Linear Algebra
 Quiz 4 (Brief Solution)

11:10 a.m. - 12:10 a.m., December 18, 2015

Note: You have to answer the questions with supporting explanations (i.e., show all your work) if needed.

1. Show that the three vectors $\mathbf{v}_{1}=(0,3,1,-1), \mathbf{v}_{2}=(6,0,5,1)$ and $\mathbf{v}_{2}=(4,-7,1,3)$ form a linearly dependent set in R^{4}. (15\%)
Ans.:
Let $k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+k_{3} \mathbf{v}_{3}=\mathbf{0}$
It is easy to find (with elementary row operations) a set of not all zero values of k_{1}, k_{2}, k_{3} (i.e., a nontrivial solution) , for example $k_{1}=7_{1}, k_{2}=-2, k_{3}=3$, such that $k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+k_{3} \mathbf{v}_{3}=\mathbf{0}$.
2. Find the coordinate vector of $\mathbf{p}=2-x-x^{2}$ relative to the following three basis vectors: $\mathbf{p}_{1}=1+x, \mathbf{p}_{2}=1+x^{2}$ and $\mathbf{p}_{3}=\mathrm{x}+\chi^{2} .(15 \%)$
Ans.:
Let $c_{1} \mathbf{p}_{1}+c_{2} \mathbf{p}_{2}+c_{3} \mathbf{p}_{3}=\mathbf{p}$. It is easy to find that $c_{1}=1_{1}, c_{2}=1, c_{3}=-2$.
Therefore, the coordinate vector of \mathbf{p} relative to $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ is $[1,1,-2]^{\mathrm{T}}$
3. Given a matrix A shown below:

$$
A=\left[\begin{array}{lllll}
1 & 1 & 2 & 4 & 2 \\
2 & 1 & 2 & 3 & 1 \\
1 & 2 & 4 & 9 & 2 \\
6 & 3 & 6 & 9 & 3
\end{array}\right]
$$

(i) Find a basis for the column space of A consisting entirely of column vectors of A. (10\%)
(ii) Find a basis for the row space of A consisting entirely of row vectors of A. (10\%)
(iii) Find a basis for the null space of A. (10\%)
(iv) What is the rank of A ? and what is the dimension of the null space of A ? (10%)

Ans.:
(i) basis for the column space $=\left\{[1,2,1,6]^{\mathrm{T}},[1,1,2,3]^{\mathrm{T}},[2,1,2,3]^{\mathrm{T}}\right\}$
(ii) basis for the null space $=\{[1,1,2,4,2],[2,1,2,3,1],[1,2,4,9,2]\}$
(iii) basis for the null space $=\{[1,-5,0,1,0],[0,-2,1,0,0]\}$
(iv) the rank of $\mathrm{A}=3$; the dimension of the null space of $\mathrm{A}=2$
4. Consider the bases $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $B^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for R^{2}, where

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

(i) Find the transition (change-of-coordinates) matrix from B to B^{\prime}. (10\%)
(ii) Find the transition (change-of-coordinates) matrix from B^{\prime} to B. (10%)
(iii) Given that $[\mathbf{w}]_{B}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$, compute $[\mathbf{w}]_{B^{\prime}} \cdot(10 \%)$

Ans.:
(i) $P_{B \rightarrow B^{\prime}}=\left[\begin{array}{rr}-1 & -3 \\ 1 & 2\end{array}\right]$
(ii) $P_{B^{\prime} \rightarrow B}=\left[\begin{array}{rr}2 & 3 \\ -1 & -1\end{array}\right]$
(iii) $[\mathbf{w}]_{B^{\prime}}=\left[\begin{array}{r}-7 \\ 6\end{array}\right]$

