
MATLAB Fundamentals

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 2 & Teaching material

Chapter Objectives

• Provide an introduction and overview of how MATLAB’s
calculator mode is used to implement interactive
computations
– Learning how real and complex numbers are assigned to

variables
– Learning how vectors and matrices are assigned values using

simple assignment, the color operator, and the linspace and
logspace functions

– Understanding the priority rules for constructing mathematical
expressions

– Gaining a general understanding of built-in functions and how
you can learn more about them with MATLAB’s Help facilities

– Learning how to use vectors to create a simple line plot based on
an equation

NM – Berlin Chen 2

The MATLAB Environment

• MATLAB uses three primary windows:
– Command window - used to enter commands and data
– Graphics window(s) - used to display plots and graphics
– Edit window - used to create and edit M-files (programs)

• Depending on your computer platform and the version of
MATLAB used, these windows may have different looks
and feels

NM – Berlin Chen 3

Calculator Mode

• The MATLAB command widow can be used as a
calculator where you can type in commands line by line.
Whenever a calculation is performed, MATLAB will
assign the result to the built-in variable ans

• Example:
– >> 55 - 16
ans =

39

NM – Berlin Chen 4

MATLAB Variables

• While using the ans variable may be useful for
performing quick calculations, its transient nature makes
it less useful for programming

• MATLAB allows you to assign values to variable names.
This results in the storage of values to memory locations
corresponding to the variable name

• MATLAB can store individual values as well as arrays; it
can store numerical data and text (which is actually
stored numerically as well)

• MATLAB does not require that you pre-initialize a
variable; if it does not exist, MATLAB will create it for you

NM – Berlin Chen 5

Scalars (1/3)

• To assign a single value to a variable, simply type the
variable name, the = sign, and the value:
>> a = 4
a =

4

• Note that variable names must start with a letter, though
they can contain letters, numbers, and the underscore (_)
symbol

NM – Berlin Chen 6

Scalars (2/3)

• You can tell MATLAB not to report the result of a
calculation by appending the semi-solon (;) to the end of
a line. The calculation is still performed

• You can ask MATLAB to report the value stored in a
variable by typing its name:
>> a
a =

4

NM – Berlin Chen 7

Scalars (3/3)

• You can use the complex variable i (or j) to
represent the unit imaginary number

• You can tell MATLAB to report the values back
using several different formats using the format
command. Note that the values are still stored
the same way, they are just displayed on the
screen differently. Some examples are:
– short - scaled fixed-point format with 5 digits
– long - scaled fixed-point format with 15 digits for

double and 7 digits for single
– short eng - engineering format with at least 5 digits

and a power that is a multiple of 3 (useful for SI
prefixes)

NM – Berlin Chen 8

Format Examples

>> format short; pi
ans =

3.1416
>> format long; pi
ans =

3.14159265358979
>> format short eng; pi
ans =

3.1416e+000
>> pi*10000
ans =

31.4159e+003

• Note - the format remains the same unless another format
command is issued

NM – Berlin Chen 9

A Summary of the format Commands

NM – Berlin Chen 10

Arrays, Vectors, and Matrices

• MATLAB can automatically handle rectangular arrays of
data - one-dimensional arrays are called vectors and
two-dimensional arrays are called matrices

• Arrays are set off using square brackets [and] in
MATLAB

• Entries within a row are separated by spaces () or
commas (,)

• Rows are separated by semicolons (;)

NM – Berlin Chen 11

Array Examples
>> a = [1 2 3 4 5]
a =

1 2 3 4 5
>> a = [1,2,3,4,5]
a =

1 2 3 4 5
>> b = [2;4;6;8;10]
b =

2
4
6
8
10

• Note 1: MATLAB does not display the brackets
• Note 2: If you are using a mono-spaced font, such as

Courier, the displayed values should line up properly
NM – Berlin Chen 12

Matrices

• A 2-D array, or matrix, of data is entered row by row,
with spaces (or commas) separating entries within the
row and semicolons separating the rows:

