Linear Algebra Quiz 5

11:10 a.m. - 12:10 a.m., January 8, 2016

Note: You have to answer the questions with supporting explanations (i.e., show all your work) if needed.

1. 1. If $T(x_1, x_2, x_3) = (x_1 + 3x_3, 3x_1 - 2x_2)$, then (i) Find the domain and codomain of *T*. (15%) (ii) Find the image of $\mathbf{x} = (1, -1, 2)$ under *T*. (15%) Ans. (i) domain: R^3 ; codomain: R^2 (ii) $\begin{bmatrix} 7\\5 \end{bmatrix}$

2. (i) Find the standard matrix A for the reflection about the line y=x. (15%)

(ii) Find the standard matrix B for the orthogonal projection on the line y=x. (15%)

Ans. (i)	$\begin{bmatrix} 0\\1 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	(ii)	$\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$	1/2 1/2
	Ľ	Ľ		L-/ -	-/

3. Consider a transformation matrix *C* shown below:

$$C = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$$

- (i) Express C as a product of elementary matrices, and then describe the effect on R^2 of multiplication C in terms of expansions (or compressions), reflections and shearing. (15%)
- (ii) Find an equation of the image of the line y = 2x + 3 under multiplication by C. (15%)
- (iii) Find the area ($\overline{m}\overline{q}$) of the image of the triangle with vertices (0, 0), (6, 0), (3, 3) under multiplication by *C*. (10%)

Ans. (i) For example, $C = E_1^{-1}E_2^{-1}E_3^{-1}E_4^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, where the effect of

multiplying by C is equivalent to

- 1. (E_4^{-1}) shearing by a factor of 2 in the x-direction.
- 2. (E_3^{-1}) then reflecting about the *x*-axis.
- 3. (E_2^{-1}) then shearing by a factor of 3 in the y-direction.
- 4. (E_1^{-1}) then expending by a factor of 2 in the x-direction.
- (ii) 10 y = 13 x 6
- (iii) the area of the image is equal to the absolute value of the determinant of C multiplied by the area of the original triangle => $|\det(C)| \times \text{area}$ of the original triangle = $2 \times 9 = 18$