shows the geometric effect of compressing or expanding by a factor of k_{1} in the x-direction and then compressing or expanding by a factor of k_{2} in the y-direction.

Example

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

- Express A as a product of elementary matrices, and then describe the geometric effect of multiplication by A in terms of shears, compressions, expansion, and reflections.
- A can be reduced to I as follows:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Add -3 times the first Multiply the second row to the second row by $-1 / 2$

Add -2 times the second row to the first

- The three successive row operations can be performed by multiplying on the left successively by

$$
E_{1}=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right] \quad E_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{2}
\end{array}\right] \quad E_{3}=\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]
$$

Example

- Inverting these matrices

$$
A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

- Reading from right to left and noting that

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

it follows that the effect of multiplying by A is equivalent to

1. shearing by a factor of 2 in the x-direction,
2. then expanding by a factor of 2 in the y-direction,

3 . then reflecting about the x-axis,
4. then shearing by a factor of 3 in the y-direction.

Theorem 4.11.3

- If $T: R^{2} \rightarrow R^{2}$ is multiplication by an invertible matrix, then
- (a) the image of a straight line is a straight line.
- (b) the image of a straight line through the origin is a straight line through the origin.
- (c) the images of parallel straight lines are parallel straight lines.
- (d) the images of the line segment joining points P and Q is the line segment joining the images of P and Q.
- (e) the images of three points lie on a line if and only if the points themselves line on some line.

Example: Image of a Square

- Sketch the images of the unit square under multiplication by

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]
$$

- Since

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} & {\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]} \\
{\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]} & {\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
\begin{array}{|c}
y \\
(0,1) \\
(0,0) \\
(1,2) \\
(1,1) \\
\end{array} \underbrace{(1,1)}_{(2,0)} \\
x
\end{array}
$$

Example: Image of a Line $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$

- The invertible matrix maps the line $y=2 x+1$ into another line. Find its equation.
- Let (x, y) be a point on the line $y=2 x+1$, and let $\left(x^{\prime}, y^{\prime}\right)$ be its image under multiplication by A. Then

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \square\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

- So $x=x^{\prime}-y^{\prime}$

$$
y=-2 x^{\prime}+3 y^{\prime}
$$

$$
\square y^{\prime}=\frac{4}{5} x^{\prime}+\frac{1}{5}
$$

- Thus $\left(x^{\prime}, y^{\prime}\right)$ satisfies $y=\frac{4}{5} x+\frac{1}{5}$, which is the equation we want.

