4.7
Row Space, Column Space,

and Null Space




Row Space and Column Space

Definition

o If 4 1s an mxn matrix, then the subspace of R” spanned by
the row vectors of 4 is called the row space (¥1]Z2[&]) of 4,
and the subspace of R™ spanned by the column vectors 1s
called the column space (f725[4]) of 4.

o The solution space of the homogeneous system of equation

Ax =0, which 1s a subspace of R”, 1s called the null space (
L% ZEH]) of A.

a1 a2 --- Qin
A — a?l a?Q a?n

_aml Am2 *** Amn



Remarks

In this section we will be concerned with two
questions
o What relationships exist between the solutions of a linear

system Ax=b and the row space, column space, and null
space of A4.

0 What relationships exist among the row space, column
space, and null space of a matrix.



‘ Remarks

u It follows from Formula (10) of Section 1.3

ai; aipy -+ dain X1

asy Qoo --+ 049 X9
A=1"7 7 T T =

_aml Am2 amn_ _xn_

Ax = x1¢1 +29¢0+---+2x,¢,=0b
= We conclude that Ax=b is consistent (f§&HY) if and

only if b is expressible as a linear combination of the

column vectors of A or, equivalently, if and only if b is
in the column space of A.




Theorem 4.7.1

Theorem 4.7.1

0 A system of linear equations Ax = b 1s consistent 1f
and only 1f b 1s in the column space of A4.



Example

-1 3 2|[x] [1]
Let Ax = b be the linear system |1 2 -3 x, |=-9
2 1 2]|x] [-3]
Show that b is in the column space of 4, and express b as a linear
combination of the column vectors of 4.

Solution:
o Solving the system by Gaussian elimination yields
Xlz 2, X2: -1,X3: 3

o  Since the system is consistent, b is in the column space of 4.

o Moreover, it follows that  [-1] [3 2 ]
21 1 |—=12+3]-3|=|-9
2 1 —2 -3




General and Particular Solutions

Theorem 4.7.2

o If x, denotes any single solution of a consistent linear
system Ax = b, and if v, v,, ..., v, form a basis for the null
space of 4, (that 1s, the solution space of the homogeneous
system Ax = 0), then every solution of AXx =b can be
expressed 1n the form

X=XyTCViTC VT TV,
Conversely, for all choices of scalars ¢, ¢,, ..., ¢}, the
vector X 1n this formula 1s a solution of Ax = b.

Note that x, is perpendicular to v, v,, ..., v,

Refer also to Theorem 3.4.4 on Page 152 of Textbook.
The general solution of a consistent linear system Ax=b can be
obtained by adding any specific solution of Ax=b to the general
solution of Ax=o.




Proof of Theorem 4.7.2

Assume that x, 1s any fixed solution of Ax=b and that x 1s
an arbitrary solution. Then Ax,=b and Ax = b.

Subtracting these equations yields

Ax—Ax, =0 or A(x-x,)=0
Which shows that x-x,, 1s a solution of the homogeneous
system Ax = 0.

Since vy, v,, ..., v, 1s a basis for the solution space of this
system, we can express X-X, as a linear combination of
these vectors, say x-X, = ¢,vV,+c,V,+...+c.v,. Thus,

X=Xy TC{V{TC V... TCV,.



Proof of Theorem 4.7.2

Conversely, for all choices of the scalars c,c,,...,c,, we
have

AXx = A(Xytc vite, vt . Fcvy)
Ax = Axy + c(4Av)) + c,(4Av,) + ... T c(4V,)

But X, 1s a solution of the nonhomogeneous system, and
Vi, Vs, ..., V; are solutions of the homogeneous system, so
the last equation implies that

Ax=b+0+0+...+0=Db
Which shows that x 1s a solution of Ax = b.



Remark

Remark

Q

The vector x, is called a particular solution (45#fi#) of Ax =
b.

The expression x,+ ¢,v, + - - - + ¢,v,1s called the general
solution (3Ef#) of Ax = b, the expression ¢, v, + - - - + ¢V,

1s called the general solution of Ax = 0.
The general solution of Ax = b is the sum of any particular

solution of Ax = b and the general solution of Ax = 0.

10



Example (General Solution of Ax = b)

X £r
. (_A_\ r A
The solution to the T Tear_4e-] To1 3] o4l T
1
nonhomogeneous system . ) 0 | 0 0
X —2s 0 0 -2 0
x, + 3x, — 2x, + 2x5 =0 = =0 o 179 1 1FY
X
2, + 63y — 53y — 20, + dxs —3x, =-1 ‘ * ) ) ) )
5x; + 10x, + 15x,=35 s !
v, +5x, 8y -ty +lsg=6 Ll L U3 L LSE L0 L0 1O
1S which 1s the general solution.

The vector x,, 1s a particular
;1 _ 3: 'x4S:' S2” 2 =0 solution of nonhomogeneous
=t x=1/3 system, and the linear
combination x is the general
solution of the homogeneous
system.

The result can be written in vector
form as

11



Elementary Row Operation

Performing an elementary row operation on an
augmented matrix does not change the solution set of the
corresponding linear system.

It follows that applying an elementary row operation to a
matrix A does not change the solution set of the
corresponding linear system Ax=0, or stated another way,
it does not change the null space of 4.

The solution space of the homogeneous system of equation Ax = 0, which is a
subspace of R”, is called the null space of 4.

12




Example

Find a basis for the nullspace of 4 =

Solution

o The nullspace of 4 is the solution space of the homogeneous system
2x; +2x,— x4 +x5=0
X, —X, —2x3 —3x,+x5 =0
X tx, —2x —x5 =0

Xy + x4 +xs =0
o In Example 10 of Section 4.5 we showed that the vectors

-1 -1

and v, =| -1

oS O O =
)

form a basis for the nullspace.

13



Theorems 4.7.3 and 4.7.4

m Theorem 4.7.3

o Elementary row operations do not change the nullspace of a
matrix.

m Theorem4.7.4

o Elementary row operations do not change the row space of a
matrix.

14



Proof of Theorem 4.7.4

Suppose that the row vectors of a matrix 4 are r,r,,....r,,
and let B be obtained from A by performing an
elementary row operation. (We say that 4 and B are row
equivalent.)

We shall show that every vector in the row space of B 1s
also 1n that of 4, and that every vector in the row space of
A 1s 1n that of B.

If the row operation is a row interchange, then B and 4
have the same row vectors and consequently have the
same row space.

15



Proof of Theorem 4.7.4

If the row operation 1s multiplication of a row by a
nonzero scalar or a multiple of one row to another,
then the row vector r,’,r,’,...,r,’ of B are linear

combination of r,r,,...,r, ; thus they lie in the row space
of A.

Since a vector space 1s closed under addition and scalar
multiplication, all linear combination of r,’,r,’,....r,° will
also lie in the row space of A. Therefore, each vector in
the row space of B 1s in the row space of A4.

16



Proof of Theorem 4.7.4

Since B 1s obtained from 4 by performing a row
operation, 4 can be obtained from B by performing the
inverse operation (Sec. 1.5).

