Linear Algebra

Homework 2
Due date: 2015/10/23

Note: You have to answer the questions with supporting explanations if needed. The computations have to be accomplished with paper and pencil.

1. Find the determinant of the following matrix by a cofactor expansion along a row or a column of your choice.

$$
\left[\begin{array}{rrrr}
3 & 4 & 3 & 0 \\
5 & 4 & 6 & 6 \\
-1 & 2 & 3 & 0 \\
4 & 2 & 4 & 3
\end{array}\right]
$$

2. Find the determinant of the following matrix by row reduction.

$$
\left[\begin{array}{rrrrr}
1 & 3 & -1 & 0 & -2 \\
0 & 2 & -4 & -1 & -6 \\
3 & 7 & -3 & 8 & -7 \\
3 & 5 & 5 & 2 & 7 \\
-2 & -6 & 2 & 3 & 9
\end{array}\right]
$$

3. Solve the following linear system with the Cramer's rule, if it can be applied.

$$
\begin{aligned}
3 x_{1}+x_{2}+2 x_{3} & =5 \\
-x_{1}+4 x_{2}-3 x_{3} & =0 \\
3 x_{1}+5 x_{2} & =7
\end{aligned}
$$

4. Given that A is a 5×5 matrix for which $\operatorname{det}(A)=-2$. Solve the following expressions.
(i) $\operatorname{det}(5 A)$
(ii) $\operatorname{det}\left(A^{-1}\right)$
(iii) $\operatorname{det}\left(-2\left(A^{-1}\right)^{2}\right)$
(iv) $\operatorname{det}\left((2 A)^{-1}\right)$
5. Given that B is a $n \times n$ matrix, prove that:

$$
\operatorname{det}(\operatorname{adj}(B))=\operatorname{det}\left(B^{n-1}\right)
$$

