Linear Algebra Homework 2

Due date: 2015/10/23

Note: You have to answer the questions with supporting explanations if needed. The computations have to be accomplished with paper and pencil.

1. Find the determinant of the following matrix by a cofactor expansion along a row or a column of your choice.

 $\begin{bmatrix} 3 & 4 & 3 & 0 \\ 5 & 4 & 6 & 6 \\ -1 & 2 & 3 & 0 \\ 4 & 2 & 4 & 3 \end{bmatrix}$

2. Find the determinant of the following matrix by row reduction.

[1	3	-1	0	-2]	
0	2	-4	-1	-6	
3	7	-3	8	-7	
3	5	5	2	7	
_2	-6	2	3	9	

3. Solve the following linear system with the Cramer's rule, if it can be applied.

$3x_1$	+	x_2	+	$2x_3$	=	5
$-x_{1}$	+	$4x_{2}$	_	$3x_3$	=	0
$3x_1$	+	$5x_2$			=	7

4. Given that A is a 5×5 matrix for which det(A)=-2. Solve the following expressions.

(i) det(5A) (ii) det(A^{-1}) (iii) det($-2(A^{-1})^2$) (iv) det($(2A)^{-1}$)

5. Given that *B* is a $n \times n$ matrix, prove that:

 $\det(\operatorname{adj}(B)) = \det(B^{n-1})$