Thus the argument above shows that the row space of 4 1s
contained 1n the row space of B.

17



Remarks

Do elementary row operations change the column space?
o Yes!

The second column is a scalar multiple of the first, so the
column space of 4 consists of all scalar multiplies of the
first column vector.

13 13
A= [2 6 b= [0 o]
Add -2 times the first
non-parallel column vectors row to the second parallel column vectors

Again, the second column is a scalar multiple of the first,
so the column space of B consists of all scalar multiples
of the first column vector. This 1s not the same as the
column space of A4.

18



Theorem 4.7.5

Theorem 4.7.5

a If a matrix R 1s in row echelon form, then the row
vectors with the leading 1’s (1.e., the nonzero row
vectors) form a basis for the row space of R, and
the column vectors with the leading 1’s of the row
vectors form a basis for the column space of R.

(The proof involves little more than an analysis of the
positions of the 0’s and 1’°s of R. We omit the details.)

19



‘ Bases for Row and Column Spaces

The matrix

I =25 0 3 JEleading 1’s Aycolumn —iE 1]
R0 1300 DT /EE-ZE1’s fiycolumns 1Y
0 0 0 1 0 SMHERFIR(?)
0 0 0 0 0]
is in row-echelon form. From Theorem 5.5.6 the vectors
r,=[1-250 3]
r,=[01300]
r,=[00010]
form a basis for the row space of R, and the vectors
(1] [ -2 ] 0 |
0 1 0
c, = NE c, = o |’ c, = |
10 0 | 10 ]

form a basis for the column space of R.




Example

Find bases for the row and column spaces of

Solution:

Q

Since elementary row operations do not change the row space of a

1

2
2
-1

-3
-6 9
-6 9

3

4

-2
—1
-1

4 2

g 2
9 7
-5 —4

5

4]

matrix, we can find a basis for the row space of 4 by finding a basis that

of any row-echelon form of A4.

Reducing 4 to row-echelon form we obtain

oS O O -

-3

oS O O

4
|
0
0

-2
3
0
0

5 4]
-2 -6
1 5

0 0|

21



‘Example (1 -3 4 2 5 4]

1 -3 4 2 5
2 -6 9 -1 8 2 0 0 1 3 -2 -6
A: R:
2 -6 9 -1 9 7 0O 0 0 0 1 5
-1 3 -4 2 -5 —4] 0 0 0 0 0

m The basis vectors for the row space of R and 4
r,=[1-34-254]
r,=[0013-2-6]
r,=[000015]
= Keeping in mind that 4 and R may have different column
spaces, we cannot find a basis for the column space of A
directly from the column vectors of R.

4

0_

22



Theorem 4.7.6

If A and B are row equivalent matrices, then:

0 A given set of column vectors of A4 1s linearly
independent if and only if the corresponding (3] fEHY)
column vectors of B are linearly independent.

0 A given set of column vectors of A forms a basis for
the column space of 4 if and only 1f the corresponding

column vectors of B form a basis for the column space
of B.

(We omit the proofs here.)

23



E 1 (1 3 4 -2 5 4] (1 3 4 -2 5 47
XaInp C i 2 6 9 -1 8 2 R 0 0 1 3 -2 -6
12 -6 9 -1 9 7 1o 0 0 0 1 5

-1 3 4 2 -5 -4 0 0 0 0 0 O]

We can find the basis for the column space of R, then the
corresponding column vectors of A will form a basis for the
column space of A.

Basis for R’s column space

1 4 [ 5]

0 1 —2
c| = 0 cy = 0 cr = |

0] 0] | 0

Basis for A’s column space

| 4 5
2 9 8
ST P ST o 5T g
1] 4 =

24



Example (Basis for a Vector Space
Using Row Operations )

Find a basis for the space spanned by the row vectors
vi=(1,-2,0,0,3),v,=(2,-5,-3,-2, 6),
v,=(0, 5, 15, 10, 0), v,= (2, 6, 18, 8, 6).
Except for a variation in notation, the space spanned by these
vectors 1s the row space of the matrix

1 2 0 0 3] 1 -2 0 0 3
2 -5 -3 -2 6 0 1 3 2 0
—>
0 5 15 10 0 0 0 1 1 0
2 6 18 8 6 0 0 0 0 0]

o The nonzero row vectors in this matrix are
le (19 _29 Oa 07 3)7 W2: (09 17 39 29 O)a W3: (09 09 17 19 O)

0 These vectors form a basis for the row space and consequently form a
basis for the subspace of R> spanned by v,, v,, v;, and v,.




‘ Remarks

= Keeping in mind that 4 and R may have different column spaces, we
cannot find a basis for the column space of 4 directly from the
column vectors of R.

= However, if we can find a set of column vectors of R that forms a
basis for the column space of R, then the corresponding column
vectors of 4 will form a basis for the column space of 4.

= The basis vectors obtained for the column space of A consist of
column vectors of A, but the basis vectors obtained (through a
series of row operations) for the row space of A were not all
vectors of A.

= Transpose of the matrix can be used to solve this problem.

26



Example (Basis tfor the Row Space of a

Matrix )

Find a basis for the row space of
(1 -2 0 0 3]
2 -5 -3 -2 6
0O 5 15 10 0

2 6 18 8 6]
consisting entirely of row vectors

A=

from A.

Solution:

1 2 0 2] 1 2 0

2 -5 5 6 0 1 5
A'=[0 -3 15 18| mmm) [0 0 O

0 -2 10 8 0 0 0

'3 6 0 6 0 0 0

Q

The column space of AT are

1 2
-2 -5
0 |,c,=]-3]|,and ¢, =
-2
_3_ _6_ L

Thus, the basis vectors for the row

space of 4 are
r,=[1-200 3]
r,=[2-5-3-26]
r;=[2618 8 6]

27



Example (Basis and Linear Combinations)

(a) Find a subset of the vectors v, = (1, -2, 0, 3), v,= (2, -5, -3, 6), v;
=(0,1,3,0),v,=(2,-1,4,-7), vs= (5, -8, 1, 2) that forms a basis
for the space spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of
the basis vectors.

Solution (a):

1 2 0 2 5 1 0 2 0 1
-2 -5 1 -1 -8 01 -1 0 1
0 -3 3 4 1 :> 00 0 1 1
'3 6 0 -7 2| 00 0 0 0]
£ A A N TP T
V, V, V. V, V, W, W, W; W, W

a Thus, {v,, v,, v,} 1s a basis for the column space of the matrix.

28



Example

Solution (b):
0 We can express w; as a linear combination of w, and w,, express

W, as a linear combination of w,, w,, and w, (Why?). By
inspection, these linear combination are

Wi =2W, — W,
Ws=W; T W, + W,
o We call these the dependency equations. The corresponding
relationships in the original vectors are
V3=2V,—V,

Vs=V,tV,TV,

29



4.8
Rank, Nullity, and the
Fundamental Matrix Spaces




Dimension and Rank

Theorem 4.8.1

o If 4 is any matrix, then the row space and column space of 4
have the same dimension.

