Chapter 3 Euclidean Vector Spaces

Outline

- 3.1 Vectors in 2-Space, 3-Space, and n-Space
- \blacksquare 3.2 Norm, Dot Product, and Distance in \mathbb{R}^n
- 3.3 Orthogonality
- 3.4 The Geometry of Linear Systems
- 3.5 Cross Product

3.1

Vectors in 2-Space, 3-Space, and n-Space

Geometric Vectors

- In this text, vectors are denoted in bold face type such as a, b, v, and scalars are denoted in lowercase italic type such as a, b, v.
- \blacksquare A vector **v** has initial point *A* and terminal point *B*

$$\boldsymbol{v} = \overrightarrow{AB}$$

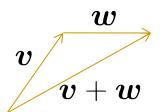
- Vectors with the same length and direction are said equivalent.
- The vector whose initial and terminal points coincide (重 疊) has length zero, and is called zero vector, denoted by 0.

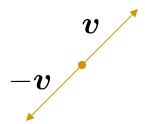
Definitions

- If **v** and **w** are any two vectors, then the sum **v** + **w** is the vector determined as follows:
 - Position the vector \mathbf{w} so that its initial point coincides with the terminal point of \mathbf{v} . The vector $\mathbf{v} + \mathbf{w}$ is represented by the arrow from the initial point of \mathbf{v} to the terminal point of \mathbf{w} .
- If v and w are any two vectors, then the difference of w from v is defined by $\mathbf{v} \mathbf{w} = \mathbf{v} + (-\mathbf{w})$.
- If **v** is a nonzero vector and k is nonzero real number (scalar), then the product k**v** is defined to be the vector whose length is |k| times the length of **v** and whose direction is the same as that of **v** if k > 0 and opposite to that of **v** if k < 0. We define k**v** = 0 if k = 0 or $\mathbf{v} = \mathbf{0}$.
- \blacksquare A vector of the form $k\mathbf{v}$ is called a scalar multiple.

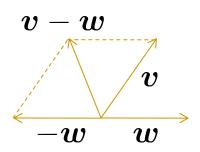
The negative of a vector \mathbf{v} , denoted by $-\mathbf{v}$, is the vector that has the same length as \mathbf{v} but is oppositely directed.

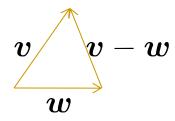
Examples (graphical illustration)





Position the initial point **of w** at the terminal point of **v** and draw a vector from the initial point of **v** to the terminal point of **w**.



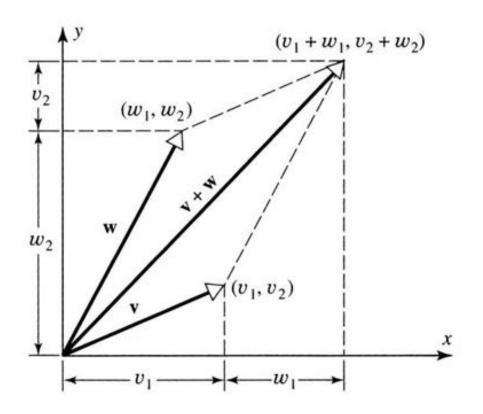


 \mathbf{v} $\frac{1}{2}\mathbf{v}$ $-2\mathbf{v}$

Position **v** and **w** so their initial points coincide and draw a vector from the terminal point of **w** to the terminal point of **v**.

Vectors in Coordinate Systems

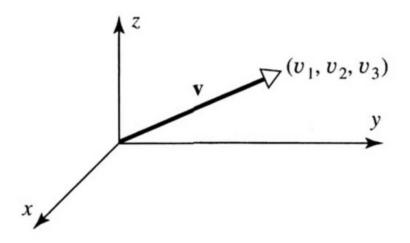
$$egin{aligned} m{v} &= (v_1, v_2) \ m{w} &= (w_1, w_2) \ \ m{v} + m{w} &= (v_1 + w_1, v_2 + w_2) \ \ k m{v} &= (k v_1, k v_2) \ \ \ m{v} - m{w} &= (v_1 - w_1, v_2 - w_2) \end{aligned}$$



If a vector **v** in 2-space or 3-space is positioned with initial point at the original a rectangular coordinate system, then the vector is completely determined by the coordinates of its terminate point.

We call these coordinates the components of \mathbf{v} relative to the coordinate system.

Vectors in 3-Space



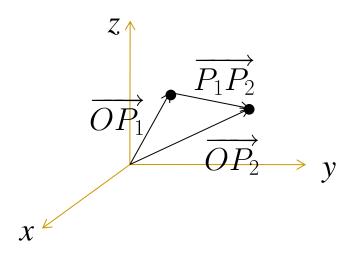
$$m{v} = (v_1, v_2, v_3)$$
 $m{w} = (w_1, w_2, w_3)$ $m{v} + m{w} = (v_1 + w_1, v_2 + w_2, v_3 + w_3)$ $k m{v} = (k v_1, k v_2, k v_3)$

 \boldsymbol{v} and \boldsymbol{w} are equivalent if and only if $v_1=w_1, v_2=w_2, v_3=w_3$

Vectors

If the vector $\overrightarrow{P_1P_2}$ has initial point P_1 (x_1, y_1, z_1) and terminal point P_2 (x_2, y_2, z_2) , then

$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$



Theorem 3.1.1 (Properties of Vector Arithmetic)

If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n and k and l are scalars, then the following relationships hold.

□
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
□ $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
□ $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
□ $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
□ $k(l\mathbf{u}) = (kl)\mathbf{u}$
□ $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
□ $(k + l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$
□ $\mathbf{1}\mathbf{u} = \mathbf{u}$

Proof of part (b) (geometric)



Theorem and Definition

- Theorem 3.1.2: If **v** is a vector in \mathbb{R}^n and k is a scalar, then:
 - $\mathbf{v} = \mathbf{0}$
 - \mathbf{a} $k\mathbf{0} = \mathbf{0}$
- If w is a vector in \mathbb{R}^n , then w is said to be a *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ in \mathbb{R}^n if it can be expressed in the form

$$\boldsymbol{w} = k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_r \boldsymbol{v}_r$$

 \Box where $k_1, k_2, ..., k_r$ are scalars.

Alternative Notations for Vectors

- Comma-delimited form: $\mathbf{v} = (v_1, v_2, ..., v_n)$
- It can also written as a row-matrix form

$$\mathbf{v} = [v_1 \quad v_2 \quad \dots \quad v_n]$$

Or a *column-matrix* form

$$oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

3.2

Norm, Dot Product, and Distance in R^n

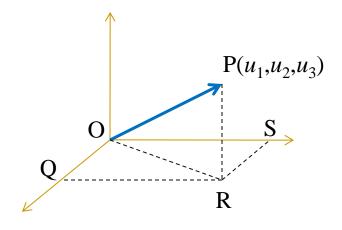
Norm of a Vector

- The length of a vector **u** is often called the <u>norm</u> (範數) or <u>magnitude</u> of **u** and is denoted by ||**u**||.
- It follows from the **Theorem of Pythagoras** (畢達哥拉斯) that the norm of a vector $\mathbf{u} = (u_1, u_2, u_3)$ in 3-space is

$$\|\boldsymbol{u}\|^2 = (OR)^2 + (RP)^2$$

= $(OQ)^2 + (QR)^2 + (RP)^2 = u_1^2 + u_2^2 + u_3^2$

$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$



Norm of a Vector

If $\mathbf{v} = (v_1, v_2, ..., v_n)$ is a vector in \mathbb{R}^n , then the norm of \mathbf{v} is denoted by $||\mathbf{v}||$, and is defined by

$$\|\boldsymbol{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

- Example:
 - □ The norm of \mathbf{v} =(-3,2,1) in \mathbb{R}^3 is $\|\mathbf{v}\| = \sqrt{(-3)^2 + 2^2 + 1^2} = \sqrt{14}$
 - □ The norm of \mathbf{v} =(2, -1, 3, -5) in \mathbb{R}^4 is

$$\|\boldsymbol{v}\| = \sqrt{2^2 + (-1)^2 + 3^2 + (-5)^2} = \sqrt{39}$$

Theorem 3.2.1

- If **v** is a vector in \mathbb{R}^n , and if k is any scalar, then:
 - $||\mathbf{v}|| > 0$
 - $||\mathbf{v}|| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- Proof of (c):
 - □ If $\mathbf{v} = (v_1, v_2, ..., v_n)$, then $k\mathbf{v} = (kv_1, kv_2, ..., kv_n)$, so

$$||k\boldsymbol{v}|| = \sqrt{(kv_1)^2 + (kv_2)^2 + \dots + (kv_n)^2}$$

$$= \sqrt{(k^2)(v_1^2 + v_2^2 + \dots + v_n^2)}$$

$$= |k|\sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

$$= |k||\boldsymbol{v}||$$

Unit Vector

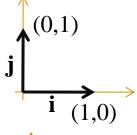
- A vector of norm 1 is called a unit vector. (單位向量)
- You can obtain a unit vector in a desired direction by choosing any nonzero vector **v** in that direction and multiplying **v** by the reciprocal of its length.

