## Linear Algebra

## Homework 3

Due date: 2016/01/08

Note: You have to answer the questions with supporting explanations if needed. The computations have to be accomplished with paper and pencil.

1. If $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+3 x_{2}, x_{1}-3 x_{2}\right)$, then
(i) Find the domain and codomain of $T$; (ii) Find the image of $\mathbf{x}=(2,-2,5)$ under $T$.
2. Use matrix multiplication to find the reflection of $(3,2)$ about
(i) the $x$-axis; (ii) the $y$-axis; (iii) the line $y=x$.
3. Describe the geometric effect of multiplying a vector $\mathbf{x}$ by a matrix A.
(i) $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$; (ii) $\mathrm{A}=\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]$
4. Let $T_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{1}+3 x_{2}, 0\right)$ and $T_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{2}, x_{1}-5 x_{2}, x_{1}\right)$.
(i) Find the standard matrices for $T_{2} \circ T_{1}$ and $T_{1} \circ T_{2}$.
(ii) Use the matrices obtained in part (i) to find the formulas for $T_{2}\left(T_{1}\left(x_{1}, x_{2}, x_{3}\right)\right)$ and $T_{1}\left(T_{2}\left(x_{1}, x_{2}, x_{3}\right)\right)$.
5. Find the standard matrix for the following matrix operators.
(i) $T: R^{3} \rightarrow R^{3}$ reflects a vector about the $x z$-plane and then contracts that vector by a factor of $1 / 2$.
(ii) $T: R^{3} \rightarrow R^{3}$ projects a vector orthogonally onto the $x z$-plane and then projects that vector orthogonally onto the $x y$-plane
6. Given a matrix $\quad A=\left[\begin{array}{rr}2 & 0 \\ 2 & -1\end{array}\right]$
(i) express A as a product of elementary matrices, and then describe the effect on $R^{2}$ of multiplication by A in terms of compression, expansions, reflections and shears.
(ii) Sketch the image of the rectangle with vertices $(0,0),(1,0),(1,2)$ and $(0,2)$ under the transformation by A.

$$
A=\left[\begin{array}{rr}
2 & 0 \\
2 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