Proof: Let R be any row-echelon form of 4. It follows from
Theorem 4.7.4 and 4.7.6b that

dim(row space of 4) = dim(row space of R).
dim(column space of A) = dim(column space of R)

The dimension of the row space of R 1s the number of nonzero
rows = number of leading 1’s = dimension of the column
space of R

31



Rank and Nullity

Definition

0 The common dimension of the row and column space of a matrix
A is called the rank (%) of 4 and is denoted by rank(A4); the
dimension of the nullspace of a is called the nullity (EfZ4£5))
of A and 1s denoted by nullity(4).

32



Example (Rank and Nullity)

Find the rank and nullity of the matrix
-1 2 0 4 5 -3
3 =72 0 1 4

A=
2 =5 2 4 6 1
4 9 2 4 —4 7
Solution:
o The reduced row-echelon form of 4 is
(1 0 -4 -28 -37 13
o1 -2 -12 -16 5
0O 0 O 0 0 0
00 0 0 0 0

o Since there are two nonzero rows (two leadi_ng 1’s), the row space and
column space are both two-dimensional, so rank(4) = 2.




Example (Rank and Nullity)

a To find the nullity of 4, we must find the dimension of the
solution space of the linear system 4Ax=0.

o The corresponding system of equations will be

Xy —4xy;—28x,—37xs+ 13x,=0
Xy—2x3— 12x,— 16 xs+5x,=0

o It follows that the general solution of the system 1s
x,=4r+28s +37t— 13u, x,=2r + 12s + 16¢ — Su,
X3=F, X4 =8, Xs= 1, Xg= U

or

T 1
IOOO'—‘I\)AI

+S

+1

377

16

[
= = =)
L

+u

Thus, nullity(4) = 4.
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Example

What is the maximum possible rank of an m x n matrix A4 that
1S not square?

Solution: The row space of A4 1s at most n-dimensional and the
column space is at most m-dimensional. Since the rank of A 1s
the common dimension of 1ts row and column space, it follows
that the rank 1s at most the smaller of m and n.

rank(A) < min(m,n)

35



Theorem 4.8.2

Theorem 4.8.2 (Dimension Theorem for Matrices)

0 If A4 1s a matrix with # columns, then rank(A4) + nullity(4) = n.
Proof:

Since 4 has n columns, Ax = 0 has » unknowns. These
fall into two categories: the leading variables and the free

variables. number of number of |
leading variables free variables|

The number of leading 1°s in the reduced row-echelon
form of A4 1s the rank of 4

() +

number of |
free variables|

36



Theorem 4.8.2

The number of free variables 1s equal to the nullity of A.
This 1s so because the nullity of 4 1s the dimension of the
solution space of Ax=0, which 1s the same as the number
of parameters 1n the general solution, which 1s the same
as the number of free variables. Thus

rank(A4) + nullity(4) = n

37



Example

This matrix has 6 columns, so rank(A4) + nullity(4) = 6

0
2
2
2

4 5 -3
0 1 4
4 6 1
—4 -4 7

In previous example, we know rank(A4) = 4 and nullity(A)

=2

38



‘ Theorem 4.8.3

= If 4 1s an mxn matrix, then:
0 rank(4) = Number of leading variables in the solution of Ax = 0.

0 nullity(4) = Number of parameters in the general solution of Ax = 0.

X1 —4X3—28%X,— 37X5+ 13X5=0
Xy —2X3— 12X, — 16 Xs+ 5 x5=0

Xy =4r +28s + 37t —13u, X, = 2r + 12s + 16t — 5u,
X3=T,X4=S,Xsg=1, Xg= U

x| |4 28 371 [-13]

X, 2 12 16 -5

X, 1 0 0 0
=r +S +t +u

X, 0 1 0 0

X, 0 0 1 0

| X o] [0 O] |1

39



Example

Find the number of parameters in the general solution of
Ax =0 1f 4 1s a 5x7 matrix of rank 3.

Solution:
a nullity(4) =n —rank(4)=7-3=4

0 Thus, there are four parameters.

40



‘Theorem 4.8.4 (Equivalent
Statements)

o If 4 1s an nxn matrix, and if 7, : R”" — R" is multiplication by 4, then the following are
equivalent:

A 1s invertible.

Ax = 0 has only the trivial solution.

The reduced row-echelon form of 4 1s 7,

A 1s expressible as a product of elementary matrices.
Ax = b is consistent for every nx1 matrix b.

Ax = b has exactly one solution for every nx1 matrix b.
det(4)#0.

The column vectors of 4 are linearly independent.
The row vectors of 4 are linearly independent.

The column vectors of 4 span R".

The row vectors of 4 span R".

The column vectors of 4 form a basis for R”.

The row vectors of A form a basis for R".

A has rank n.

A has nullity 0.

o000 0000000 00D 0O DO

41



Overdetermined System

A linear system with more equations than unknowns 1s called
an overdetermined linear system (& E4R 4 TEZH). With
fewer unknowns than equations, 1t’s called an
underdetermined linear system (/X 7€ 4314 J7F24H).

Theorem 4.8.5

o If Ax =b 1s a consistent linear system of m equations in #» unknowns,
and if 4 has rank r, then the general solution of the system contains n — r
parameters.

If A1s a5 x 7matrix with rank 4, and 1f Ax=b 1s a consistent
linear system, then the general solution of the system contains
7-4=3 parameters.

42



Theorem 4.8.6

Let A be an m x n matrix

(a) (Overdetemined Case) If m> n, then the linear system
Ax=Db 1s inconsistent for at least one vector b in R™.

(b) (Underdetermined Case) If m < n, then for each vector b in
R™ the linear system Ax=Db i1s either inconsistent or has
infinitely many solutions.

a1 a2 --- Qin
A — a?l a?Q a?n

_aml Am2 *** Amn
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Proot of Theorem 4.8.6 (a)

Assume that m>n, in which case the column vectors of A4
cannot span R” (fewer vectors than the dimension of R™).
Thus, there 1s at least one vector b in R” that 1s not 1n the
column space of 4, and for that b the system Ax=b is
inconsistent by Theorem 4.7.1.

a1 a2 --- Qin
A — Cl.21 a?Q a?n

_aml Am2 **° Amn

44



Proot of Theorem 4.8.6 (b)

Assume that m<n. For each vector b in R” there are two
possibilities: either the system Ax=b 1s consistent or 1t 1s
inconsistent.

[f 1t 1s inconsistent, then the proof is complete.

[t 1t 1s consistent, then Theorem 4.8.5 implies that the
general solution has n-r parameters, where r=rank(A4).

But rank(A) 1s smaller than, or equal to, the smaller of m
and n, so n-r= n-m >0

This means that the general solution has at least one
parameter and hence there are infinitely many solutions.

45



Example

a11 a2 --- Qain
21 Q22 - - QA2p

_aml Am2 *** Amn

What can you say about the solutions of an overdetermined system
Ax=b of 7 equations in 5 unknowns in which A4 has rank = 4?

