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Row Space and Column Space

 Definition
 If A is an mn matrix, then the subspace of Rn spanned by 

the row vectors of A is called the row space (列空間) of A, 
and the subspace of Rm spanned by the column vectors is 
called the column space (行空間) of A. 

 The solution space of the homogeneous system of equation 
Ax = 0, which is a subspace of Rn, is called the null space (
零核空間) of A.



Remarks

 In this section we will be concerned with two 
questions
 What relationships exist between the solutions of a linear 

system Ax=b and the row space, column space, and null 
space of A. 

 What relationships exist among the row space, column 
space, and null space of a matrix. 
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Remarks

 It follows from Formula (10) of Section 1.3

 We conclude that Ax=b is consistent (相容的) if and 
only if b is expressible as a linear combination of the 
column vectors of A or, equivalently, if and only if b is 
in the column space of A. 
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Theorem 4.7.1

 Theorem 4.7.1
 A system of linear equations Ax = b is consistent if 

and only if b is in the column space of A.
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Example 

 Let Ax = b be the linear system

Show that b is in the column space of A, and express b as a linear 
combination of the column vectors of A.

 Solution:
 Solving the system by Gaussian elimination yields 

x1 = 2, x2 = -1, x3 = 3
 Since the system is consistent, b is in the column space of A. 
 Moreover, it follows that
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General and Particular Solutions
 Theorem 4.7.2

 If x0 denotes any single solution of a consistent linear 
system Ax = b, and if v1, v2, …, vk form a basis for the null 
space of A, (that is, the solution space of the homogeneous 
system Ax = 0), then every solution of Ax = b can be 
expressed in the form 

x = x0 + c1v1 + c2v2 + · · · + ckvk
Conversely, for all choices of scalars c1, c2, …, ck, the 
vector x in this formula is a solution of Ax = b.

Note that x0 is perpendicular to v1, v2, …, vk

Refer also to Theorem 3.4.4 on Page 152 of Textbook.
The general solution of a consistent linear system Ax=b can be 
obtained by adding any specific solution of Ax=b to the general 
solution of Ax=0. 



Proof of Theorem 4.7.2

 Assume that x0 is any fixed solution of Ax=b and that x is 
an arbitrary solution. Then Ax0 = b and Ax = b. 

 Subtracting these equations yields
Ax – Ax0 = 0 or    A(x-x0)=0

 Which shows that x-x0 is a solution of the homogeneous 
system Ax = 0. 

 Since v1, v2, …, vk is a basis for the solution space of this 
system, we can express x-x0 as a linear combination of 
these vectors, say x-x0 = c1v1+c2v2+…+ckvk. Thus, 
x=x0+c1v1+c2v2+…+ckvk. 
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Proof of Theorem 4.7.2

 Conversely, for all choices of the scalars c1,c2,…,ck, we 
have

Ax = A(x0+c1v1+c2v2+…+ckvk)
Ax = Ax0 + c1(Av1) + c2(Av2) + … + ck(Avk)

 But x0 is a solution of the nonhomogeneous system, and 
v1, v2, …, vk are solutions of the homogeneous system, so 
the last equation implies that 

Ax = b + 0 + 0 + … + 0 = b
 Which shows that x is a solution of Ax = b. 
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Remark

 Remark 
 The vector x0 is called a particular solution (特解) of Ax = 

b. 
 The expression x0 + c1v1 + · · · + ckvk is called the general 

solution (通解) of Ax = b, the expression c1v1 + · · · + ckvk
is called the general solution of Ax = 0.

 The general solution of Ax = b is the sum of any particular 
solution of Ax = b and the general solution of Ax = 0.
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Example (General Solution of Ax = b)

 The solution to the 
nonhomogeneous system

x1 + 3x2 – 2x3 + 2x5 = 0
2x1 + 6x2 – 5x3 – 2x4 + 4x5 – 3x6 = -1

5x3 + 10x4 + 15x6 = 5
2x1 + 5x2 + 8x4 + 4x5 + 18x6 = 6

is 

x1 = -3r - 4s - 2t, x2 = r, 
x3 = -2s, x4 = s, 
x5 = t, x6 = 1/3

 The result can be written in vector 
form as

which is the general solution.
 The vector x0 is a particular 

solution of nonhomogeneous 
system, and the linear 
combination x is the general 
solution of the homogeneous 
system.
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Elementary Row Operation

 Performing an elementary row operation on an 
augmented matrix does not change the solution set of the 
corresponding linear system. 

 It follows that applying an elementary row operation to a 
matrix A does not change the solution set of the 
corresponding linear system Ax=0, or stated another way, 
it does not change the null space of A. 
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The solution space of the homogeneous system of equation Ax = 0, which is a 
subspace of Rn, is called the null space of A.
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Example 

 Find a basis for the nullspace of

 Solution
 The nullspace of A is the solution space of the homogeneous system

2x1 + 2x2 – x3 + x5 = 0
-x1 – x2 – 2 x3 – 3x4 + x5 = 0
x1 + x2 – 2 x3 – x5  = 0

x3 +  x4 + x5 = 0
 In Example 10 of Section 4.5 we showed that the vectors

form a basis for the nullspace.
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Theorems 4.7.3 and 4.7.4

 Theorem 4.7.3
 Elementary row operations do not change the nullspace of a 

matrix.

 Theorem 4.7.4
 Elementary row operations do not change the row space of a 

matrix. 



Proof of Theorem 4.7.4

 Suppose that the row vectors of a matrix A are r1,r2,…,rm, 
and let B be obtained from A by performing an 
elementary row operation. (We say that A and B are row 
equivalent.)

 We shall show that every vector in the row space of B is 
also in that of A, and that every vector in the row space of 
A is in that of B. 