$$oldsymbol{u} = rac{1}{\|oldsymbol{v}\|} oldsymbol{v}$$

- The process is called *normalizing* **v**
- Example: $\mathbf{v} = (2,2,-1), \|\mathbf{v}\| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$ $\mathbf{u} = \frac{1}{3}(2,2,-1) = (\frac{2}{3},\frac{2}{3},\frac{-1}{3})$
 - You can verify that $\|\boldsymbol{u}\| = 1$

Standard Unit Vectors

- When a **rectangular coordinate system** is introduced in R^2 or R^3 , the unit vectors in the positive directions of the coordinates axes are called **standard unit vectors**.
- In R^2 , $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0,1)$
- In R^3 , $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0, 1, 0)$, $\mathbf{k} = (0, 0, 1)$



Every vector $\mathbf{v} = (v_1, v_2)$ in \mathbb{R}^2 can be expressed as a linear combination of standard unit vectors

$$\mathbf{v} = (v_1, v_2) = v_1(1, 0) + v_2(0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j}$$

$$(1,0,0)$$
 (i) $(0,1,0)$

Standard Unit Vectors

• We can generalize these formulas to R^n by defining standard unit vectors in R^n to be

$$e_1 = (1, 0, 0, \dots, 0)$$
 $e_2 = (0, 1, 0, \dots, 0)$... $e_n = (0, 0, 0, \dots, 1)$

• Every vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n can be expressed as

$$v = (v_1, v_2, ..., v_n) = v_1 e_1 + v_2 e_2 + \cdots + v_n e_n$$

- **Example:** $(2,-3,4) = 2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$
- $(7,3,-4,5) = 7\mathbf{e}_1 + 3\mathbf{e}_2 4\mathbf{e}_3 + 5\mathbf{e}_4$

Distance

- The distance between two points is the norm of the vector.
- If $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are two points in 3-space, then the distance d between them is the norm of the vector $\overrightarrow{P_1P_2}$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

- Euclidean distance (歐幾里德距離, 歐式距離)
- If $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ are points in \mathbb{R}^n , then the distance $d(\mathbf{u}, \mathbf{v})$ is defined as

$$d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Definitions

- Let **u** and **v** be two nonzero vectors in 2-space or 3-space, and assume these vectors have been positioned so their initial points coincided. By the angle between **u** and **v**, we shall mean the angle θ determined by **u** and **v** that satisfies $0 \le \theta \le \pi$.
- If \mathbf{u} and \mathbf{v} are vectors in 2-space or 3-space and θ is the angle between \mathbf{u} and \mathbf{v} , then the dot product (點積) or Euclidean inner product (內積) $\mathbf{u} \cdot \mathbf{v}$ is defined by

$$\mathbf{u} \cdot \mathbf{v} = \begin{cases} \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta & \text{if } \mathbf{u} \neq \mathbf{0} \text{ and } \mathbf{v} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{u} = \mathbf{0} \text{ or } \mathbf{v} = \mathbf{0} \end{cases}$$

Dot Product

$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}$$

- If the vectors \mathbf{u} and \mathbf{v} are nonzero and θ is the angle between them, then
 - θ is acute (銳角) if and only if $\mathbf{u} \cdot \mathbf{v} > 0$
 - θ is obtuse (鈍角) if and only if $\mathbf{u} \cdot \mathbf{v} < 0$

Example

If the angle between the vectors $\mathbf{u} = (0,0,1)$ and $\mathbf{v} = (0,2,2)$ is 45°, then

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = \sqrt{0 + 0 + 1} \sqrt{0 + 4 + 4} \cdot \left(\frac{1}{\sqrt{2}}\right) = 2$$

$$\mathbf{u} \cdot \mathbf{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) = u_1 v_1 + u_2 v_2 + u_3 v_3 = 2$$

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{2}{\sqrt{0 + 0 + 1}\sqrt{0 + 4 + 4}} = \frac{1}{\sqrt{2}}$$

Component Form of Dot Product

Example

Find the angle between a diagonal of a cube and one of its edges

$$\boldsymbol{d} = (k, k, k) = \boldsymbol{u}_1 + \boldsymbol{u}_2 + \boldsymbol{u}_3$$

$$\cos \theta = \frac{\mathbf{u}_1 \cdot \mathbf{d}}{\|\mathbf{u}_1\| \|\mathbf{d}\|} = \frac{k^2}{(k)(\sqrt{3k^2})} = \frac{1}{\sqrt{3}}$$

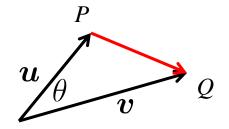
$$\theta = \cos^{-1}(\frac{1}{\sqrt{3}}) \approx 54.74^{\circ}$$



Component Form of Dot Product

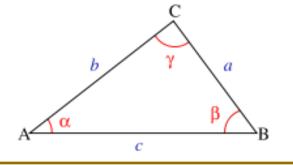
- Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ be two nonzero vectors.
- According to the *law of cosine* (餘弦定理)

$$\|\overrightarrow{PQ}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$$



law of cosine

$$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$$



Component Form of Dot Product

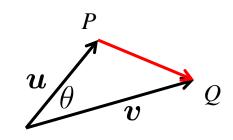
$$\|\overrightarrow{PQ}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$$

$$\overrightarrow{PQ} = \boldsymbol{v} - \boldsymbol{u}$$

$$\Rightarrow$$
 $\|u\|\|v\|\cos\theta = \frac{1}{2}(\|u\|^2 + \|v\|^2 - \|v - u\|^2)$

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{2}(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{v} - \mathbf{u}\|^2)$$

$$\rightarrow \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$



$$\|\boldsymbol{u}\|^2 = u_1^2 + u_2^2 + u_3^2$$
$$\|\boldsymbol{v}\|^2 = v_1^2 + v_2^2 + v_3^2$$

$$\|\boldsymbol{v} - \boldsymbol{u}\|^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2$$

Definition

If $\mathbf{u}=(u_1,u_2,\ldots,u_n)$ and $\mathbf{v}=(v_1,v_2,\ldots,v_n)$ are vectors in \mathbb{R}^n , then the **dot product** (點積) (also called the **Euclidean inner product** (內積)) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined by

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

- **Example:** $\mathbf{u} = (-1,3,5,7)$ and $\mathbf{v} = (-3,-4,1,0)$
 - $\mathbf{u} \cdot \mathbf{v} = (-1)(-3) + (3)(-4) + (5)(1) + (7)(0) = -4$

Theorems

$$\mathbf{u} \cdot \mathbf{v} = \begin{cases} \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta & \text{if } \mathbf{u} \neq \mathbf{0} \text{ and } \mathbf{v} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{u} = \mathbf{0} \text{ or } \mathbf{v} = \mathbf{0} \end{cases}$$

■ The special case $\mathbf{u} = \mathbf{v}$, we obtain the relationship

$$\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 = ||\mathbf{v}||^2$$

 $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

- Theorem 3.2.2
 - \Box If **u**, **v** and **w** are vectors in 2- or 3-space, and k is a scalar, then

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

$$u \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

$$k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$$

$$\mathbf{v} \cdot \mathbf{v} \ge 0$$
 and $\mathbf{v} \cdot \mathbf{v} = 0$ if $\mathbf{v} = 0$

[homogeneity property]

Proof of Theorem 3.2.2

$$k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$$

Let $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$

$$k(\mathbf{u} \cdot \mathbf{v}) = k(u_1v_1 + u_2v_2 + u_3v_3)$$

= $(ku_1)v_1 + (ku_2)v_2 + (ku_3)v_3$
= $(k\mathbf{u}) \cdot \mathbf{v}$

Theorem 3.2.3

If **u**, **v**, and **w** are vectors in \mathbb{R}^n , and if k is a scalar, then

$$0 \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$$

$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

$$\mathbf{u} \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{w}$$

$$(\mathbf{u} - \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} - \mathbf{v} \cdot \mathbf{w}$$

$$k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$$

Proof(b)

$$(oldsymbol{u} + oldsymbol{v}) \cdot oldsymbol{w} = oldsymbol{w} \cdot (oldsymbol{u} + oldsymbol{v})$$
 [by symmetry]
$$= oldsymbol{w} \cdot oldsymbol{u} + oldsymbol{w} \cdot oldsymbol{v}$$
 [by symmetry] [by symmetry]

Example

Calculating with dot products

Cauchy-Schwarz Inequality

With the formula

$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \qquad \theta = \cos^{-1} \left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \right)$$

 The inverse cosine is not defined unless its argument satisfies the inequalities

$$-1 \le \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \le 1$$

Fortunately, these inequalities do hold for all nonzero vectors in \mathbb{R}^n as a result of Cauchy-Schwarz inequality

Theorem 3.2.4 Cauchy-Schwarz Inequality

If $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ are vectors in \mathbb{R}^n , then $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$ or in terms of components

$$|u_1v_1 + u_2v_2 + \dots + u_nv_n|$$

$$\leq (u_1^2 + u_2^2 + \dots + u_n^2)^{1/2}(v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$

We will omit the proof of this theorem because later in the text we will prove a more general version of which this will be a special case.