What can you say about the solutions of an underdetermined
system Ax=b of 5 equations in 7 unknowns in which 4 has rank = 4?

Solution:

0 (a) the system is consistent for some vector b in R, and for any such b the
number of parameters in the general solution is n-r=5-4=1 (consistent A]§g 4

)

o (b) the system may be consistent or inconsistent, but if 1t is consistent for the
vector b in R>, then the general solution has n-r=7-4=3 parameters. (consistent

ATRE M=)
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Example
X, —2x, =b,
X, — Xx,=b,
The linear system x, + x, =b,
X, +2x, =0,
x, +3x, = b,
1s overdetermined, so 1t cannot be consistent for all
possible values of b,, b,, b;, b,, and b;. Exact conditions
under which the system 1s consistent can be obtained by
solving the linear system by Gauss-Jordan elimination.
(1 0 2b,-b
I b-b
0 b,—3b, +2b
0 b,—4b,+3b,
0 by—5b, +4b,

S O O O =

47



Example

Thus, the system is consistent if and only if b,, b,, b;, b,,
and b, satisty the conditions

2b, —3b, + b, =0
2b, —4b, +b, =0
4b, —5b, +b,=0

or, on solving this homogeneous linear system, b,=5r-4s,
b,=4r-3s, b;=2r-s, b,=r, bs=s where r and s are arbitrary.

48



Fundamental Spaces of a Matrix

S1x 1important vector spaces associated with a matrix 4
Row space of A, row space of A

Column space of A, column space of 47

Null space of A, null space of AT

Transposing a matrix converts row vectors into column
vectors
o Row space of A” = column space of 4

o Column space of A7 = row space of 4

These are called the fundamental spaces of a matrix 4

49



Theorem 4.8.7

if A is any matrix, then rank(A4) = rank(A47)

Proof:

o Rank(4) = dim(row space of 4) = dim(column space of A7) =
rank(A47)

If A 1s an m x n matrix, then rank(A4)+nullity(4)=n.
rank(A")+nullity(47) = m
The dimensions of fundamental spaces

Fundamental Space Dimension

Row space of 4 r
Column space of 4 r
Nullspace of 4 n—r

Nullspace of A7 m-—r




Recap

Theorem 3.4.3: If A 1s an m x n matrix, then the solution
set of the homogeneous linear system Ax=0 consists of all
vectors 1n R” that are orthogonal to every row vector of 4.

In other words, the null space of 4 consists of those
vectors that are orthogonal to each of the row vectors of

A.
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‘ Orthogonality

= Definition

o Let W be a subspace of R”, the set of all vectors in R” that
are orthogonal to every vector in ¥ 1s called the orthogonal
complement (142 #H65) of 17, and is denoted by W+

o If Vis a plane through the origin of R® with Euclidean inner
product, then the set of all vectors that are orthogonal to
every vector in V forms the line L through the origin that
is perpendicular to V.

’
=

52



‘ Theorem 4.8.8

m Theorem 4.8.8

= If W1s a subspace of a finite-dimensional space R”, then:
= W't is a subspace of R”. (read “W perp”)
= The only vector common to W and W' is 0; that is ,J// n "= 0,
= The orthogonal complement of W+ is W, that is , (/") = I.

WO W= Rr (227)

53



‘ Example

= Orthogonal complements

Y
WJ_
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Theorem 4.8.9

Theorem 4.8.9

a If A 1s an mxn matrix, then:

The null space of 4 and the row space of 4 are
orthogonal complements in R”.

The null space of 47 and the column space of 4 are
orthogonal complements 1n R™.

(415-row space Az AZ (40%column space &
7 248 R R ST TR ) i A TR )
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‘Theorem 4.8.10 (Equivalent

Statements)

o If 4 1s an mxn matrix, and if 7, : R” — R" is multiplication by 4, then the following are
equivalent:

A is invertible.

Ax = 0 has only the trivial solution.

The reduced row-echelon form of 4 is /..

A 1s expressible as a product of elementary matrices.

Ax = b is consistent for every nx1 matrix b.

Ax = b has exactly one solution for every nx1 matrix b.

det(4)#0.

The column vectors of 4 are linearly independent.

The row vectors of A4 are linearly independent.

The column vectors of 4 span R".

The row vectors of 4 span R”.

The column vectors of 4 form a basis for R”.

The row vectors of 4 form a basis for R”".

A has rank n.

A has nullity 0.

The orthogonal complement of the nullspace of 4 is R".

The orthogonal complement of the row space of 4 is {0}.

0o 0000000000000 0 O O

56



Applications of Rank

Digital data are commonly stored in matrix form.

Rank plays a role because it measures the
“redundancy” in a matrix.

If A 1s an m x n matrix of rank k, then n-k of the column
vectors and m-k of the row vectors can be expressed in
terms of & linearly independently column or row vectors.

The essential 1dea in many data compression schemes 1s to
approximate the original data set by a data set with smaller
rank that conveys nearly the same information.

A =>A=U>VT (for example, SVD), where A’ has a lower rank than A
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4.9

Matrix Transformations from R”
to R”




i
a /——\

Functions from R" to R

TEFK A R B

domain codomain

A function 1s arule f that associates with each element in
a set A one and only one element 1n a set 5.

If f associates the element a with the element b, then we
write b = f(a) and say that b 1s the image of a under f or
that f(a) 1s the value of f at a.

The set A4 is called the domain (JEZ15) of fand the set B
is called the codomain C&fffELEY) of /.

The subset of the codomain B consisting of all possible
values for f'as a varies over A4 is called the range ({E1})

of /.
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Examples

Formula

Example

Classification

Description

J(x)

f(x)=x"

Real-valued function of a
real variable

Function from
RtoR

f(x,)

fx,y)=x>+)°

Real-valued function of
two real variables

Function from
R°to R

f(x,»,2)

f(x,y,2)=x"
+yi+z°

Real-valued function of
three real variables

Function from
R3toR

J (X, X550 X,)

J (%% )=
X +x A+ X

Real-valued function of
n real variables

Function from
R"to R
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Function from R” to R™

Suppose f1, /5, ..., f,, are real-valued functions of n
real variables, say

wy = f1(xX,%,, ...,X,)
W, = f5(X1,X5, ..., X,)

Wiy = I XX -.0X,)
These m equations assign a unique point
(W, W,,...,w, ) In R™ to each point (x,,x,,...,x,) iIn R"
and thus define a transformation from R” to R™. If we
denote this transformation by 7: R" — R™ then

T (x,Xp..0sX,) = (W, Wy, ..., W, )
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Function from R” to R™

m It m = n the transformation 7: R* — R™ 1s called an
operator (ZHE.-T-) on R".
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Example: A Transformation from R?
to R?

Wy =T+ I9
Wy — 3561372

w3 = 7 — T

Define a (non-linear) transform 7: R> — R?