 If the row operation is a row interchange, then B and A
have the same row vectors and consequently have the 
same row space. 
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Proof of Theorem 4.7.4

 If the row operation is multiplication of a row by a 
nonzero scalar or a multiple of one row to another, 
then the row vector r1’,r2’,…,rm’ of B are linear 
combination of r1,r2,…,rm; thus they lie in the row space 
of A. 

 Since a vector space is closed under addition and scalar 
multiplication, all linear combination of r1’,r2’,…,rm’ will 
also lie in the row space of A. Therefore, each vector in 
the row space of B is in the row space of A. 
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Proof of Theorem 4.7.4

 Since B is obtained from A by performing a row 
operation, A can be obtained from B by performing the 
inverse operation (Sec. 1.5).

 Thus the argument above shows that the row space of A is 
contained in the row space of B. 
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Remarks
 Do elementary row operations change the column space? 

 Yes!

 The second column is a scalar multiple of the first, so the 
column space of A consists of all scalar multiplies of the 
first column vector. 

 Again, the second column is a scalar multiple of the first, 
so the column space of B consists of all scalar multiples 
of the first column vector. This is not the same as the 
column space of A. 
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Add -2 times the first 
row to the second parallel column vectorsnon-parallel column vectors



Theorem 4.7.5

 Theorem 4.7.5
 If a matrix R is in row echelon form, then the row 

vectors with the leading 1’s (i.e., the nonzero row 
vectors) form a basis for the row space of R, and 
the column vectors with the leading 1’s of the row 
vectors form a basis for the column space of R.

(The proof involves little more than an analysis of the 
positions of the 0’s and 1’s of R. We omit the details.)
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Bases for Row and Column Spaces

1

2

3

T he m atrix
1 2 5 0 3
0 1 3 0 0

       
0 0 0 1 0
0 0 0 0 0

is in row -echelon form . From  T heorem  5.5.6 the vectors
[1 -2 5 0 3]

               [0  1 3 0 0]
               [0  0 0 1 0]
form  a

R
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               ,   ,   
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form  a basis for the colum n space of R .
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Example 

 Find bases for the row and column spaces of

 Solution:
 Since elementary row operations do not change the row space of a 

matrix, we can find a basis for the row space of A by finding a basis that 
of any row-echelon form of A. 

 Reducing A to row-echelon form we obtain

1 3 4 2 5 4
2 6 9 1 8 2
2 6 9 1 9 7
1 3 4 2 5 4

A
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R
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Example

 The basis vectors for the row space of R and A
r1 = [1 -3 4 -2 5 4]
r2 = [0 0 1 3 -2 -6]
r3 = [0 0 0 0 1 5]

 Keeping in mind that A and R may have different column 
spaces, we cannot find a basis for the column space of A
directly from the column vectors of R. 
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Theorem 4.7.6

 If A and B are row equivalent matrices, then:
 A given set of column vectors of A is linearly 

independent if and only if the corresponding (對應的)
column vectors of B are linearly independent.

 A given set of column vectors of A forms a basis for 
the column space of A if and only if the corresponding 
column vectors of B form a basis for the column space 
of B.

(We omit the proofs here.)
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Example

 We can find the basis for the column space of R, then the 
corresponding column vectors of A will form a basis for the 
column space of A. 

 Basis for R’s column space

 Basis for A’s column space
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Example (Basis for a Vector Space 
Using Row Operations )
 Find a basis for the space spanned by the row vectors

v1= (1, -2, 0, 0, 3), v2 = (2, -5, -3, -2, 6), 
v3 = (0, 5, 15, 10, 0), v4 = (2, 6, 18, 8, 6).

 Except for a variation in notation, the space spanned by these 
vectors is the row space of the matrix

 The nonzero row vectors in this matrix are 
w1= (1, -2, 0, 0, 3), w2 = (0, 1, 3, 2, 0), w3 = (0, 0, 1, 1, 0) 

 These vectors form a basis for the row space and consequently form a 
basis for the subspace of R5 spanned by v1, v2, v3, and v4.

1 2 0 0 3
2 5 3 2 6
0 5 15 10 0
2 6 18 8 6
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0 0 0 0 0
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Remarks 

 Keeping in mind that A and R may have different column spaces, we 
cannot find a basis for the column space of A directly from the 
column vectors of R.

 However, if we can find a set of column vectors of R that forms a 
basis for the column space of R, then the corresponding column 
vectors of A will form a basis for the column space of A.

 The basis vectors obtained for the column space of A consist of 
column vectors of A, but the basis vectors obtained (through a 
series of row operations) for the row space of A were not all 
vectors of A.

 Transpose of the matrix can be used to solve this problem.
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Example (Basis for the Row Space of a 
Matrix )
 Find a basis for the row space of 

consisting entirely of row vectors 
from A.

 Solution: 

 The column space of AT are

 Thus, the basis vectors for the row 
space of A are

r1 = [1 -2 0 0 3]
r2 = [2 -5 -3 -2 6]
r3 = [2 6 18 8 6]

1 2 0 0 3
2 5 3 2 6
0 5 15 10 0
2 6 18 8 6
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 (a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -5, -3, 6), v3 
= (0, 1, 3, 0), v4 = (2, -1, 4, -7), v5 = (5, -8, 1, 2) that forms a basis 
for the space spanned by these vectors.

 (b) Express each vector not in the basis as a linear combination of 
the basis vectors.

 Solution (a): 

 Thus, {v1, v2, v4} is a basis for the column space of the matrix.