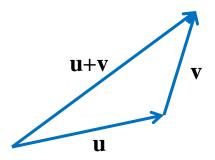
To show $-1 \le \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \le 1$

$$-1 \le \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \le 1 \implies \frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \le 1 \implies \left| \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \right| \le 1$$

Cauchy-Schwarz Inequality: If $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ are vectors in \mathbb{R}^n , then $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| \, ||\mathbf{v}||$

Geometry in \mathbb{R}^n

- The sum of the lengths of two side of a triangle is at least as large as the third
- The shortest distance between two points is a straight line
- Theorem 3.2.5
 - \Box If **u**, **v**, and **w** are vectors in \mathbb{R}^n , and k is any scalar, then
 - $||u+v|| \leq ||u|| + ||v||$
 - $d(\mathbf{u},\mathbf{v}) \leq d(\mathbf{u},\mathbf{w}) + d(\mathbf{w},\mathbf{v})$



Proof of Theorem 3.2.5

Proof (a) $\|\boldsymbol{u} + \boldsymbol{v}\|^2 = (\boldsymbol{u} + \boldsymbol{v}) \cdot (\boldsymbol{u} + \boldsymbol{v})$ $= (\boldsymbol{u} \cdot \boldsymbol{u}) + 2(\boldsymbol{u} \cdot \boldsymbol{v}) + (\boldsymbol{v} \cdot \boldsymbol{v})$ $= \|\boldsymbol{u}\|^2 + 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \|\boldsymbol{v}\|^2$ $\leq \|\boldsymbol{u}\|^2 + 2\|\boldsymbol{u} \cdot \boldsymbol{v}\| + \|\boldsymbol{v}\|^2$ Property of absolute value $\leq \|\boldsymbol{u}\|^2 + 2\|\boldsymbol{u}\|\|\boldsymbol{v}\| + \|\boldsymbol{v}\|^2$ Cauchy-Schwarz inequality $= (\|\boldsymbol{u}\| + \|\boldsymbol{v}\|)^2$

Proof (b)

$$d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\|$$

$$= \|(\boldsymbol{u} - \boldsymbol{w}) + (\boldsymbol{w} - \boldsymbol{v})\|$$

$$\leq \|\boldsymbol{u} - \boldsymbol{w}\| + \|\boldsymbol{w} - \boldsymbol{v}\|$$
 based on (a)
$$= d(\boldsymbol{u}, \boldsymbol{w}) + d(\boldsymbol{w}, \boldsymbol{v})$$

Theorem 3.2.6 Parallelogram Equation for Vectors

- If u and v are vectors in \mathbb{R}^n , then $||\mathbf{u}+\mathbf{v}||^2 + ||\mathbf{u}-\mathbf{v}||^2 = 2(||\mathbf{u}||^2 + ||\mathbf{v}||^2)$
- Proof:

$$\|\boldsymbol{u} + \boldsymbol{v}\|^2 + \|\boldsymbol{u} - \boldsymbol{v}\|^2$$

$$= (\boldsymbol{u} + \boldsymbol{v}) \cdot (\boldsymbol{u} + \boldsymbol{v}) + (\boldsymbol{u} - \boldsymbol{v}) \cdot (\boldsymbol{u} - \boldsymbol{v})$$

$$= 2(\boldsymbol{u} \cdot \boldsymbol{u}) + 2(\boldsymbol{v} \cdot \boldsymbol{v})$$

$$= 2(\|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2)$$

11

Theorem 3.2.7

- If **u** and **v** are vectors in \mathbb{R}^n with the Euclidean inner product, then $\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} ||\mathbf{u} + \mathbf{v}||^2 \frac{1}{4} ||\mathbf{u} \mathbf{v}||^2$
- Proof:

$$\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \|\mathbf{u}\|^2 + 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^2$$

 $\|\mathbf{u} - \mathbf{v}\|^2 = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \|\mathbf{u}\|^2 - 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^2$

Dot Products as Matrix Multiplication

View u and v as column matrices

$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^T \boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{u}$$

Example:

$$\mathbf{u} = (1, -3, 5)$$
 $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$

$$\mathbf{u} \cdot \mathbf{v} = (1, -3, 5) \cdot (5, 4, 0) = (1)(5) + (-3)(4) + (5)(0) = -7$$

$$\boldsymbol{u}^T \boldsymbol{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$$
 $\boldsymbol{v}^T \boldsymbol{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$

Dot Products as Matrix Multiplication

If A is an $n \times n$ matrix and **u** and **v** are $n \times 1$ matrices

$$A \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v}^T (A \boldsymbol{u}) = (\boldsymbol{v}^T A) \boldsymbol{u} = (A^T \boldsymbol{v})^T \boldsymbol{u} = \boldsymbol{u} \cdot A^T \boldsymbol{v}$$

 $\boldsymbol{u} \cdot A \boldsymbol{v} = (A \boldsymbol{v})^T \boldsymbol{u} = (\boldsymbol{v}^T A^T) \boldsymbol{u} = \boldsymbol{v}^T (A^T \boldsymbol{u}) = A^T \boldsymbol{u} \cdot \boldsymbol{v}$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \boldsymbol{u} = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} \qquad \boldsymbol{v} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$$

You can check $A \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u} \cdot A^T \boldsymbol{v}$

Dot Product View of Matrix

Multiplication

If $A=[a_{ij}]$ is a $m \times r$ matrix, and $B=[b_{ij}]$ is an $r \times n$ matrix, then the ijth entry of AB is

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ir}b_{rj}$$

which is the dot product of the *i*th row vector of *A*

$$\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ir} \end{bmatrix}$$

and the jth column vector of B

$$egin{bmatrix} b_{1j} \ b_{2j} \ dots \ b_{rj} \end{bmatrix}$$

Dot Product View of Matrix Multiplication

If the row vectors of A are $\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_m$ and the column vectors of B are $\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_n$, then the matrix product AB can be expressed as

$$AB = \begin{bmatrix} \boldsymbol{r}_1 \cdot \boldsymbol{c}_1 & \boldsymbol{r}_1 \cdot \boldsymbol{c}_2 & \cdots & \boldsymbol{r}_1 \cdot \boldsymbol{c}_n \\ \boldsymbol{r}_2 \cdot \boldsymbol{c}_1 & \boldsymbol{r}_2 \cdot \boldsymbol{c}_2 & \cdots & \boldsymbol{r}_2 \cdot \boldsymbol{c}_n \\ \vdots & \vdots & & \vdots \\ \boldsymbol{r}_m \cdot \boldsymbol{c}_1 & \boldsymbol{r}_m \cdot \boldsymbol{c}_2 & \cdots & \boldsymbol{r}_m \cdot \boldsymbol{c}_n \end{bmatrix}$$

3.3

Orthogonality

Orthogonal Vectors

- Recall that $\theta = \cos^{-1}\left(\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}\right)$
- It follows that $\theta = \frac{\pi}{2}$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$
- Definition: Two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are said to be *orthogonal* [正文] (or *perpendicular* [垂直]) if $\mathbf{u} \cdot \mathbf{v} = 0$.
- The zero vector in \mathbb{R}^n is orthogonal to every vector in \mathbb{R}^n .
- A nonempty set of vectors in \mathbb{R}^n is called an *orthogonal* set if all pairs of distinct vectors in the set are orthogonal.
- An orthogonal set of unit vectors is called an orthonormal set.