(the motivation usually is to project lower-dimensional data points into a
higher-dimensional space for better discrimination)

With this transformation, the image of the point (x,, x,) 1s

T(x1,29) = (21 + X9, 3129, 513% — x%)

Thus, for example, 7(1,-2) = (-1, -6, -3)
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‘ Linear Transformations from R" to R™

» A linear transformation (or a linear operator if m = n) T: R" — R™ 1s
defined by equations of the form

W, = a; X, +a12x2 +...+a1nxn W a,, 4d, - dg X
W, =d, X, + arn Xy +...+ a,, X, or W, _ Ay, dyy 0 Ay X5
w =a X +da,6 X, +..+a, X W, | |y Ay Gy || X |
or
W = AX

= The matrix 4 = [a,] 1s called the standard matrix for the linear
transformation 7, and 7 1s called multiplication by A.
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Example (Transformation and Linear

Transformation)

The linear transformation 7' : R* — R? defined by the equations

the standard matrix for 7' (1.e., w = 4Xx) 1s 4=

Wy (2 -3 1 =5
Wy | = 4 1 =2 1
Ws; _5 —1 4 0

(2 -3 1
4 1 =2
5 -1 4
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Notations

o If it 1s important to emphasize that 4 1s the standard
matrix for 7, we denote the linear transformation 7

R"—> R"by T,: R"— R™. Thus,
T,x)=A4x
0 We can also denote the standard matrix for 7 by
the symbol [7], or

I(x) = [T]x
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Theorem 4.9.1

For every matrix 4 the matrix (linear) transformation

T ,:R" — R™ has the following properties for all vectors u

and v in R” and for every scalar k

0 (a) T,0)=0

a (b) T)(ku) =kT ,(u) [Homogeneity property]

a T,(utv)=T,(u)+ T,(v) [Additivity property]

a0 T (u-v)=T,(u)—T,v)

Proof: A0 =0, A(ku) = k(Au), A(u+v) = Au + Av,
A(u-v)=Au-Av
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Remark

A matrix transformation maps linear combinations of vectors
in R" into the corresponding linear combinations in R in the
sense that

Ty(kyuthou,t.. thu) =k T,(w) )k T (uy)t.. 45T, (a,)
Depending on whether n-tuples and m-tuples are regarded as
vectors or points, the geometric effect of a matrix

transformation 7,:R" — R™ 1s to map each vector (point) in R”
into a vector in R™

R" R™

x is a vector (or point) T(x) is a vector (or point)
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Theorem 4.9.2

If 7,:R" — R™and T: R" — R™ are matrix
transformations, and 1f 7,(x) = Tx(x) for every vector X in
R", then A=B.

Proof:

o To say that 7,(x) = T4(x) for every vector x in R” 1s the same as
saying that Ax = Bx for every vector X in R”.

o This is true, in particular, if x is any of the standard basis
vectors e,,e,, ...,e, for R”; that 1s Ae; = Be, (G=1,2,...,n)

o Since every entry of e; is 0 except for the jth, which is 1, it
follows from Theorem 1.3.1 that Ae; is the jth column of 4, and
Be; is the jth column of B. Therefore, 4 = B.
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/.ero Transformation

Zero Transformation from R” to R™

o If 0 1s the mxn zero matrix and 0 1s the zero vector
in R”, then for every vector x in R”

T(x) =0x=0
0 So multiplication by zero maps every vector in R”

into the zero vector in R”. We call 7|, the zero
transformation from R” to R™.
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Identity Operator

Identity Operator on R”
o If [ 1s the nxn 1dentity, then for every vector x in R”
T'(x)=Ix=x

0 So multiplication by / maps every vector in R” into
itself.

o We call T; the identity operator on R”.
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A Procedure for Finding Standard
Matrices

To find the standard matrix 4 for a matrix transformations
from R" to R™:
e..e,, ..., e, are the standard basis vectors for R”".

Suppose that the images of these vectors under the
transformation 7', are

Ty(e)=Ae, T (e;)=Ae,, ..., T (e,) = Ae,
Ae; 1s just the jth column of the matrix 4, Thus,

A=[T]=[T(e)) [ T(ey) | ... | T(e,)]
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Retlection Operators

In general, operators on R? and R> that map each
vector 1nto 1ts symmetric image about some line or
plane are called reflection ({£]=%) operators.

Such operators are linear.

73



Example

If we let w=1(x), then the equations relating the
components of x and w are

w, =-x=-x+0y

w,=y=0x+y

or, 1n matrix form (=x. )

(X, )

W=M

w|  |—10] |«
wo| |0 1] |y
The standard matrix for 7 1s [_01 ?]
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‘Reflection Operators (2-Space)

the line y = x

Standard
Operator IMlustration Equations Matrix
Reflection about w; = —Xx -1 O
the y-axis Wr= 'y 0O 1

=
Reflection about y Wik X 1 0
the x-axis x Wy = —y 0O -1
X
w = T(x)

Reflection about w; =Yy
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‘ Retlection Operators (3-Space)

(X )
o

Standard

Operator Illustration Equations Matrix
Reflection about w; = Xx 1 (0] 0
the xy-plane Wy = 1y 0) 1 0
W3 = —2 (0] 0O -1
Reflection about W= X 1 0 0
the xz-plane Wy = —y Q =1 0
Wa = < 0 O 1
Reflection about w; =—x —1 0O 0O
the yz-plane Wy = y o) 1 o)

-

Bl Wag = Z O O 1
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Projection Operators

In general, a projection operator (or more precisely an
orthogonal projection operator) on R? or R? is any
operator that maps each vector 1nto its orthogonal
projection on a line or plane through the origin.

The projection operators are linear.
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Example

Consider the operator 7: R> — R’ that maps each vector
into 1ts orthogonal projection on the x-axis. The equations
relating the components of x and w=17(Xx) are
w,=x=x+0y
w, =0=0x+ 0y
or, 1n matrix form

RERIH

The standard matrix for 7 1s [1 O] ]

00

78



‘ Projection Operators

Standardf-’

Operator Illustration Equations Matrix
Orthogonal projection Wy =X [ 1 0
0 0

AY
on the x-axis ] (x, ) wy =0
X
l
30
w

wy =0 [o 0
(x,y) Wry=Yy 0 1

Orthogonal projection
on the y-axis

\ %

79



‘ Projection Operators

Standard

Operator INustration Equations Matrix
Orthogonal projection w;=Xx 1 O O
on the xy-plane 06:2) W =1y O 1 0
Y ws =0 0O O O

(x,y,0)

Orthogonal projection Wy =x 1 O O
on the xz-plane ws =0 O O O
3 W3 =2 (0] (0] 1
Orthogonal projection w; =0 O O O
on the yz-plane Wy =y O 1 0
W3 = Z O 0 1
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Rotation Operators

= The rotation operator T:R? — R? moves points
counterclockwise about the origin through an angle 4

= Find the standard matrix

w 1(e,) = T(1,0) = (cosb, sinb) _‘fﬁ\
= 1(e,) =17(0,1) = (-sin6, cos ) .
Standard
Operator Illustration Equations Matrix

Rotation through Y (wy, w,) wi=xcos 0 —ysin@ cos@® —sinf
B an angle 6 w \ W, =x8in0@ + y cos 6 sin 6 cos 6
A S (x,y)
X

Y =




Example

If each vector in R is rotated through an angle of /6
(30°) ,then the image w of a vector

For example, the image of the vector

3 -1 |
{1}. 2

X = 1S W =
1 1+ ~/3

2
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A Rotation of Vectors in R3

A rotation of vectors in R? is usually described iz
in relation to a ray emanating from (255 5 ) the
origin, called the axis of rotation.