Example (Basis and Linear Combinations)
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Example

 Solution (b):
 We can express w3 as a linear combination of w1 and w2, express 

w5 as a linear combination of w1, w2, and w4 (Why?). By 
inspection, these linear combination are

w3 = 2w1 – w2

w5 = w1 + w2 + w4

 We call these the dependency equations. The corresponding 
relationships in the original vectors are 

v3 = 2v1 – v2

v5 = v1 + v2 + v4



4.8
Rank, Nullity, and the 
Fundamental Matrix Spaces
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Dimension and Rank

 Theorem 4.8.1
 If A is any matrix, then the row space and column space of A

have the same dimension.
 Proof: Let R be any row-echelon form of A. It follows from 

Theorem 4.7.4 and 4.7.6b that 
dim(row space of A) = dim(row space of R). 

dim(column space of A) = dim(column space of R)
 The dimension of the row space of R is the number of nonzero 

rows = number of leading 1’s = dimension of the column 
space of R



Rank and Nullity

 Definition
 The common dimension of the row and column space of a matrix 

A is called the rank (秩) of A and is denoted by rank(A); the 
dimension of the nullspace of a is called the nullity (零核維數) 
of A and is denoted by nullity(A).
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Example (Rank and Nullity)

 Find the rank and nullity of the matrix

 Solution:
 The reduced row-echelon form of A is

 Since there are two nonzero rows (two leading 1’s), the row space and 
column space are both two-dimensional, so rank(A) = 2.

1 2 0 4 5 3
3 7 2 0 1 4
2 5 2 4 6 1
4 9 2 4 4 7

A

  
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1 0 4 28 37 13
0 1 2 12 16 5
0 0 0 0 0 0
0 0 0 0 0 0
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Example (Rank and Nullity)
 To find the nullity of A, we must find the dimension of the 

solution space of the linear system Ax=0.
 The corresponding system of equations will be 

x1 – 4x3 – 28x4 – 37x5 + 13x6 = 0
x2 – 2x3 – 12x4 – 16 x5+ 5 x6 = 0

 It follows that the general solution of the system is
x1 = 4r + 28s + 37t – 13u, x2 = 2r + 12s + 16t – 5u,

x3 = r, x4 = s, x5 = t, x6 = u
or

1

2

3

4

5

6

4 28 37 13
2 12 16 5
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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x
x
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Thus, nullity(A) = 4.



Example

 What is the maximum possible rank of an            matrix A that 
is not square? 

 Solution: The row space of A is at most n-dimensional and the 
column space is at most m-dimensional. Since the rank of A is 
the common dimension of its row and column space, it follows 
that the rank is at most the smaller of m and n. 

35



36

Theorem 4.8.2

 Theorem 4.8.2 (Dimension Theorem for Matrices)
 If A is a matrix with n columns, then rank(A) + nullity(A) = n.

 Proof: 
 Since A has n columns, Ax = 0 has n unknowns. These 

fall into two categories: the leading variables and the free 
variables. 

 The number of leading 1’s in the reduced row-echelon 
form of A is the rank of A



Theorem 4.8.2

 The number of free variables is equal to the nullity of A. 
This is so because the nullity of A is the dimension of the 
solution space of Ax=0, which is the same as the number 
of parameters in the general solution, which is the same 
as the number of free variables. Thus

rank(A) + nullity(A) = n
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Example

 This matrix has 6 columns, so rank(A) + nullity(A) = 6
 In previous example, we know rank(A) = 4 and nullity(A) 

= 2
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1 2 0 4 5 3
3 7 2 0 1 4
2 5 2 4 6 1
4 9 2 4 4 7

A

  
  
 
    



Theorem 4.8.3
 If A is an mn matrix, then:

 rank(A) = Number of leading variables in the solution of Ax = 0.
 nullity(A) = Number of parameters in the general solution of Ax = 0.
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x1 – 4x3 – 28x4 – 37x5 + 13x6 = 0
x2 – 2x3 – 12x4 – 16 x5+ 5 x6 = 0

x1 = 4r + 28s + 37t – 13u, x2 = 2r + 12s + 16t – 5u,
x3 = r, x4 = s, x5 = t, x6 = u

1

2

3

4

5

6

4 28 37 13
2 12 16 5
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x
x
x

r s t u
x
x
x

         
                  
         

            
         
         
         

                 
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Example 

 Find the number of parameters in the general solution of 
Ax = 0 if A is a 57 matrix of rank 3.

 Solution: 
 nullity(A) = n – rank(A) = 7 – 3 = 4
 Thus, there are four parameters.



41

Theorem 4.8.4 (Equivalent 
Statements)
 If A is an nn matrix, and if TA : Rn  Rn is multiplication by A, then the following are 

equivalent:
 A is invertible.
 Ax = 0 has only the trivial solution.
 The reduced row-echelon form of A is In.
 A is expressible as a product of elementary matrices.
 Ax = b is consistent for every n1 matrix b.
 Ax = b has exactly one solution for every n1 matrix b.
 det(A)≠0.
 The column vectors of A are linearly independent.
 The row vectors of A are linearly independent.
 The column vectors of A span Rn.
 The row vectors of A span Rn.
 The column vectors of A form a basis for Rn.
 The row vectors of A form a basis for Rn.
 A has rank n.
 A has nullity 0.



42

Overdetermined System

 A linear system with more equations than unknowns is called 
an overdetermined linear system  (超定線性方程組). With 
fewer unknowns than equations, it’s called an 
underdetermined linear system (欠定線性方程組). 

 Theorem 4.8.5
 If Ax = b is a consistent linear system of m equations in n unknowns, 

and if A has rank r, then the general solution of the system contains n – r
parameters.

 If A is a          matrix with rank 4, and if Ax=b is a consistent 
linear system, then the general solution of the system contains 
7-4=3 parameters. 
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Theorem 4.8.6 

 Let A be an           matrix
 (a) (Overdetemined Case) If m> n, then the linear system 

Ax=b is inconsistent for at least one vector b in Rm. 
 (b) (Underdetermined Case) If m < n, then for each vector b in 

Rm the linear system Ax=b is either inconsistent or has 
infinitely many solutions. 



Proof of Theorem 4.8.6 (a)

 Assume that m>n, in which case the column vectors of A
cannot span Rm (fewer vectors than the dimension of Rm). 
Thus, there is at least one vector b in Rm that is not in the 
column space of A, and for that b the system Ax=b is 
inconsistent by Theorem 4.7.1. 
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Proof of Theorem 4.8.6 (b)

 Assume that m<n. For each vector b in Rn there are two 
possibilities: either the system Ax=b is consistent or it is 
inconsistent. 