Example

Show that $\mathbf{u} = (-2,3,1,4)$ and $\mathbf{v} = (1,2,0,-1)$ are orthogonal

$$\mathbf{u} \cdot \mathbf{v} = (-2)(1) + (3)(2) + (1)(0) + (4)(-1) = 0$$

- Show that the set $S = \{i,j,k\}$ of standard unit vectors is an orthogonal set in \mathbb{R}^3
 - We must show $\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0$

$$\mathbf{i} \cdot \mathbf{j} = (1, 0, 0) \cdot (0, 1, 0) = 0$$

$$\mathbf{i} \cdot \mathbf{k} = (1, 0, 0) \cdot (0, 0, 1) = 0$$

$$\mathbf{j} \cdot \mathbf{k} = (0, 1, 0) \cdot (0, 0, 1) = 0$$

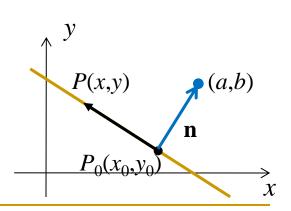
Normal

One way of specifying slope and inclination is the use a nonzero vector **n**, called *normal* (法向量) that is orthogonal to the line or plane.

$$\mathbf{n} \cdot \overrightarrow{P_0 P} = 0$$
$$a(x - x_0) + b(y - y_0) = 0$$

The line through the point (x_0,y_0) has normal $\mathbf{n}=(a,b)$

Example: the equation 6(x-3) + (y+7) = 0 represents the line through (3,-7) with normal \mathbf{n} =(6,1)



Theorem 3.3.1

- If a and b are constants that are not both zero, then an equation of the form ax+by+c=0 represents a line in R^2 with normal $\mathbf{n}=(a,b)$
- If a, b, and c are constants that are not all zero, then an equation of the form ax+by+cz+d=0 represents a plane in R^3 with normal $\mathbf{n}=(a,b,c)$

Example

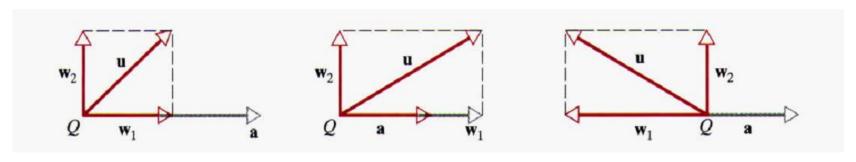
- The equation ax+by=0 represents a line through the origin in R^2 . Show that the vector $\mathbf{n}=(a,b)$ is orthogonal to the line, that is, orthogonal to every vector along the line.
- Solution:
 - Rewrite the equation as

$$(a,b) \cdot (x,y) = 0$$
$$\mathbf{n} \cdot (x,y) = 0$$

Therefore, the vector \mathbf{n} is orthogonal to every vector (x,y) on the line.

An Orthogonal Projection

- To "decompose" a vector **u** into a sum of two terms, one *parallel* to a specified nonzero vector **a** and the other *perpendicular* to **a**.
- We have $\mathbf{w}_2 = \mathbf{u} \mathbf{w}_1$ and $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{w}_1 + (\mathbf{u} \mathbf{w}_1) = \mathbf{u}$
- The vector \mathbf{w}_1 is called the <u>orthogonal projection</u> (正交投影) of \mathbf{u} on \mathbf{a} or sometimes the vector component (分向量) of \mathbf{u} along \mathbf{a} , and denoted by $\operatorname{proj}_{\mathbf{a}}\mathbf{u}$
- The vector \mathbf{w}_2 is called the vector component of \mathbf{u} orthogonal to \mathbf{a} , and denoted by $\mathbf{w}_2 = \mathbf{u} \text{proj}_{\mathbf{a}}\mathbf{u}$



Theorem 3.3.2 Projection Theorem

If **u** and **a** are vectors in \mathbb{R}^n , and if $\mathbf{a}\neq\mathbf{0}$, then **u** can be expressed in exactly one way in the form $\mathbf{u}=\mathbf{w}_1+\mathbf{w}_2$, where \mathbf{w}_1 is a scalar multiple of **a** and \mathbf{w}_2 is orthogonal to **a**.

Proof:

- □ Since \mathbf{w}_1 is to be a scalar multiple of \mathbf{a} , it has the form: $\mathbf{w}_1 = k\mathbf{a}$
- Our goal is to find a value of k and a vector \mathbf{w}_2 that is orthogonal to a such that $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$.
- Rewrite $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2 = k\mathbf{a} + \mathbf{w}_2$, and then applying Theorems 3.2.2 and 3.2.3 to obtain $\mathbf{u} \cdot \mathbf{a} = (k\mathbf{a} + \mathbf{w}_2) \cdot \mathbf{a} = k||\mathbf{a}||^2 + (\mathbf{w}_2 \cdot \mathbf{a})$
- Since \mathbf{w}_2 is orthogonal to \mathbf{a} , $\mathbf{u} \cdot \mathbf{a} = k||\mathbf{a}||^2$, from which we obtain $k = \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2}$
- □ Therefore, we can get

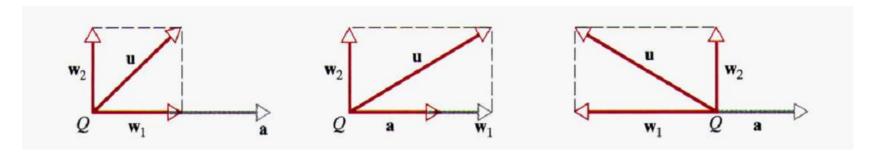
$$w_2 = u - w_1 = u - ka = u - \frac{u \cdot a}{\|a\|^2}a$$

Projection Theorem

$$\mathbf{w}_1 = \operatorname{proj}_{\mathbf{a}} \mathbf{u}$$
$$\mathbf{w}_2 = \mathbf{u} - \operatorname{proj}_{\mathbf{a}} \mathbf{u}$$

- The vector w₁ is called the orthogonal projection of u on a, or the vector component of u along a.
- The vector \mathbf{w}_2 is called *the vector component of* \mathbf{u} *orthogonal to* \mathbf{a} .

$$proj_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}$$
 (vector component of \mathbf{u} along \mathbf{a})
$$\mathbf{u} - proj_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}$$
 (vector component of \mathbf{u} orthogonal to \mathbf{a})



Example

$$\mathbf{e}_2 = (0,1) \qquad \mathbf{L}$$

$$(\cos\theta, \sin\theta)$$

$$\mathbf{e}_1 = (1,0)$$

- Find the orthogonal projections of the vectors $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$ on the line L that makes an angle θ with the positive x-axis in R2.
- Solution:
 - $\Box a = (\cos \theta, \sin \theta)$ is a unit vector along L.
 - \Box Find orthogonal projection of \mathbf{e}_1 along \mathbf{a} .

$$\|\boldsymbol{a}\| = \sqrt{\sin \theta^2 + \cos \theta^2} = 1 \qquad \boldsymbol{e}_1 \cdot \boldsymbol{a} = (1,0) \cdot (\cos \theta, \sin \theta) = \cos \theta$$

$$proj_{\boldsymbol{a}} \boldsymbol{e}_1 = \frac{\boldsymbol{e}_1 \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^2} \boldsymbol{a} = (\cos \theta)(\cos \theta, \sin \theta) = (\cos \theta^2, \sin \theta \cos \theta)$$

$$\boldsymbol{e}_2 \cdot \boldsymbol{a} = (0,1) \cdot (\cos \theta, \sin \theta) = \sin \theta$$

$$proj_{\boldsymbol{a}} \boldsymbol{e}_2 = \frac{\boldsymbol{e}_2 \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^2} \boldsymbol{a} = (\sin \theta)(\cos \theta, \sin \theta) = (\sin \theta \cos \theta, \sin \theta^2)$$

Example

$$proj_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}$$
$$\mathbf{u} - proj_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}$$

Let u = (2,-1,3) and a = (4,-1,2). Find the vector component of u along a and the vector component of u orthogonal to a.

Solution:

$$u \cdot a = (2)(4) + (-1)(-1) + (3)(2) = 15$$
$$||a||^2 = 4^2 + (-1)^2 + 2^2 = 21$$

Thus, the vector component of u along a is

$$proj_a u = \frac{u \cdot a}{\|a\|^2} a = \frac{15}{21} (4, -1, 2) = (\frac{20}{7}, -\frac{5}{7}, \frac{10}{7})$$

and the vector component of u orthogonal to a is

$$u - proj_a u = (2, -1, 3) - (\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}) = (-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7})$$

Verify that the vector $u - proj_a u$ and a are perpendicular by showing that their dot product is zero.