(Axis of rotation)

As a vector revolves around the axis of rotation
it sweeps out some portion of a cone (|E|#EFS).

The angle of rotation is described as “clockwise”
or "counterclockwise” in relation to a viewpoint
that is along the axis of rotation looking toward

the OI"i ll’l < Counterclockwise
g ) rotation

The axis of rotation can be specified by a
nonzero vector u that runs along the axis of
rotation and has its initial point at the origin.

The counterclockwise direction for a rotation
about its axis can be determined by a “right-
hand rule”.

(b) Right-hand rule
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‘ A Rotation of Vectors in R3

through an
angle 6

Standard
INlustration Equations Matrix
Counterclockwise z w, =X 1 0 0
i rotation- :flbout _ Ws =ycos @ — zsin@ 0O cos@ —sin @
|| the positive x-axis w3 =ysin@ + z cos 6 0 sin@ cos 6
| through an
| angle 6
| Counterclockwise w, =xcos @ + zsin @ cos® O sin@
| rotation about Wy =1y 0 1 0
the positive y-axis Wy =—xsin@ + zcos @ —sin@® 0 cos@
through an
- angle 6
Counterclockwise w;=xcos@ — ysin@ cos@ —sin@ 0
_rotation about ws, =xsin@ + ycos 8 sin @ cos@ 0
the positive z-axis Wa =2 0 0 |

84



‘ Dilation and Contraction Operators

= If £ is a nonnegative scalar, the operator on R? or R> is
called a contraction with factor kif 0 <k <1 (DLARZRAUZ
4) and a dilation with factor k if k> 1 (LA ZAER).

Standard
Operator Ilustration Equations Matrix
Contraction with z w) = kx
factor k on R? x (X, y.2) wy = ky
O<k=<D w o (kx, ky, kz) wy=kz
b7

| ——|
o o =

o & O

x> O O
| S——

Dilation with z (kx, ky, kz) w, = kx
factor k on R? w7 W, = ky
(k 2 1) X (.l’. Yy, Z) w,; = |7

y

o :
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Compression or Expansion

If T: R? — R? is a compression (0<k<1) or expansion
(k>1) 1n the x-direction with factor £, then

B o-r()-E
so the standard matrix for 7 is [lg (1)] . W(Xﬁ

Similarly, the standard matrix for a compression or

expansion in the y-direction is [1 0]
(x.0)
_/;wm

0k

86



Shears

A shear (5Y) in the X-direction with factor K is a

transformation that moves each point (x,y) parallel to the

x-ax1s by an amount £y to the new position (x+ky,y).

Points farther from the x-axis move a greater distance

than those closer.

(x.y)

y

7 (x+ky,y) .

X

k>0

y

(x+ky,)

-

k<0
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Shears

If T: R? — R? is a shear with factor & in the x-direction, then

(Y e+ Ry]  [14+RO] |1

T(el)—T(_O_)__ Y ___ 0 ___0_

B o1\  [z+ky|l [0+k1] [k

T(ez)_T(;_)__ y |- 1 T
The standard matrix for 7 is [1 k]
01

Similarly, the standard matrix for a shear in the y-direction

with factor ki1s |1 O
k1



Example (Standard Matrix for a Projection
Operator)

Let / be the line in the xy-plane that passes through the
origin and makes an angle & with the positive x-axis,
where 0 < @< m. Let T: R>— R? be a linear operator that
maps each vector into orthogonal projection on /.

0 Find the standard matrix for 7. f )4

o Find the orthogonal projection of
the vector x = (1,5) onto the line 2
through the origin that makes an
angle of 6 = /6 with the positive
X-axis.

T (x)

>
-
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‘ Example

= The standard matrix for 7 can be written as AY

[T]=[T(e)) | T(e,)]
» Consider the case 0 <0 < /2.
o ||7(ey)||=cos O

) T(el)_{T(el)Cose:l_{ cos’ @ }

HT(el)HsinH sin & cos &
0 [[7(ey)]| = sin O

T(e.) = |7 (ey)||cos 6 [ sin@cosd
‘ (62)— ||T(€2)||Sln0 o Sin20

sin@cosf sin’ @

— [T]:[

cos’ @ sin@cos 8}
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7] cos’ @ sinfBcosd
sinf@cos@ sin’ 6

Example

Since sin (1/6) = 1/2 and cos (/6) = +/3 /2, it follows
from part (a) that the standard matrix for this projection

operator 1s

3/4 3/4
V3/4 V4
ThU.S, ‘3+5\/§‘

|
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Reflections About Lines Through the
Origin
Let P,denote the standard matrix of orthogonal projections on
lines through the origin

Px—x=(1/2)(H,x —Xx), or equivalently H,x = (2 P,— I)x
Hy=Q2P,~ 1)

H, [COS 20 sin 26 ]

sin 260 — cos 260
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4.10
Properties of Matrix
Transformations




Composttion of T with T ,

Definition

a If7,: R*" —> R¥and T,: R¥ — R™ are linear transformations,
the composition of T, with T, denoted by T = T, (read “T}
circle 7,,”), 1s the function defined by the formula

(T > TO(X)=Ty(T,(x))
where X 1s a vector in R”.

L)/ %/ yars
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Composttion of Ty with T ,

This composition 1s 1tself a matrix transformation since
(T © T)X)=(TH(T4(x))=B(T (x))=B(AX)=(BA)x
It 1s multiplication by BA,1.e. Ty > T, =Tj,

The compositions can be defined for more than two linear
transformations.

Forexample, f 7\ : U—> Vand I,: V—> W ,and T;: W —
Y are linear transformations, then the composition 77, °

T, o T,1sdetinedby (7, - 7, o T,)(w)=1T1,(T, (T,
(1))
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Remark

It 1s not true, 1n general, that AB = BA

So it 1s not true, in general, that T, - T, =T, ° T}

96



Example

Let T}:R> — R? and T,:R*> — R’ be the matrix operators that
rotate vectors through the angles 6, and 0,, respectively.