 If it is inconsistent, then the proof is complete. 
 If it is consistent, then Theorem 4.8.5 implies that the 

general solution has n-r parameters, where r=rank(A). 
 But rank(A) is smaller than, or equal to, the smaller of m

and n, so n-r≧ n-m > 0
 This means that the general solution has at least one 

parameter and hence there are infinitely many solutions. 
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Example

 What can you say about the solutions of an overdetermined system 
Ax=b of 7 equations in 5 unknowns in which A has rank = 4? 

 What can you say about the solutions of an underdetermined
system Ax=b of 5 equations in 7 unknowns in which A has rank = 4? 

 Solution: 
 (a) the system is consistent for some vector b in R7, and for any such b the 

number of parameters in the general solution is n-r=5-4=1 (consistent 可能性
會較低)

 (b) the system may be consistent or inconsistent, but if it is consistent for the 
vector b in R5, then the general solution has n-r=7-4=3 parameters. (consistent 
可能性會較高)
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Example 

 The linear system 

is overdetermined, so it cannot be consistent for all 
possible values of b1, b2, b3, b4, and b5. Exact conditions 
under which the system is consistent can be obtained by 
solving the linear system by Gauss-Jordan elimination.

1 2 1

1 2 2

1 2 3

1 2 4

1 2 5

2
  
  
2
3

x x b
x x b
x x b
x x b
x x b

 
 
 
 
 

2 1

2 1

3 2 1

4 2 1

5 2 1

1 0 2
0 1
0 0 3 2
0 0 4 3
0 0 5 4

b b
b b

b b b
b b b
b b b

 
  
  
   
   
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Example 

 Thus, the system is consistent if and only if b1, b2, b3, b4, 
and b5 satisfy the conditions 

or, on solving this homogeneous linear system, b1=5r-4s, 
b2=4r-3s, b3=2r-s, b4=r,  b5=s where r and s are arbitrary.

1 2 3

1 2 4

1 2 5

2 3                =0
2 4               =0
4 5                =0

b b b
b b b
b b b

 
 
 



Fundamental Spaces of a Matrix

 Six important vector spaces associated with a matrix A
 Row space of A, row space of AT

 Column space of A, column space of AT

 Null space of A, null space of AT

 Transposing a matrix converts row vectors into column 
vectors
 Row space of AT = column space of A
 Column space of AT = row space of A

 These are called the fundamental spaces of a matrix A
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Theorem 4.8.7

 if A is any matrix, then rank(A) = rank(AT)
 Proof: 

 Rank(A) = dim(row space of A) = dim(column space of AT) = 
rank(AT)

 If A is an          matrix, then rank(A)+nullity(A)=n. 
rank(AT)+nullity(AT) = m

 The dimensions of fundamental spaces
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Fundamental Space Dimension
Row space of A r
Column space of A r
Nullspace of A n – r
Nullspace of AT m – r



Recap

 Theorem 3.4.3: If A is an m × n matrix, then the solution 
set of the homogeneous linear system Ax=0 consists of all 
vectors in Rn that are orthogonal to every row vector of A. 

 In other words, the null space of A consists of those 
vectors that are orthogonal to each of the row vectors of 
A. 
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Orthogonality 

 Definition
 Let W be a subspace of Rn, the set of all vectors in Rn that 

are orthogonal to every vector in W is called the orthogonal 
complement (正交補餘) of W, and is denoted by W

 If V is a plane through the origin of R3 with Euclidean inner 
product, then the set of all vectors that are orthogonal to 
every vector in V forms the line L through the origin that 
is perpendicular to V.  

L

V



Theorem 4.8.8

 Theorem 4.8.8
 If W is a subspace of a finite-dimensional space Rn, then:

 W is a subspace of Rn. (read “W perp”)
 The only vector common to W and W is 0; that is ,W  W = 0. 
 The orthogonal complement of W is W; that is , (W) = W.

W  W = Rn (???)
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Example

 Orthogonal complements

54

x

y
W

W⊥

L

V



Theorem 4.8.9

 Theorem 4.8.9
 If A is an mn matrix, then:
 The null space of A and the row space of A are 

orthogonal complements in Rn.
 The null space of AT and the column space of A are 

orthogonal complements in Rm.
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(如果row space是
通過原點的平面時)

(如果column space是
通過原點的平面時)
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Theorem 4.8.10 (Equivalent 
Statements)
 If A is an mn matrix, and if TA : Rn  Rn is multiplication by A, then the following are 

equivalent:
 A is invertible.
 Ax = 0 has only the trivial solution.
 The reduced row-echelon form of A is In.
 A is expressible as a product of elementary matrices.
 Ax = b is consistent for every n1 matrix b.
 Ax = b has exactly one solution for every n1 matrix b.
 det(A)≠0.
 The column vectors of A are linearly independent.
 The row vectors of A are linearly independent.
 The column vectors of A span Rn.
 The row vectors of A span Rn.
 The column vectors of A form a basis for Rn.
 The row vectors of A form a basis for Rn.
 A has rank n.
 A has nullity 0.
 The orthogonal complement of the nullspace of A is Rn.
 The orthogonal complement of the row space of A is {0}.



Applications of Rank

 Digital data are commonly stored in matrix form. 
 Rank plays a role because it measures the 

“redundancy” in a matrix. 
 If A is an m × n matrix of rank k, then n-k of the column 

vectors and m-k of the row vectors can be expressed in 
terms of k linearly independently column or row vectors. 

 The essential idea in many data compression schemes is to 
approximate the original data set by a data set with smaller 
rank that conveys nearly the same information. 
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A  => A’=UVT (for example, SVD), where A’ has a lower rank than A



4.9
Matrix Transformations from Rn
to Rm
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Functions from Rn to R

 A function is a rule f that associates with each element in 
a set A one and only one element in a set B.

