Linear Algebra
 Quiz 5

11:10 a.m. - 12:10 a.m., January 8, 2016

Note: You have to answer the questions with supporting explanations (i.e., show all your work) if needed.

1. 2. If $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+3 x_{3}, 3 x_{1}-2 x_{2}\right)$, then
(i) Find the domain and codomain of T. (15%)
(ii) Find the image of $\mathbf{x}=(1,-1,2)$ under T. (15%)

Ans. (i) domain: R^{3}; codomain: R^{2} (ii) $\left[\begin{array}{l}7 \\ 5\end{array}\right]$
2. (i) Find the standard matrix A for the reflection about the line $y=x$. (15\%)
(ii) Find the standard matrix B for the orthogonal projection on the line $y=x$. (15%)

Ans. (i) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad$ (ii) $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$
3. Consider a transformation matrix C shown below:

$$
C=\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right]
$$

(i) Express C as a product of elementary matrices, and then describe the effect on R^{2} of multiplication C in terms of expansions (or compressions), reflections and shearing. (15\%)
(ii) Find an equation of the image of the line $y=2 x+3$ under multiplication by $C .(15 \%)$
(iii) Find the area (面積) of the image of the triangle with vertices $(0,0),(6,0),(3,3)$ under multiplication by C. (10\%)
Ans. (i) For example, $C=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right]$, where the effect of multiplying by C is equivalent to

1. $\left(E_{4}^{-1}\right)$ shearing by a factor of 2 in the x-direction.
2. $\left(E_{3}^{-1}\right)$ then reflecting about the x-axis.
3. $\left(E_{2}^{-1}\right)$ then shearing by a factor of 3 in the y-direction.
4. $\left(E_{1}^{-1}\right)$ then expending by a factor of 2 in the x-direction.
(ii) $10 y=13 x-6$
(iii) the area of the image is equal to the absolute value of the determinant of C multiplied by the area of the original triangle $=>|\operatorname{det}(C)| \times$ area of the original triangle $=2 \times 9=18$