The ope
angle 0,

ration (7, » T,)(x)=1,(7T,(x)) first rotates x through the

, then rotates T,(x) through the angle 0,.
_ |cosB; —sinb, _ |cosfy —sinby )
1] = [sin 0, cosb, ] o] = [sin 0y cosby ] (T‘("))//"L\\T.(x>
~|cos(0) + 0y) —sin(6; + 6y) )
Too Ty = [sin(@l +65) cos(0; + 6-)

\IT)] = [cos 0, — sin 92] [COS 01 — sin 91]
It sinfs  cos By sinfy cos 6y
cos 0y cos 0 — sin Oy sin 0 —(cos Oy sin Oy + sin Oy cos 0;)
sin 05 cos 01 + cos By sin 6y  — sin B, sin 67 + cos 65 cos 64
cos{ty =tz —=-sin(ty +03)

sin(0) + 62)  cos(0) + 6s) ] = [T> o i
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‘ Composition 1s Not Commutative

= Let T, be the reflection operator

= Let 7, be the orthogonal projection
on the y-axis

[T, o7, |=[T[T,]= X 1} oot
10/00| [00]
[T2°T1]=[T2][T1]= 01 {Ol _ 00
00|[10| [10]

SO [TIOT2]¢ [Tz OTI]

Y.

T, (7T5(x))

(b) Ty T2
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‘ Composition of Two Reflections

= Let 7, be the reflection about the y-axis, and let 7’, be the
reflection about the x-axis. In this case, T}, - 7, and 7}, °
T, are the same.

(T o T)(z,y) = Ti(z, —y) = (-, —y)
(T2 © T1><£IJ, y) — TZ(—xa y) — (—ZL’, —y)

—10] 1 o] [-1 0]
TioD) = |I] D] = 0 1fjo-1| |0 -1
1 0] [—=10] [=1 0]
Loh] = I [T = 0—1/|0 1| |0 -1
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One-to-One Linear transformations

= Definition

0 A linear transformation 7 : R* —R™ 1s said to be one-to-one if T’
maps distinct vectors (points) in R" into distinct vectors (points)
in R™

» Remark:

o That 1s, for each vector w in the range of a one-to-one linear
transformation 7, there 1s exactly one vector x such that 7(x) = w.
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Example

One-to-one linear
transformation

1(v)

T(u)

Distinct vectors u and v
are rotated into distinct
vectors 7(u) and 7(v).

Not one-to-one linear
transformation

Ip
{0

M

The distinct points P and
Q are mapped into the
same point M.
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Theorem 4.10.1 (Equivalent
Statements)

If 4 1s an nxn matrix and 7, : R” — R" is multiplication by
A, then the following statements are equivalent.

0 A is invertible

a The range of 7, 1s R”

a T, 1s one-to-one

Ax=Db
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Proof of Theorem 4.10.1

(a)—(b): Assume 4 1s invertible. Ax=b 1s consistent for every
n X 1 matrix b in R”. This implies that 7, maps x into the
arbitrary vector b in R”, which implies the range of 7, 1s R".

(b)—(c): Assume the range of 7, 1s R". For every vector b in
R" there 1s some vector x in R” for which 7,(x)=b and hence
the linear system Ax=b is consistent for every vector b in R".
But we know Ax=b has a unique solution, and hence for every
vector b in the range of T, there 1s exactly one vector x in R”
such that 7 ,(x)=b.
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Example

The rotation operator T : R> — R? is one-to-one

o The standard matrix for 7 1s cosf —sind
Lin ¢ cost }

o [7T] 1s invertible since

cos@) —sinl

det —cos’@+sin“@=1%0

sin @ cos @
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Example

The projection operator 7 : R?>— R> is not one-to-one
o The standard matrix for 7'is 10 0]
[T1=10 1 0
00O
0 [7T] 1s not invertible since det[7] = 0 )
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Inverse of a One-to-One Linear Operator

Suppose 7, : R" — R" 1s a one-to-one linear operator
—> The matrix A4 1s invertible.

= T,-1: R"— R"1s itself a linear operator; it 1s called
the inverse of 7',.

= T.(T,1(x))=A4AA'x=Ix=x and
T, (T,(x))=A"Ax=Ix=x

= 1T, T,1=T,-1=T, and
Ipt o Ty=Tp1=1;
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Inverse of a One-to-One Linear Operator

If w is the image of x under 7, then 7! maps w
back 1nto X, since

T (W) = T (T, (%)) = x

When a one-to-one linear operator on R” 1s written as
T': R"— R", then the inverse of the operator 7'1s
denoted by T*!.

Thus, by the standard matrix, we have [T-']=[T]"!
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Example

Let T: R> — R? be the operator that rotates each vector in R? through
the angle 0: : {cosé’ —sind }

sin 6 cos @
Undo the effect of 7 means rotate each vector in R? through the
angle -0.

This is exactly what the operator 7*! does: the standard matrix 7*! is

T cosd sin@ | | cos(—0) —sin(-0)
=11 = —sin & cos@ | sin(—6) cos(—6)

The only difference is that the angle 0 is replaced by -0
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Example

Show that the linear operator T : R> — R? defined by the equations

w=2x,+ X,
w, = 3x,+ 4x,
is one-to-one, and find 7"'(w,,w,).

Solution:

L=

n|lw n|hx

N[N | —
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Linearity Properties

Theorem 4.10.2 (Properties of Linear
Transformations)

0 A transformation 7' : R” — R™ 1s linear 1f and only if the
following relationships hold for all vectors u and v in R”
and every scalar c.

T(a+v)=T()+ T(v)
T(cu) = cT(u)
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Proof of Theorem 4.10.2

(=>) Follow from Theorem 4.9.1

(<=) Conversely, assume that properties (a) and (b) hold
for the transformation 7. We can prove that T 1s linear by
finding a matrix A with the property that 7(x) = Ax for all
vectors X 1n R”.

The property (a) can be extended to three or more terms.
T(at+v+w) = T(u+H(v+w)) = T(a)+T(v+w) = T(u)+1(v)+
I(w)

More generally, for any vectors v, v,, ..., v, In R", we

have
I(vitv,Fo.+v) =T1(v) + T(v,y) + ... T 1(v},)
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Proof of Theorem 4.10.2

Now, to find the matrix 4, let e, e,, ..., e, be the vectors

1 0 0
0 1 0
e = |0 er= [0  «oeens e,= |0
0 0 1

Let 4 be the matrix whose successive column vectors are
1(e,), 1(e,), ..., 1(e,); that 1s
A=1[T(e) | T(ey) | ... | T(e,)]
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Proof of Theorem 4.10.2

If == is any vector in R", then as discussed in

Section 1.3 (Theorem 1.3.1), the product 4x 1s a linear
combination of the column vectors of 4 with coefficients
X, SO

Ax =x,T(e)) + x,1(e,) + ... +x,1(e,)
= T(x,e) + T(xye;) + ... + T(x,e,)
=T1(x,e;, T x,e, +..+x,¢e)
= T(x)
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Theorem 4.10.3

= Every linear transformation from R" to R™ is a matrix
transformation, and conversely, every matrix
transformation from R" to RM is a linear
transformation.
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Theorem 4.10.4 (Equivalent

Statements)

If 4 1s an mxn matrix, and if 7, : R” — R" is multiplication by 4, then the following are
equivalent:

A is invertible.

Ax = 0 has only the trivial solution.

The reduced row-echelon form of 4 is /,,.

A 1s expressible as a product of elementary matrices.

Ax =Db is consistent for every nx1 matrix b.