 If f associates the element a with the element b, then we 
write b = f(a) and say that b is the image of a under f or 
that f(a) is the value of f at a.

 The set A is called the domain (定義域) of f and the set B 
is called the codomain (對應域) of f.

 The subset of the codomain B consisting of all possible 
values for f as a varies over A is called the range (值域) 
of f.

domain codomain
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Examples

Formula Example Classification Description

Real-valued function of a 
real variable

Function from 
R to R

Real-valued function of 
two real variables

Function from 
R2 to R

Real-valued function of 
three real variables

Function from 
R3 to R

Real-valued function of 
n real variables

Function from 
Rn to R

)(xf 2)( xxf 

),( yxf 22),( yxyxf 

),,( zyxf 22

2

  
),,(
zy

xzyxf




),...,,( 21 nxxxf 22
2

2
1

21

...

),...,,(

n

n

xxx

xxxf







Function from Rn to Rm

 Suppose f1, f2, …, fm are real-valued functions of n
real variables, say

w1 = f1(x1,x2,…,xn)
w2 = f2(x1,x2,…,xn)

…
wm = fm(x1,x2,…,xn)

These m equations assign a unique point 
(w1,w2,…,wm) in Rm to each point (x1,x2,…,xn) in Rn

and thus define a transformation from Rn to Rm. If we 
denote this transformation by T: Rn Rm then

T (x1,x2,…,xn) = (w1,w2,…,wm)
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Function from Rn to Rm

 If m = n the transformation T: Rn Rm is called an 
operator (運算子) on Rn.



Example: A Transformation from R2

to R3

 Define a (non-linear) transform T: R2 → R3

(the motivation usually is to project lower‐dimensional data points into a 
higher‐dimensional space for better discrimination)

 With this transformation, the image of the point (x1, x2) is 

 Thus, for example, T(1,-2) = (-1, -6, -3)
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Linear Transformations from Rn to Rm

 A linear transformation (or a linear operator if m = n) T: Rn Rm is 
defined by equations of the form

or 

or 
w = Ax

 The matrix A = [aij] is called the standard matrix for the linear 
transformation T, and T is called multiplication by A.

nmnmmm
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nn
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Example (Transformation and Linear 
Transformation)
 The linear transformation T : R4R3 defined by the equations

w1 = 2x1 – 3x2 + x3 – 5x4
w2 = 4x1 + x2 – 2x3 + x4
w3 = 5x1 – x2 + 4x3

the standard matrix for T (i.e., w = Ax) is






















0      4      1    5
1      2    1      4
5     1      3   2

A



66

Notations

 If it is important to emphasize that A is the standard 
matrix for T, we denote the linear transformation T: 
Rn Rm by TA: Rn Rm . Thus, 

TA(x) = Ax
 We can also denote the standard matrix for T by 

the symbol [T], or
T(x) = [T]x



Theorem 4.9.1

 For every matrix A the matrix (linear) transformation 
TA:Rn → Rm has the following properties for all vectors u
and v in Rn and for every scalar k
 (a) TA(0) = 0
 (b) TA(ku) = kTA(u) [Homogeneity property]
 TA(u+v) = TA(u) + TA(v) [Additivity property]
 TA(u-v) = TA(u) – TA(v)

 Proof: A0 = 0, A(ku) = k(Au), A(u+v) = Au + Av,
A(u-v)=Au-Av
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Remark

 A matrix transformation maps linear combinations of vectors 
in Rn into the corresponding linear combinations in Rm in the 
sense that 

TA(k1u1+k2u2+…+krur) = k1TA(u1)+k2TA(u2)+…+krTA(ur)
 Depending on whether n-tuples and m-tuples are regarded as 

vectors or points, the geometric effect of a matrix 
transformation TA:Rn → Rm is to map each vector (point) in Rn

into a vector in Rm

68

Rn Rm

x T(x)x is a vector (or point)                        T(x) is a vector (or point)               



Theorem 4.9.2

 If TA:Rn → Rm and TB: Rn → Rm are matrix 
transformations, and if TA(x) = TB(x) for every vector x in 
Rn, then A=B.

 Proof: 
 To say that TA(x) = TB(x) for every vector x in Rn is the same as 

saying that Ax = Bx for every vector x in Rn. 
 This is true, in particular, if x is any of the standard basis 

vectors e1,e2, …,en for Rn; that is Aej = Bej (j=1,2,…,n)
 Since every entry of ej is 0 except for the jth, which is 1, it 

follows from Theorem 1.3.1 that Aej is the jth column of A, and 
Bej is the jth column of B. Therefore, A = B. 
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Zero Transformation

 Zero Transformation from Rn to Rm

 If 0 is the mn zero matrix and 0 is the zero vector 
in Rn, then for every vector x in Rn

T0(x)  = 0x = 0
 So multiplication by zero maps every vector in Rn

into the zero vector in Rm. We call T0 the zero 
transformation from Rn to Rm.



Identity Operator

 Identity Operator on Rn

 If I is the nn identity, then for every vector x in Rn

TI(x) = Ix = x
 So multiplication by I maps every vector in Rn into 

itself.
 We call TI the identity operator on Rn.
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A Procedure for Finding Standard 
Matrices
 To find the standard matrix A for a matrix transformations 

from Rn to Rm: 
 e1,e2, …, en are the standard basis vectors for Rn. 
 Suppose that the images of these vectors under the 

transformation TA are 
TA(e1)=Ae1, TA(e2)=Ae2, …, TA(en) = Aen

 Aej is just the jth column of the matrix A, Thus, 
A = [T] = [T(e1) | T(e2) | … | T(en)]
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Reflection Operators

 In general, operators on R2 and R3 that map each 
vector into its symmetric image about some line or 
plane are called reflection (倒影) operators. 

 Such operators are linear.