Length of Orthogonal Projection

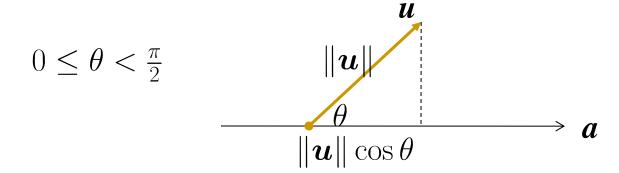
$$\|proj_{\mathbf{a}}\mathbf{u}\| = \left\|\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\mathbf{a}\right\|$$
scalar
$$= \left|\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\right| \|\mathbf{a}\| \quad \text{Theorem 3.2.1}$$

$$= \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|^2} \|\mathbf{a}\| \quad \text{Since } \|\mathbf{a}\|^2 > 0$$

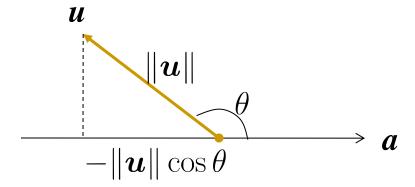
$$= \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|}$$

If θ denotes the angle between \boldsymbol{u} and \boldsymbol{a} , then $\boldsymbol{u} \cdot \boldsymbol{a} = \|\boldsymbol{u}\| \|\boldsymbol{a}\| \cos \theta$ $\|proj_{\boldsymbol{a}}\boldsymbol{u}\| = \|\boldsymbol{u}\| |\cos \theta|$

Length of Orthogonal Projection



$$\frac{\pi}{2} < \theta \le \pi$$



Theorem 3.3.3 Theorem of Pythagoras

If **u** and **v** are orthogonal vectors in \mathbb{R}^n with the Euclidean inner product, then

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

Proof:

Since \mathbf{u} and \mathbf{v} are orthogonal, $\mathbf{u} \cdot \mathbf{v} = 0$, then

$$\| \boldsymbol{u} + \boldsymbol{v} \|^2 = (\boldsymbol{u} + \boldsymbol{v}) \cdot (\boldsymbol{u} + \boldsymbol{v}) = \| \boldsymbol{u} \|^2 + 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \| \boldsymbol{v} \|^2$$

= $\| \boldsymbol{u} \|^2 + \| \boldsymbol{v} \|^2$

Theorem 3.3.4

• (a) In R^2 the distance D between the point $P_0(x_0,y_0)$ and the line ax+by+c=0 is

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

• (b) In R^3 the distance D between the point $P_0(x_0,y_0,z_0)$ and the plane ax+by+cz+d=0 is

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof of Theorem 3.3.4(b)

- Let $Q(x_1,y_1,z_1)$ be any point in the plane. Position the normal $\mathbf{n}=(a,b,c)$ so that its initial point is at Q.
- D is the length of the orthogonal projection of $\overrightarrow{QP_0}$ on **n**.

$$D = \|proj_{n}\overrightarrow{QP_{0}}\| = \frac{|\overrightarrow{QP_{0}} \cdot \boldsymbol{n}|}{\|\boldsymbol{n}\|}$$

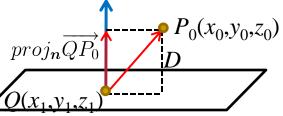
$$\overrightarrow{QP_{0}} = (x_{0} - x_{1}, y_{0} - y_{1}, z_{0} - z_{1})$$

$$\overrightarrow{QP_{0}} \cdot \boldsymbol{n} = a(x_{0} - x_{1}) + b(y_{0} - y_{1}) + c(z_{0} - z_{1})$$

$$\|\boldsymbol{n}\| = \sqrt{a^{2} + b^{2} + c^{2}}$$

$$D = \frac{|a(x_{0} - x_{1}) + b(y_{0} - y_{1}) + c(z_{0} - z_{1})|}{\sqrt{a^{2} + b^{2} + c^{2}}}$$

$$pro\underbrace{a(x_{0} - x_{1}) + b(y_{0} - y_{1}) + c(z_{0} - z_{1})|}_{Q(x_{0} - x_{1})}$$



Proof of Theorem 3.3.4(b)

$$D = \frac{|a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1)|}{\sqrt{a^2 + b^2 + c^2}}$$

- Since the point $Q(x_1,y_1,z_1)$ lies in the given plane, $ax_1+by_1+cz_1+d=0$, or $d=-ax_1-by_1-cz_1$
- Thus

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Example

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

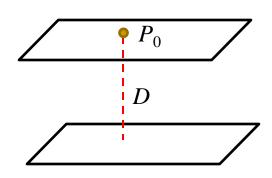
Find the distance *D* from the point (1,-2) to the line 3x+4y-6=0 is

$$D = \frac{|3(1) + 4(-2) - 6|}{\sqrt{3^2 + 4^2}} = \frac{11}{5}$$

Distance Between Parallel Plane

- Two planes x+2y-2z=3 and 2x+4y-4z=7
- To find the distance *D* between the planes, we can select an arbitrary point in one of the planes and compute its distance to the other plane.
- By setting y=z=0 in the equation x+2y-2z=3, we obtain the point $P_0(3,0,0)$ in this plane.
- The distance between P_0 and the plane 2x+4y-4z=7 is

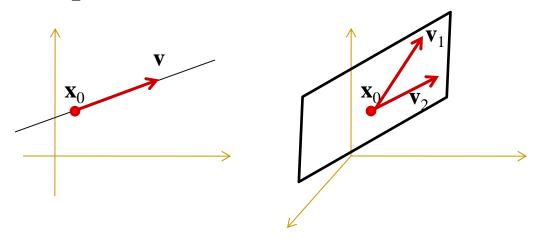
$$D = \frac{|2(3) + 4(0) + (-4)(0) - 7|}{\sqrt{2^2 + 4^2 + (-4)^2}} = \frac{1}{6}$$



3.4 The Geometry of Linear Systems

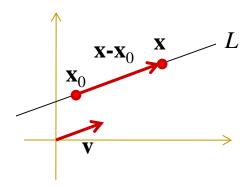
Vector and Parametric Equations

- A unique line in R^2 or R^3 is determined by a point \mathbf{x}_0 on the line and a nonzero vector \mathbf{v} parallel to the line
- A unique plane in R^3 is determined by a point \mathbf{x}_0 in the plane and two *noncollinear* vectors \mathbf{v}_1 and \mathbf{v}_2 parallel to the plane



Vector and Parametric Equations

- If \mathbf{x} is a general point on such a line, the vector $\mathbf{x} \mathbf{x}_0$ will be some scalar multiple of \mathbf{v}
- $\mathbf{x} \mathbf{x}_0 = t\mathbf{v}$ or equivalently $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$
- As the variable t (called *parameter*) varies from $-\infty$ to ∞ , the point **x** traces out the line L.



Theorem 3.4.1

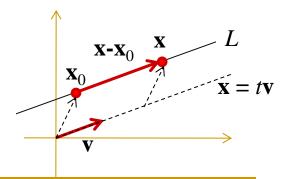
Let L be the line in \mathbb{R}^2 or \mathbb{R}^3 that contains the point \mathbf{x}_0 and is parallel to the nonzero vector \mathbf{v} . Then the equation of the line through \mathbf{x}_0 that is parallel to \mathbf{v} is

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$$

If $\mathbf{x}_0 = \mathbf{0}$, then the line passes through the origin and the equation has the form

$$\mathbf{x} = t\mathbf{v}$$

■ The translation by \mathbf{x}_0 of the line through the origin



Vector and Parametric Equations

If \mathbf{x} is any point in the plane, then by forming suitable scalar multiples of \mathbf{v}_1 and \mathbf{v}_2 , we can create a parallelogram with diagonal \mathbf{x} - \mathbf{x}_0 and adjacent sides $t_1\mathbf{v}_1$ and $t_2\mathbf{v}_2$. Thus we have

$$\mathbf{x} - \mathbf{x}_0 = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$
 or equivalently $\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$

As the variables t_1 and t_2 (parameters) vary independently from $-\infty$ to ∞ , the point **x** varies over the entire plane W.