Ax = b has exactly one solution for every nx1 matrix b.

det(4)#0.

The column vectors of 4 are linearly independent.

The row vectors of A4 are linearly independent.

The column vectors of 4 span R".

The row vectors of 4 span R”.

The column vectors of 4 form a basis for R”.

The row vectors of 4 form a basis for R”".

A has rank n.

A has nullity 0.

The orthogonal complement of the nullspace of 4 is R".

The orthogonal complement of the row space of 4 is {0}.

The range of 7, 1s R".

T, is one-to-one.

0o 0000000000000 00 0 O O
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4.11
Geometry of Matrix Operations




Example: Transtorming with Diagonal

Matrices

Suppose that the xy-plane first is compressed or expanded by a
factor of k, in the x-direction and then 1s compressed or
expanded by a factor of &, in the y-direction. Find a single
matrix operator that performs both operations.

o ) i

X-compression (expansion) y-compression (expansion)
|1 Of [kt O |k O
A= lo) [0 =0 5

0 ko| |0 1
If k,=k,=k, this is a contraction (UZ%f) or dilation (J&E5F). A = [IS ;2]
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Shearing

Example :

) y
T (x+kyy)

k>0 k<0

Find a matrix transformation from R? to R? that first shears by
a factor of 2 in the x-direction and then reflects about y = x.

The standard matrix for the shearis 4, — [(1) ﬂ

. 1
and for the reflection 1s A, = [g 0]

Thus the standard matrix for the shear followed by the

flection i
reectlonlsAA_01 12_01
L7010l lo1] T (12
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Example

Find a matrix transformation from R? to R? that first reflects
about y = x and then shears by a factor of 2 in the x-direction.

an=[ [0 [

Note that A1 A) # Ay A4
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‘ Geometry

121701 2 1] a matrix transformation from R2 to R? that first reflects about y = x
AjAy = |:0 1] L 0] = l 0 and then shears by a factor of 2 in the x-direction
y=X
Y Y L Y
(1,1) (11 21)—_o(3,1)
D »
O\
X Rl X X
(1,3)
y y » .
(1,1) 3,1)
\\\\ \\ ‘ ///
X X Rl X
A A 0112 |01 a matrix transformation from R? to R? that first shears by a
4 10| ]01] |12 factor of 2 in the x-direction and then reflects about y = x
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Geometry of One-to-One Matrix
Operators

A matrix transformation 7, 1s one-to-one if and only 1f 4 1s
invertible and can be expressed as a product of elementary

matrices. A=E\B,---E,

Ty=1pp, .5, =1 0lg0---01g
Theorem 4.11.1: If E is an elementary matrix, then 7,: R*—
R? is one of the following:
A shear along a coordinate axis
A reflection about y=x
A compression along a coordinate axis
An expansion along a coordinate axis

A reflection about a coordinate axis

o O 0o O O O

A compression or expansion along a coordinante axis followed by a

reflection about a coordinate axis
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Proof of Theorem 4.11.1

Because a 2 x 2 elementary matrix results from performing a
single elementary row operation on the 2 X 2 identity
matrix, it must have one of the following forms:

3 ) Bof o) o

10 1k .
- and 01 represent shears along coordinates axes.
0 1 : _

| O] represents a reflection about y = x.
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Proof of Theorem 4.11.1

3 o) o] o] o

Ifk>0, [g (1)] and lé 2] represent compressions or

expansion along coordinate axes, depending on whether
0 < k£ < 1(compression) or k > 1 (expansion).

If k <0, and if we express k in the form k=-k,, where k,>0,

then 0] [k 0] [-10] [k O
01 [0 1] [0 1]]01
10] [t o] [t o][1toO]
0 k| |0 —ki| [0 —1] |0 ki
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‘ Proof of Theorem 4.11.1

-[9-[ kS

= [t represents a compression or expansion along the x-axis
followed by a reflection ({£]=2) about the y-axis.

i) = Lo )= o 2 o

= [t represents a compression or expansion along the y-axis
followed by a reflection about the x-axis.
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‘ Theorem 4.11.2

= If T,:R?>—> R? is multiplication by an invertible matrix
A, then the geometric effect of T, is the same as an
appropriate succession of shears, compressions,
expansions, and reflections.
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Example: Geometric Ettect of
Multiplication by a Matrix

Assuming that &k, and k, are positive, express the diagonal

ki 0
matrix ©~ | 0 k»| as a product of elementary matrices, and
describe the geometric effect of multiplication by 4 in terms of
compressions and expansions.

We know

interchangeable!

- kr O |1 O [k O
|0 k| [0k |01
which shows the geometric effect of compressing or

expanding by a factor of &, in the x-direction and then
compressing or expanding by a factor of &, in the y-direction.
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Example .
A= [3 4]

Express A as a product of elementary matrices, and then
describe the geometric effect of multiplication by 4 in terms of

shears, compressions, expansion, and reflections.

A can be reduced to [ as follows:
10
01

p

Add -3 times the first Multiply the second Add -2 times the second
row to the second row by -1/2 row to the first

The three successive row operations can be performed by
multiplying on the left successively by

Liffrae) I 0 I e
a[hy Achly s

E,E,E;A=l => A:E1'1 E2'1 E3'1 127



Example

interchangeable!

¥\
Inverting these matrices . 32 !

i 101 012
SR R 1

Reading from right to left and noting that

1 0 1 0 (10
[0 —2] B [0 —1] [0 2]
it follows that the effect of multiplying by 4 1s equivalent to
interchangealbl.e !shearing by a factor of 2 in the x-direction,  (x+2y, y)
< 2. then expanding by a factor of 2 in the y-direction, (x, 2y)
3. then reflecting about the x-axis, (x, -y)

4. then shearing by a factor of 3 in the y-direction. (x, y+3x)
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Theorem 4.11.3

If T:R>— R’ is multiplication by an invertible matrix, then

Q

Q

(a) the image of a straight line is a straight line.

(b) the image of a straight line through the origin is a straight line
through the origin.

(c) the images of parallel straight lines are parallel straight lines.

(d) the images of the line segment joining points P and Q is the
line segment joining the images of P and Q.

(e) the images of three points lie on a line if and only if the points
themselves line on some line.
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‘ Example: Image of a Square

= Sketch the images of the unit square under multiplication by
—1 2
S Et

i e

= Since -1 2
2 —11 10

el

Y (-1,2 Y
o,n— Y i\%n
(0,0) (1,0) X (0,0) X
2,1

What is the area of the parallelogram? => [det(A)| * area of the original square ?
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‘ Example: Image of a Line

31
A=
» The invertible matrix maps the line y=2x+1 into another line. Find its

equation.

» Let (x,y) be a point on the line y=2x+1, and let (x’,)’) be its image under
multiplication by 4. Then

-BAG = -0 -1 [z"il

Y Y y=2x+1
r=x —y ‘
= 50 —2x 43y =2(x —y +1~ V=

y = —22" + 3y

w Thus (x°, y’) satisfies y = %ZL‘ + % , which 1s the equation we want.
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