Example

 If we let w=T(x), then the equations relating the 
components of x and w are 

w1 = -x = -x + 0y
w2 = y = 0x + y

or, in matrix form 

 The standard matrix for T is
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(x, y)(-x, y)

xw=T(x)
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Reflection Operators (2-Space)
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Reflection Operators (3-Space)
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Projection Operators

 In general, a projection operator (or more precisely an 
orthogonal projection operator) on R2 or R3 is any 
operator that maps each vector into its orthogonal 
projection on a line or plane through the origin. 

 The projection operators are linear.



Example

 Consider the operator T: R2 → R2 that maps each vector 
into its orthogonal projection on the x-axis. The equations 
relating the components of x and w=T(x) are 

w1 = x = x + 0y
w2 = 0 = 0x + 0y

or, in matrix form

 The standard matrix for T is
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(x, y)

x

w=T(x) (x, 0)
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Projection Operators
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Projection Operators



Rotation Operators

 The rotation operator T:R2 → R2 moves points 
counterclockwise about the origin through an angle 

 Find the standard matrix
 T(e1) = T(1,0) = (cos, sin)
 T(e2) = T(0,1) = (-sin, cos)
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


e1

e2
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Example

 If each vector in R2 is rotated through an angle of  /6 
(30) ,then the image w of a vector

 For example, the image of the vector
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A Rotation of Vectors in R3

 A rotation of vectors in R3 is usually described 
in relation to a ray emanating from (發源自) the 
origin, called the axis of rotation. 

 As a vector revolves around the axis of rotation 
it sweeps out some portion of a cone (圓錐體). 

 The angle of rotation is described as “clockwise”
or “counterclockwise” in relation to a viewpoint 
that is along the axis of rotation looking toward 
the origin. 

 The axis of rotation can be specified by a 
nonzero vector u that runs along the axis of 
rotation and has its initial point at the origin. 

 The counterclockwise direction for a rotation 
about its axis can be determined by a “right-
hand rule”.
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A Rotation of Vectors in R3
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Dilation and Contraction Operators

 If k is a nonnegative scalar, the operator on R2 or R3 is 
called a contraction with factor k if 0 ≤ k ≤ 1 (以因素k收
縮) and a dilation with factor k if k ≥ 1 (以因素k膨脹).



Compression or Expansion

 If T: R2 → R2 is a compression (0<k<1) or expansion 
(k>1) in the x-direction with factor k, then 

so the standard matrix for T is           .

 Similarly, the standard matrix for a compression or 
expansion in the y-direction is 
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(x,y)
(kx,y)

(x,y)

(x,ky)



Shears

 A shear (剪) in the x-direction with factor k is a 
transformation that moves each point (x,y) parallel to the 
x-axis by an amount ky to the new position (x+ky,y). 

 Points farther from the x-axis move a greater distance 
than those closer. 
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x

y
(x,y)

x

y
(x+ky,y)

x

y
(x+ky,y)

k > 0 k < 0



Shears

 If T: R2 → R2 is a shear with factor k in the x-direction, then

 The standard matrix for T is 

 Similarly, the standard matrix for a shear in the y-direction 
with factor k is
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Example (Standard Matrix for a Projection 
Operator)
 Let l be the line in the xy-plane that passes through the 

origin and makes an angle  with the positive x-axis, 
where 0 ≤  ≤ . Let T: R2  R2 be a linear operator that 
maps each vector into orthogonal projection on l.
 Find the standard matrix for T.
 Find the orthogonal projection of 

the vector x = (1,5) onto the line 
through the origin that makes an 
angle of  = /6 with the positive 
x-axis.
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Example 

 The standard matrix for T can be written as 
[T] = [T(e1) | T(e2)]

 Consider the case 0    /2.
 ||T(e1)|| = cos 

 ||T(e2)|| = sin 































cossin
cos   

sin)(

cos)(
)(

2

1

1
1 e

e
e

T

T
T


































2

2

2
2 sin   

cossin

sin)(

cos)(
)(

e

e
e

T

T
T

 
















2

2

sin      cossin
cossin     cos    

T
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Example 

 Since sin (/6) = 1/2  and cos (/6)  =      /2, it follows 
from part (a) that the standard matrix for this projection 
operator is 

Thus,

3














41    43

43     43
][T





























































4
53

4
353

5
1

41    43

43     43
5
1

T

 
















2

2

sin      cossin
cossin     cos    

T



Reflections About Lines Through the 
Origin
 Let P denote the standard matrix of orthogonal projections on 

lines through the origin
Px – x = (1/2)(H x – x), or equivalently H x = (2 P – I)x
 H = (2 P – I)
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

L

x

H x

P x



4.10
Properties of Matrix 
Transformations
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Composition of TB with TA

 Definition
 If TA : Rn  Rk and TB : Rk  Rm are linear transformations, 

the composition of TB with TA, denoted by TB。TA (read “TB
circle TA ”), is the function defined by the formula 

(TB。TA)(x) = TB(TA(x))
where x is a vector in Rn.

x TA(x) TB(TA(x))

TB。TA

TA TB

Rn Rk Rm



Composition of TB with TA

 This composition is itself a matrix transformation since
(TB。TA)(x)=(TB(TA(x))=B(TA(x))=B(Ax)=(BA)x

 It is multiplication by BA, i.e. TB。TA = TBA

 The compositions can be defined for more than two linear 
transformations. 

 For example, if T1 : U V and T2 : V  W ,and T3 : W 
Y are linear transformations, then the composition T3 。
T2 。 T1  is defined by (T3 。 T2 。 T1 )(u) = T3 (T2 (T1 
(u)))
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Remark

 It is not true, in general, that AB = BA
 So it is not true, in general, that TB。TA = TA。TB
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Example

 Let T1:R2 → R2 and T2:R2 → R2 be the matrix operators that 
rotate vectors through the angles θ1 and θ2, respectively. 

 The operation (T2。T1)(x)=T2(T1(x)) first rotates x through the 
angle θ1, then rotates T1(x) through the angle θ2. 