Theorem 3.4.2

Let W be the plane in \mathbb{R}^3 that contains the point \mathbf{x}_0 and is parallel to the noncollinear vectors \mathbf{v}_1 and \mathbf{v}_2 . Then an equation of the plane through \mathbf{x}_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2 is given by

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$

If $\mathbf{x}_0 = \mathbf{0}$, then the plane passes through the origin and the equation has the form

$$\mathbf{x} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$

Definition

- If \mathbf{x}_0 and \mathbf{v} are vectors in \mathbb{R}^n , and if \mathbf{v} is nonzero, then the equation $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$ defines the line through \mathbf{x}_0 that is parallel to \mathbf{v} . In the special case where $\mathbf{x}_0 = \mathbf{0}$, the line is said to pass through the origin.
- If \mathbf{x}_0 , \mathbf{v}_1 and \mathbf{v}_2 are vectors in R^n , and if \mathbf{v}_1 and \mathbf{v}_2 are not collinear, then the equation $\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$ defines the plane through \mathbf{x}_0 that is parallel to \mathbf{v}_1 and \mathbf{v}_2 . In the special case where $\mathbf{x}_0 = \mathbf{0}$, the line is said to pass through the origin.

Vector Forms

- The previous equations are called **vector forms** of a line and plane in \mathbb{R}^n .
- If the vectors in these equations are expressed in terms of their components and the corresponding components on each side are equated, then the resulting equations are called **parametric equations** of the line and plane.

Example

- Find a vector equation and parametric equations of the line in \mathbb{R}^3 that passes through the point $P_0(1,2,-3)$ and is parallel to the vector $\mathbf{v}=(4,-5,1)$
- Solution:

The line is $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$

If we let $\mathbf{x}=(x,y,z)$, and if we take $\mathbf{x}_0=(1,2,-3)$ then corresponding the vector equation is (x,y,z)=(1,2,-3)+t(4,-5,1)

Equating corresponding components on the two sides of this equation yields the parametric equations

$$x = 1+4t$$
, $y = 2-5t$, $z = -3+t$

Example

- Find vector and parametric equations of the plane x-y+2z=5
- Solution: solving for x in terms of y and z yields x = 5+y-2z
- Then using y and z as parameters t_1 and t_2 , respectively, yields the parametric equations:

$$x = 5 + t_1 - 2t_2, y = t_1, z = t_2$$

To obtain a vector equation of the plane we rewrite these parametric equations as $(x,y,z) = (5+t_1-2t_2, t_1, t_2)$, or equivalently as $(x,y,z) = (5,0,0) + t_1(1,1,0) + t_2(-2,0,1)$

Example

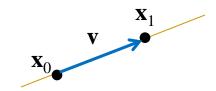
- Find vector and parametric equations of the plane in \mathbb{R}^4 that passes through the point $\mathbf{x}_0 = (2,-1,0,3)$ and is parallel to both $\mathbf{v}_1 = (1,5,2,-4)$ and $\mathbf{v}_2 = (0,7,-8,6)$
- Solution: the vector equation $\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$ can be expressed as

$$(x_1,x_2,x_3,x_4) = (2,-1,0,3) + t_1(1,5,2,-4) + t_2(0,7,-8,6)$$

Which yields the parametric equations

$$x_1 = 2 + t_1, x_2 = -1 + 5t_1 + 7t_2, x_3 = 2t_1 - 8t_2, x_4 = 3 - 4t_1 + 6t_2$$

Lines Through Two points



- If \mathbf{x}_0 and \mathbf{x}_1 are distinct points in R^n , then the line determined by these points is parallel to the vector $\mathbf{v} = \mathbf{x}_1 \mathbf{x}_0$
- The line can be expressed as $\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 \mathbf{x}_0)$
- Or equivalently as $\mathbf{x} = (1-t)\mathbf{x}_0 + t\mathbf{x}_1$
- These are called the *two-point vector equations* of a line in \mathbb{R}^n

Example

- Find vector and parametric equations for the line in \mathbb{R}^2 that passes through the points P(0,7) and Q(5,0)
- Solution: Let's choose $\mathbf{x}_0 = (0,7)$ and $\mathbf{x}_1 = (5,0)$. $\mathbf{x}_1 \mathbf{x}_0 = (5,-7)$ and hence (x,y) = (0,7) + t(5,-7)
- We can rewrite in **parametric form** as x = 5t, y = 7-7t

Definition

- If \mathbf{x}_0 and \mathbf{x}_1 are vectors in R^n , then the equation $\mathbf{x} = \mathbf{x}_0 + t(\mathbf{x}_1 \mathbf{x}_0)$ ($0 \le t \le 1$) defines the line segment from \mathbf{x}_0 to \mathbf{x}_1 .
- When convenient, it can be written as $\mathbf{x} = (1-t)\mathbf{x}_0 + t\mathbf{x}_1 \ (0 \le t \le 1)$
- Example: the line segment from $\mathbf{x}_0 = (1,-3)$ to $\mathbf{x}_1 = (5,6)$ can be represented by $\mathbf{x} = (1,-3) + t(4,9)$ ($0 \le t \le 1$) or $\mathbf{x} = (1-t)(1,-3) + t(5,6)$ ($0 \le t \le 1$)

Dot Product Form of a Linear System

Recall that a linear equation has the form

$$a_1x_1 + a_2x_2 + ... + a_nx_n = b$$
 (a₁,a₂, ..., an not all zero)

The corresponding homogeneous equation is

$$a_1x_1 + a_2x_2 + ... + a_nx_n = 0$$
 $(a_1, a_2, ..., an not all zero)$

These equations can be rewritten in vector form by letting

$$\mathbf{a} = (a_1, a_2, ..., a_n)$$
 and $\mathbf{x} = (x_1, x_2, ..., x_n)$

Two equations can be written as

$$\mathbf{a} \cdot \mathbf{x} = b$$
 $\mathbf{a} \cdot \mathbf{x} = 0$

Dot Product Form of a Linear System

$$\boldsymbol{a} \cdot \boldsymbol{x} = 0$$

- It reveals that each solution vector \mathbf{x} of a homogeneous equation is orthogonal to the coefficient vector \mathbf{a} .
- Consider the homogeneous system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

If we denote the successive row vectors of the coefficient matrix by \mathbf{r}_1 , \mathbf{r}_2 , ..., \mathbf{r}_m , then we can write this system as

$$egin{aligned} m{r}_1 \cdot m{x} &= 0 \\ m{r}_2 \cdot m{x} &= 0 \end{aligned}$$

78

Theorem 3.4.3

$$egin{aligned} & m{r}_1 \cdot m{x} = 0 \\ & m{r}_2 \cdot m{x} = 0 \\ & \vdots \\ & m{r}_m \cdot m{x} = 0 \end{aligned}$$

- If A is an $m \times n$ matrix, then the solution set of the homogeneous linear system Ax=0 consists of all vectors in \mathbb{R}^n that are orthogonal to every row vector of A.
- Example: the general solution of

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Example 6 of Section 1.2

is
$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$

Vector form: $\mathbf{x} = (-3r-4s-2t, r, -2s, s, t, 0)$

Theorem 3.4.3

According to Theorem 3.4.3, the vector x must be orthogonal to each of the row vectors

$$\mathbf{r}_1 = (1,3,-2,0,2,0)$$
 $\mathbf{r}_2 = (2, 6, -5, -2, 4, -3)$
 $\mathbf{r}_3 = (0,0,5,10,0,15)$
 $\mathbf{r}_4 = (2,6,0,8,4,18)$

• Verify that $\mathbf{r}_1 \cdot \mathbf{x} = 1(-3r-4s-2t)+3(r)+(-2)(-2s)+0(s)+2(t)+0(0) = 0$

The Relationship Between Ax=0 and

Ax=b

Compare the solutions of the corresponding linear systems

Example 5 of Section 1.2

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 5 \\ 6 \end{bmatrix}$$

Example 6 of Section 1.2

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 5 \\ 6 \end{bmatrix}$$

Homogeneous system:

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$

Nonhomogeneous system:

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 1/3$

The Relationship Between Ax=0 and

$$Ax=b$$

- We can rewrite them in vector form:
 - \square Homogeneous system: $\mathbf{x} = (-3r-4s-2t, r, -2s, s, t, 0)$
 - □ Nonhomogeneous system: $\mathbf{x} = (-3r 4s 2t, r, -2s, s, t, 1/3)$
- By splitting the vectors on the right apart and collecting terms with like parameters,
 - □ Homogeneous system: $(x_1, x_2, x_3, x_4, x_5) = r(-3, 1, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0)$
 - Nonhomogeneous system: $(x_1, x_2, x_3, x_4, x_5) = r(-3, 1, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0) + (0, 0, 0, 0, 0, 1/3)$
- Each solution of the nonhomogeneous system can be obtained by adding (0,0,0,0,1/3) to the corresponding solution of the homogeneous system.

