Linear Algebra Quiz 4 (Brief Solution)

11:10 a.m. - 12:10 a.m., December 18, 2015

Note: You have to answer the questions with supporting explanations (i.e., show all your work) if needed.

1. Show that the three vectors $\mathbf{v}_1 = (0, 3, 1, -1)$, $\mathbf{v}_2 = (6, 0, 5, 1)$ and $\mathbf{v}_2 = (4, -7, 1, 3)$ form a linearly dependent set in R^4 . (15%)

Ans.:

Let $k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3 = \mathbf{0}$

It is easy to find (with elementary row operations) a set of not all zero values of k_1, k_2, k_3 (i.e., a nontrivial solution), for example $k_1 = 7_1, k_2 = -2, k_3 = 3$, such that $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3 = \mathbf{0}$.

2. Find the coordinate vector of $\mathbf{p}=2-x-x^2$ relative to the following three basis vectors: $\mathbf{p}_1=1+x$, $\mathbf{p}_2=1+x^2$ and $\mathbf{p}_3=x+x^2$. (15%)

Ans.:

Let $c_1\mathbf{p}_1 + c_2\mathbf{p}_2 + c_3\mathbf{p}_3 = \mathbf{p}$. It is easy to find that $c_1 = l_1, c_2 = l, c_3 = -2$. Therefore, the coordinate vector of \mathbf{p} relative to $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ is $[1, 1, -2]^T$

3. Given a matrix A shown below:

A =	[1	1	2	4	2]	
	2	1	2	3	1	
	1	2	4	9	2	
	6	3	6	9	3	

(i) Find a basis for the column space of A consisting entirely of column vectors of A. (10%)

(ii) Find a basis for the row space of A consisting entirely of row vectors of A. (10%)

(iii) Find a basis for the null space of A. (10%)

(iv) What is the rank of A? and what is the dimension of the null space of A? (10%) Ans.:

(i) basis for the column space = { $[1, 2, 1, 6]^{T}, [1, 1, 2, 3]^{T}, [2, 1, 2, 3]^{T}$ }

(ii) basis for the null space = $\{[1,1,2,4,2], [2,1,2,3,1], [1,2,4,9,2]\}$

(iii) basis for the null space = $\{[1, -5, 0, 1, 0], [0, -2, 1, 0, 0]\}$

(iv) the rank of A = 3; the dimension of the null space of A = 2

4. Consider the bases $B = {\mathbf{u}_1, \mathbf{u}_2}$ and $B' = {\mathbf{v}_1, \mathbf{v}_2}$ for R^2 , where

$$\mathbf{u}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \, \mathbf{u}_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \, \mathbf{v}_{1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \, \mathbf{v}_{2} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

(i) Find the transition (change-of-coordinates) matrix from B to B'. (10%)

(ii) Find the transition (change-of-coordinates) matrix from B' to B. (10%)

(iii) Given that
$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
, compute $\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'}$. (10%)

Ans.:

(i)
$$P_{B \to B'} = \begin{bmatrix} -1 & -3 \\ 1 & 2 \end{bmatrix}$$

(ii) $P_{B' \to B} = \begin{bmatrix} 2 & 3 \\ -1 & -1 \end{bmatrix}$
(iii) $[\mathbf{w}]_{B'} = \begin{bmatrix} -7 \\ 6 \end{bmatrix}$