97



Composition is Not Commutative

 Let T1 be the reflection operator
 Let T2 be the orthogonal projection 

on the y-axis
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0  1
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0  1
1  0
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0  1
1  0
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
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









































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Composition of Two Reflections

 Let T1 be the reflection about the y-axis, and let T2 be the 
reflection about the x-axis. In this case, T1。T2 and T2。
T1 are the same. 
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One-to-One Linear transformations

 Definition
 A linear transformation T : Rn →Rm is said to be one-to-one if T 

maps distinct vectors (points) in Rn into distinct vectors (points) 
in Rm

 Remark:
 That is, for each vector w in the range of a one-to-one linear 

transformation T, there is exactly one vector x such that T(x) = w.



Example
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u

T(u)
v

T(v)

Distinct vectors u and v
are rotated into distinct 
vectors T(u) and T(v).

P

Q

M

The distinct points P and 
Q are mapped into the 
same point M.

One-to-one linear 
transformation

Not one-to-one linear 
transformation



102

Theorem 4.10.1 (Equivalent 
Statements)
 If A is an nn matrix and TA : Rn  Rn is multiplication by 

A, then the following statements are equivalent.
 A is invertible
 The range of TA is Rn

 TA is one-to-one

Ax=b



Proof of Theorem 4.10.1

 (a)→(b): Assume A is invertible. Ax=b is consistent for every 
n × 1 matrix b in Rn. This implies that TA maps x into the 
arbitrary vector b in Rn, which implies the range of TA is Rn. 

 (b)→(c): Assume the range of TA is Rn. For every vector b in 
Rn there is some vector x in Rn for which TA(x)=b and hence 
the linear system Ax=b is consistent for every vector b in Rn. 
But we know Ax=b has a unique solution, and hence for every 
vector b in the range of TA there is exactly one vector x in Rn

such that TA(x)=b. 
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Example

 The rotation operator T : R2  R2 is one-to-one 
 The standard matrix for T is 

 [T] is invertible since







 


 cos       sin
sin    cos

][



T

01sincos
cos       sin
sin    cos

det 22 








Example

 The projection operator T : R3  R3 is not one-to-one
 The standard matrix for T is 

 [T] is not invertible since det[T] = 0
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
















0   0   0
0   1   0
0   0   1

][T
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Inverse of a One-to-One Linear Operator

 Suppose TA : Rn  Rn is a one-to-one linear operator 
 The matrix A is invertible. 
 TA-1 : Rn  Rn is itself a linear operator; it is called 
the inverse of TA.
 TA(TA-1(x)) = AA-1x = Ix = x  and 

TA-1(TA (x)) = A-1Ax = Ix = x
 TA 。TA-1 = TAA-1 = TI and     

TA-1 。TA = TA-1A = TI



Inverse of a One-to-One Linear Operator

 If w is the image of x under TA, then TA
-1 maps w

back into x, since
TA-1(w) = TA-1(TA (x)) = x

 When a one-to-one linear operator on Rn is written as 
T : Rn  Rn, then the inverse of the operator T is 
denoted by T-1.

 Thus, by the standard matrix, we have [T-1]=[T]-1
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Example

 Let T : R2 R2 be the operator that rotates each vector in R2 through 
the angle :

 Undo the effect of T means rotate each vector in R2 through the 
angle -. 

 This is exactly what the operator T-1 does: the standard matrix T-1 is

 The only difference is that the angle  is replaced by -








 





cos        sin
sin    cos

][T






















 

)cos(        )sin(
)sin(     )cos(

cos        sin
sin        cos   

][][ 11







TT
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Example 

 Show that the linear operator T : R2  R2 defined by the equations
w1= 2x1+ x2

w2 = 3x1+ 4x2

is one-to-one, and find T-1(w1,w2).
 Solution:



























2

1

2

1

4   3
1   2

x
x

w
w











4   3
1   2

][T
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
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5
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5
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5
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5
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



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Linearity Properties

 Theorem 4.10.2 (Properties of Linear 
Transformations)
 A transformation T : Rn  Rm is linear if and only if the 

following relationships hold for all vectors u and v in Rn

and every scalar c.
 T(u + v) = T(u) + T(v)
 T(cu) = cT(u)



Proof of Theorem 4.10.2
 (=>) Follow from Theorem 4.9.1
 (<=) Conversely, assume that properties (a) and (b) hold 

for the transformation T. We can prove that T is linear by 
finding a matrix A with the property that T(x) = Ax for all 
vectors x in Rn. 

 The property (a) can be extended to three or more terms. 
T(u+v+w) = T(u+(v+w)) = T(u)+T(v+w) = T(u)+T(v)+ 
T(w)

 More generally, for any vectors v1, v2, …, vk in Rn, we 
have 

T(v1+v2+…+vk) = T(v1) + T(v2) + … + T(vk)
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Proof of Theorem 4.10.2

 Now, to find the matrix A, let e1, e2, …, en be the vectors

 Let A be the matrix whose successive column vectors are 
T(e1), T(e2), …, T(en); that is
A = [T(e1) | T(e2) | … | T(en)]
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Proof of Theorem 4.10.2

 If                    is any vector in Rn, then as discussed in 

Section 1.3 (Theorem 1.3.1), the product Ax is a linear 
combination of the column vectors of A with coefficients 
x, so

Ax = x1T(e1) + x2T(e2) + … + xnT(en)
= T(x1e1) + T(x2e2) + … + T(xnen)
= T(x1e1 + x2e2 + .. + xnen)
= T(x)
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Theorem 4.10.3

 Every linear transformation from Rn to Rm is a matrix 
transformation, and conversely, every matrix 
transformation from Rn to Rm is a linear 
transformation. 
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Theorem 4.10.4 (Equivalent 
Statements)
 If A is an mn matrix, and if TA : Rn  Rn is multiplication by A, then the following are 

equivalent:
 A is invertible.
 Ax = 0 has only the trivial solution.
 The reduced row-echelon form of A is In.
 A is expressible as a product of elementary matrices.
 Ax = b is consistent for every n1 matrix b.
 Ax = b has exactly one solution for every n1 matrix b.
 det(A)≠0.
 The column vectors of A are linearly independent.
 The row vectors of A are linearly independent.
 The column vectors of A span Rn.
 The row vectors of A span Rn.
 The column vectors of A form a basis for Rn.
 The row vectors of A form a basis for Rn.
 A has rank n.
 A has nullity 0.
 The orthogonal complement of the nullspace of A is Rn.
 The orthogonal complement of the row space of A is {0}.
 The range of TA is Rn.
 TA is one-to-one. 