Theorem 3.4.4

- The general solution of a consistent linear system $A\mathbf{x}=\mathbf{b}$ can be obtained by adding any specific solution of $A\mathbf{x}=\mathbf{b}$ to the general solution of $A\mathbf{x}=\mathbf{0}$.
- Proof:
- Let \mathbf{x}_0 be any specific solution of $A\mathbf{x}=\mathbf{b}$, Let W denote the solution set of $A\mathbf{x}=\mathbf{0}$, and let \mathbf{x}_0+W denote the set of all vectors that result by adding \mathbf{x}_0 to each vector in W.
- Show that if \mathbf{x} is a vector in \mathbf{x}_0+W , then \mathbf{x} is a solution of $A\mathbf{x}=\mathbf{b}$, and conversely, that every solution of $A\mathbf{x}=\mathbf{b}$ is in the set \mathbf{x}_0+W .

Theorem 3.4.4

Assume that \mathbf{x} is a vector in $\mathbf{x}_0 + W$. This implies that \mathbf{x} is expressible in the form $\mathbf{x} = \mathbf{x}_0 + \mathbf{w}$, where $A\mathbf{x}_0 = \mathbf{b}$ and $A\mathbf{w} = \mathbf{0}$. Thus,

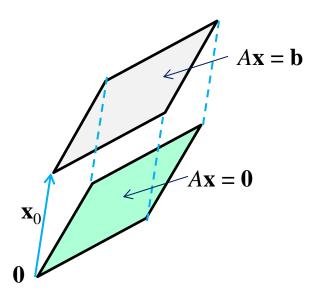
$$A\mathbf{x} = A(\mathbf{x}_0 + \mathbf{w}) = A\mathbf{x}_0 + A\mathbf{w} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

which shows that \mathbf{x} is a solution of $A\mathbf{x} = \mathbf{b}$.

Conversely, let \mathbf{x} be any solution of $A\mathbf{x}=\mathbf{b}$. To show that \mathbf{x} is in the set \mathbf{x}_0+W we must show that \mathbf{x} is expressible in the form: $\mathbf{x}=\mathbf{x}_0+\mathbf{w}$, where \mathbf{w} is in $W(A\mathbf{w}=\mathbf{0})$. We can do this by taking $\mathbf{w}=\mathbf{x}-\mathbf{x}_0$. It is in W since $A\mathbf{w}=A(\mathbf{x}-\mathbf{x}_0)=A\mathbf{x}-A\mathbf{x}_0=\mathbf{b}-\mathbf{b}=\mathbf{0}$.

Geometric Interpretation of Theorem 3.4.4

• We interpret vector addition as translation, then the theorem states that if \mathbf{x}_0 is any specific solution of $A\mathbf{x}=\mathbf{b}$, then the entire solution set of $A\mathbf{x}=\mathbf{b}$ can be obtained by translating the solution set of $A\mathbf{x}=\mathbf{0}$ by the vector \mathbf{x}_0 .



3.5 Cross Product

Definition

If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in 3-space, then the cross product (外積) $\mathbf{u} \times \mathbf{v}$ is the vector **defined by**

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

Or, in determinant notation

$$oldsymbol{u} imes oldsymbol{v} = \left(egin{array}{c|c} u_2 & u_3 \\ v_2 & v_3 \end{array}
ight], - \left. egin{array}{c|c} u_1 & u_3 \\ v_1 & v_3 \end{array}
ight], \left. egin{array}{c|c} u_1 & u_2 \\ v_1 & v_2 \end{array}
ight]
ight)$$

Remark: For the matrix $\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$

to find the first component of $\mathbf{u} \times \mathbf{v}$, delete the first column and take the determinant, ...

Example

- Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1,2,-2)$ and $\mathbf{v} = (3,0,1)$
- Solution

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix}, - \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \end{pmatrix}$$
$$= (2, -7, -6)$$

Theorems

- Theorem 3.5.1 (Relationships Involving Cross Product and Dot Product)
 - □ If **u**, **v** and **w** are vectors in 3-space, then

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

$$\| \mathbf{u} \times \mathbf{v} \|^2 = \| \mathbf{u} \|^2 \| \mathbf{v} \|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$$
product)

 $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{v} \cdot \mathbf{w}) \mathbf{u}$ product)

$$(\mathbf{u} \times \mathbf{v} \text{ is orthogonal to } \mathbf{u})$$

$$(\mathbf{u} \times \mathbf{v} \text{ is orthogonal to } \mathbf{v})$$

 $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$ (relationship between cross & dot

(relationship between cross & dot

Proof of Theorem 3.5.1(a)

Let $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v})$$
= $(u_1, u_2, u_3) \cdot (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$
= $u_1(u_2v_3 - u_3v_2) + u_2(u_3v_1 - u_1v_3) + u_3(u_1v_2 - u_2v_1) = 0$

Example: u = (1, 2, -2) and v = (3, 0, 1)

$$\mathbf{u} \times \mathbf{v} = (2, -7, -6)$$

 $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = (1)(2) + (2)(-7) + (-2)(-6) = 0$
 $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = (3)(2) + (0)(-7) + (1)(-6) = 0$

Proof of Theorem 3.5.1(c)

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = (u_{2}v_{3} - u_{3}v_{2})^{2} + (u_{3}v_{1} - u_{1}v_{3})^{2} + (u_{1}v_{2} - u_{2}v_{1})^{2}$$

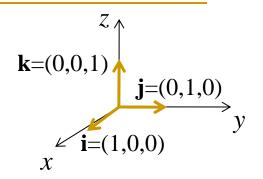
$$\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} - (\mathbf{u} \cdot \mathbf{v})^{2}$$

$$= (u_{1}^{2} + u_{2}^{2} + u_{3}^{2})(v_{1}^{2} + v_{2}^{2} + v_{3}^{2}) - (u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3})^{2}$$

Theorems

- Theorem 3.5.2 (Properties of Cross Product)
 - □ If **u**, **v** and **w** are any vectors in 3-space and *k* is any scalar, then
 - $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
 - $u \times (v + w) = u \times v + u \times w$
 - $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w}$
 - $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
 - $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
 - $\mathbf{u} \times \mathbf{u} = \mathbf{0}$
- Proof of (a)
 - Interchanging \mathbf{u} and \mathbf{v} interchanges the rows of the three determinants and hence changes the sign of each component in the cross product. Thus $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$.

Standard Unit Vectors



The vectors

$$\mathbf{i} = (1,0,0), \, \mathbf{j} = (0,1,0), \, \mathbf{k} = (0,0,1)$$

have length 1 and lie along the coordinate axes. They are called the standard unit vectors in 3-space.

Every vector $\mathbf{v} = (v_1, v_2, v_3)$ in 3-space is expressible in terms of \mathbf{i} , \mathbf{j} , \mathbf{k} since we can write

$$\mathbf{v} = (v_1, v_2, v_3) = v_1(1,0,0) + v_2(0,1,0) + v_3(0,0,1) = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$$

- For example, $(2, -3, 4) = 2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$
- Note that

$$\mathbf{i} \times \mathbf{i} = \mathbf{0}, \quad \mathbf{j} \times \mathbf{j} = \mathbf{0}, \quad \mathbf{k} \times \mathbf{k} = \mathbf{0}$$
 $\mathbf{i} \times \mathbf{j} = \mathbf{k}, \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \mathbf{k} \times \mathbf{i} = \mathbf{j}$
 $\mathbf{j} \times \mathbf{i} = -\mathbf{k}, \quad \mathbf{k} \times \mathbf{j} = -\mathbf{i}, \quad \mathbf{i} \times \mathbf{k} = -\mathbf{j}$

Cross Product

A cross product can be represented symbolically in the form of 3×3 determinant:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

Example: if $\mathbf{u} = (1,2,-2)$ and $\mathbf{v} = (3,0,1)$

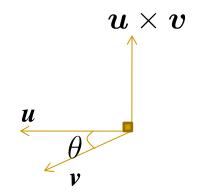
$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 3 & 0 & 1 \end{vmatrix} = 2\mathbf{i} - 7\mathbf{j} - 6\mathbf{k}$$

Cross Product

- It's not true in general that $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$
- For example:

$$egin{aligned} m{i} imes (m{j} imes m{j}) &= m{i} imes m{0} = m{0} \ (m{i} imes m{j}) imes m{j} &= m{k} imes m{j} = -m{i} \end{aligned}$$