4.11
Geometry of Matrix Operations



Example: Transforming with Diagonal 
Matrices
 Suppose that the xy-plane first is compressed or expanded by a 

factor of k1 in the x-direction and then is compressed or 
expanded by a factor of k2 in the y-direction. Find a single 
matrix operator that performs both operations. 

 If k1=k2=k, this is a contraction (收縮) or dilation (擴張). 
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x-compression (expansion) y-compression (expansion)



Example

 Find a matrix transformation from R2 to R2 that first shears by 
a factor of 2 in the x-direction and then reflects about y = x. 

 The standard matrix for the shear is 

and for the reflection is

 Thus the standard matrix for the shear followed by the 
reflection is 
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Shearing



Example

 Find a matrix transformation from R2 to R2 that first reflects 
about y = x and then shears by a factor of 2 in the x-direction. 

 Note that 
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Geometry
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x

y
(1,1)

x

y
(1,1)

y=x

x

y
(1,1)

x

y
(3,1)

x

y
(3,1)

x

y
(1,3)

a matrix transformation from R2 to R2 that first shears by a
factor of 2 in the x‐direction and then reflects about y = x

a matrix transformation from R2 to R2 that first reflects about y = x
and then shears by a factor of 2 in the x‐direction

(2,1)



Geometry of One-to-One Matrix 
Operators
 A matrix transformation TA is one-to-one if and only if A is 

invertible and can be expressed as a product of elementary 
matrices. 

 Theorem 4.11.1: If E is an elementary matrix, then TE: R2→ 
R2 is one of the following: 
 A shear along a coordinate axis
 A reflection about y=x
 A compression along a coordinate axis
 An expansion along a coordinate axis
 A reflection about a coordinate axis
 A compression or expansion along a coordinante axis followed by a 

reflection about a coordinate axis
121



Proof of Theorem 4.11.1

 Because a            elementary matrix results from performing a 
single elementary row operation on the           identity 
matrix, it must have one of the following forms: 

 and            represent shears along coordinates axes. 

 represents a reflection about y = x. 
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Proof of Theorem 4.11.1

 If k > 0,           and          represent compressions or 

expansion along coordinate axes, depending on whether 
(compression) or           (expansion). 

 If k < 0, and if we express k in the form k=-k1, where k1>0, 
then 
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Proof of Theorem 4.11.1

 It represents a compression or expansion along the x-axis 
followed by a reflection (倒影) about the y-axis. 

 It represents a compression or expansion along the y-axis 
followed by a reflection about the x-axis. 
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Theorem 4.11.2

 If TA:R2→ R2 is multiplication by an invertible matrix 
A, then the geometric effect of TA is the same as an 
appropriate succession of shears, compressions, 
expansions, and reflections. 
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Example: Geometric Effect of 
Multiplication by a Matrix
 Assuming that k1 and k2 are positive, express the diagonal 

matrix                      as a product of elementary matrices, and 
describe the geometric effect of multiplication by A in terms of 
compressions and expansions. 

 We know

which shows the geometric effect of compressing or 
expanding by a factor of k1 in the x-direction and then 
compressing or expanding by a factor of k2 in the y-direction. 
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interchangeable!



Example

 Express A as a product of elementary matrices, and then 
describe the geometric effect of multiplication by A in terms of 
shears, compressions, expansion, and reflections. 

 A can be reduced to I as follows: 

 The three successive row operations can be performed by 
multiplying on the left successively by 
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Add -3 times the first 
row to the second

Multiply the  second 
row by -1/2

Add -2 times the second 
row to the first

E3E2E1A=I   => A=E1
-1E2

-1E3
-1



Example

 Inverting these matrices 

 Reading from right to left and noting that 

it follows that the effect of multiplying by A is equivalent to
1. shearing by a factor of 2 in the x-direction, (x+2y, y)
2. then expanding by a factor of 2 in the y-direction, (x, 2y)
3. then reflecting about the x-axis, (x, -y)
4. then shearing by a factor of 3 in the y-direction. (x, y+3x)
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interchangeable!

interchangeable!



Theorem 4.11.3

 If T:R2→ R2 is multiplication by an invertible matrix, then
 (a) the image of a straight line is a straight line.
 (b) the image of a straight line through the origin is a straight line 

through the origin. 
 (c) the images of parallel straight lines are parallel straight lines. 
 (d) the images of the line segment joining points P and Q is the 

line segment joining the images of P and Q. 
 (e) the images of three points lie on a line if and only if the points 

themselves line on some line. 
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Example: Image of a Square

 Sketch the images of the unit square under multiplication by 

 Since 
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x

y
(1,1)

(1,0)

(0,1)

(0,0) x

y

(1,1)

(2,-1)

(-1,2)

(0,0)

What is the area of the parallelogram? => [det(A)| * area of the original square ? 



Example: Image of a Line

 The invertible matrix maps the line y=2x+1 into another line. Find its 
equation. 

 Let (x,y) be a point on the line y=2x+1, and let (x’,y’) be its image under 
multiplication by A. Then

 So 

 Thus (x’, y’) satisfies                      , which is the equation we want. 

131

  1232
12




yxyx
xy