- Right-hand rule
 - If the fingers of the right hand are cupped so they point in the direction of rotation, then the thumb indicates the direction of $u \times v$



Geometric Interpretation of Cross Product

From Lagrange's identity, we have

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - (\mathbf{u} \cdot \mathbf{v})^{2}$$

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \cos^{2} \theta$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} (1 - \cos^{2} \theta)$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \sin^{2} \theta$$

• Since $0 \le \theta \le \pi$, it follows that $\sin \theta \ge 0$

SO
$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

 $\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos \theta$

Geometric Interpretation of Cross Product

From Lagrange's identity in Theorem 3.5.1

$$\|\boldsymbol{u} \times \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 - (\boldsymbol{u} \cdot \boldsymbol{v})^2$$

If θ denotes the angle between **u** and **v**, then $u \cdot v = ||u|| ||v|| \cos \theta$

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \cos^{2} \theta$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} (1 - \cos^{2} \theta)$$

$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \sin^{2} \theta$$

• Since $0 \le \theta \le \pi$, it follows that $\sin \theta \ge 0$, thus

$$\|\boldsymbol{u} \times \boldsymbol{v}\| = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \sin \theta$$

Geometric Interpretation of Cross

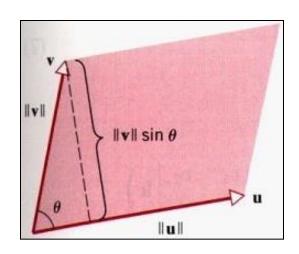
Product

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

• $\|v\|\sin\theta$ is the altitude (頂垂線) of the parallelogram determined by **u** and **v**. Thus, the area *A* of this parallelogram is given by

$$A = \|\boldsymbol{u}\|\|\boldsymbol{v}\|\sin\theta = \|\boldsymbol{u}\times\boldsymbol{v}\|$$

This result is even correct if **u** and **v** are collinear, since we have $\|\mathbf{u} \times \mathbf{v}\| = \mathbf{0}$ when $\theta = 0$



Area of a Parallelogram

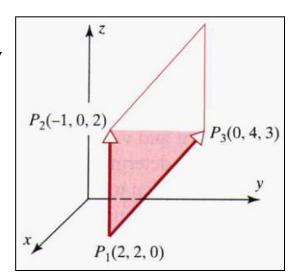
- Theorem 3.5.3 (Area of a Parallelogram)
 - □ If **u** and **v** are vectors in 3-space, then $\|\mathbf{u} \times \mathbf{v}\|$ is equal to the area of the parallelogram determined by **u** and **v**.

Example

 \Box Find the area of the triangle determined by the point (2,2,0), (-1,0,2), and (0,4,3).

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} = (-3, -2, 2) \times (-2, 2, 3)$$

= $(-10, 5, -10)$
 $A = \frac{1}{2} ||\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}|| = \frac{1}{2} (15) = \frac{15}{2}$



Triple Product

Definition

□ If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in 3-space, then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is called the scalar triple product (純量三乘積) of \mathbf{u} , \mathbf{v} and \mathbf{w} .

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \cdot \left(\begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k} \right)$$

$$= \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} u_1 - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} u_2 + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} u_3 = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Example

u = 3i - 2j - 5k, v = i + 4j - 4k, w = 3j + 2k

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix}$$
$$= 3 \begin{vmatrix} 4 & -4 \\ 3 & 3 \end{vmatrix} - (-2) \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} + (-5) \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$
$$= 60 + 4 - 15 = 49$$

Triple Product

Remarks:

- □ The symbol $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$ make no sense because we cannot form the cross product of a scalar and a vector.
- $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})$, since the determinants that represent these products can be obtained from one another by *two* row interchanges.

$$\left| m{u} \cdot (m{v} imes m{w}) = \left| egin{matrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{matrix} \right| \quad m{w} \cdot (m{u} imes m{v}) = \left| egin{matrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{matrix} \right|$$

$$oldsymbol{v} \cdot (oldsymbol{w} imes oldsymbol{u}_1 \ w_1 \ w_2 \ w_3 \ u_1 \ u_2 \ u_3 \ ert$$

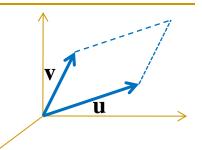
Theorem 3.5.4

- The absolute value of the determinant $\det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix}$
 - is equal to the area of the parallelogram in 2-space determined by the vectors $\mathbf{u} = (u_1, u_2)$, and $\mathbf{v} = (v_1, v_2)$,
- The absolute value of the determinant

$$\det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$$

is equal to the volume of the parallelepiped in 3-space determined by the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$,

Proof of Theorem 3.5.4(a)



View **u** and **v** as vectors in the xy-plane of an xyzcoordinate system. Express $\mathbf{u} = (u_1, u_2, 0)$ and $\mathbf{v} = (v_1, v_2, 0)$

$$egin{aligned} oldsymbol{u} imes oldsymbol{v} = egin{aligned} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ u_1 & u_2 & 0 \ v_1 & v_2 & 0 \ \end{bmatrix} = egin{aligned} u_1 & u_2 \ v_1 & v_2 \ \end{bmatrix} oldsymbol{k} = \det egin{bmatrix} u_1 & u_2 \ v_1 & v_2 \ \end{bmatrix} oldsymbol{k} \end{aligned}$$

It follows from Theorem 3.5.3 and the fact that $||\mathbf{k}|| = 1$ that the area A of the parallelogram determined by \mathbf{u} and \mathbf{v} is

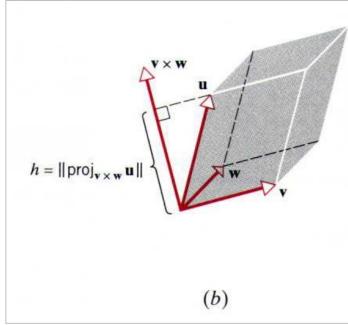
$$A = \|\mathbf{u} \times \mathbf{v}\| = \left\| \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \mathbf{k} \right\| = \left| \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \right| \|\mathbf{k}\|$$

$$= \left| \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \right|$$

Proof of Theorem 3.5.4(b)

- The area of the base is $\| \boldsymbol{v} \times \boldsymbol{w} \|$
- The height h of the parallelepiped is the length of the orthogonal projection of **u** on $\boldsymbol{v} \times \boldsymbol{w}$

$$h = \|proj_{\boldsymbol{v}\times\boldsymbol{w}}\boldsymbol{u}\| = \frac{|\boldsymbol{u}\cdot(\boldsymbol{v}\times\boldsymbol{w})|}{\|\boldsymbol{v}\times\boldsymbol{w}\|}$$



The volume V of the parallelepiped is

$$V = \|\boldsymbol{v} \times \boldsymbol{w}\| \frac{|\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})|}{\|\boldsymbol{v} \times \boldsymbol{w}\|} = |\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})| \quad \left[\frac{|\boldsymbol{u} \cdot \boldsymbol{v} \times \boldsymbol{w}|}{\|\boldsymbol{v} \cdot \boldsymbol{a}\|} \right]$$

$$\|proj_{oldsymbol{a}}oldsymbol{u}\| = rac{|oldsymbol{u}\cdotoldsymbol{a}|}{\|oldsymbol{a}\|}$$

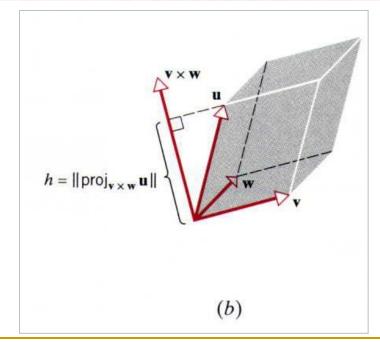
Remark

$$V = \begin{vmatrix} \det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \end{vmatrix}$$

$$V = \begin{bmatrix} \text{volume of parallelepiped} \\ \text{determined by } \mathbf{u}, \mathbf{v}, \text{ and } \mathbf{w} \end{bmatrix} = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$$

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$h = \| \operatorname{proj}_{\mathbf{v} \times \mathbf{w}} \mathbf{u} \|$$



Remark

$$V = |\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})|$$

We can conclude that

$$\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w}) = \pm V$$

where + or - results depending on whether \mathbf{u} makes an acute or an obtuse angle with $\mathbf{v} \times \mathbf{w}$

Theorem 3.5.5

If the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ have the same initial point, then they lie in the same plane if and only if

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = 0$$