>> A = [1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

NM – Berlin Chen 13

Useful Array Commands

• The transpose operator (apostrophe) can be used to flip
an array over its own diagonal. For example, if b is a
row vector, b’ is a column vector containing the
complex conjugate of b

• The command window will allow you to separate rows by
hitting the Enter key - script files and functions will allow
you to put rows on new lines as well

• The who command will report back used variable names;
whos will also give you the size, memory, and data types
for the arrays

NM – Berlin Chen 14

Accessing Array Entries (1/2)

• Individual entries within a array can be both read and set
using either the index of the location in the array or the
row and column

• The index value starts with 1 for the entry in the top left
corner of an array and increases down a column - the
following shows the indices for a 4-row, 3-column matrix:

1 5 9
2 6 10
3 7 11
4 8 12

NM – Berlin Chen 15

Accessing Array Entries (2/2)

• Assuming some matrix C:

C =
2 4 9
3 3 16
3 0 8
10 13 17

– C(2) would report 3
– C(4) would report 10
– C(13) would report an error!
– Entries can also be access using the row and column:
– C(2,1) would report 3
– C(3,2) would report 0
– C(5,1) would report an error!

NM – Berlin Chen 16

Array Creation - Built In

• There are several built-in functions to create arrays:
– zeros(r,c) will create an r row by c column matrix of zeros

– zeros(n) will create an n by n matrix of zeros

– ones(r,c) will create an r row by c column matrix of ones

– ones(n) will create an n by n matrix one ones

• help elmat has, among other things, a list of the
elementary matrices

NM – Berlin Chen 17

Array Creation - Colon Operator

• The colon operator (:) is useful in several contexts. It
can be used to create a linearly spaced array of points
using the notation

start:diffval:limit

– where start is the first value in the array, diffval is the
difference between successive values in the array, and limit is
the boundary for the last value (though not necessarily the last
value)

>>1:0.6:3
ans =

1.0000 1.6000 2.2000 2.8000
>>A=1:0.6:3
A =

1.0000 1.6000 2.2000 2.8000
NM – Berlin Chen 18

Colon Operator - Notes
• If diffval is omitted, the default value is 1:
>>3:6
ans =

3 4 5 6
• To create a decreasing series, diffval must be negative:
>> 5:-1.2:2
ans =

5.0000 3.8000 2.6000
• If start+diffval>limit for an increasing series or
start+diffval<limit for a decreasing series, an
empty matrix is returned:
>>5:2
ans =

Empty matrix: 1-by-0
• To create a column, transpose the output of the colon

operator, not the limit value; that is, (3:6)’ not 3:6’
NM – Berlin Chen 19

Array Creation - linspace

• To create a row vector with a specific number of linearly
spaced points between two numbers, use the linspace
command

• linspace(x1, x2, n) will create a linearly spaced
array of n points between x1 and x2
>>linspace(0, 1, 6)
ans =

0 0.2000 0.4000 0.6000 0.8000
1.0000

• If n is omitted, 100 points are created
• To generate a column, transpose the output of the
linspace command

NM – Berlin Chen 20

Array Creation - logspace

• To create a row vector with a specific number of
logarithmically spaced points between two numbers, use
the logspace command

• logspace(x1, x2, n) will create a logarithmically
spaced array of n points between 10x1 and 10x2
>>logspace(-1, 2, 4)
ans =

0.1000 1.0000 10.0000 100.0000
• If n is omitted, 100 (50?) points are created
• To generate a column, transpose the output of the
logspace command

NM – Berlin Chen 21

More on logspace

NM – Berlin Chen 22

Character Strings & Ellipsis
• Alphanumeric constants are enclosed by apostrophes (')

>> f = 'Miles ';

>> s = 'Davis'

• Concatenation: pasting together of strings
>> x = [f s]

x =

Miles Davis

• Ellipsis (...): Used to continue long lines
>> a = [1 2 3 4 5 ...

6 7 8]

a =

1 2 3 4 5 6 7 8

• You cannot use an ellipsis within single quotes to continue a string. But you
can piece together shorter strings with ellipsis
>> quote = ['Any fool can make a rule,' ...

' and any fool will mind it']

quote =

Any fool can make a rule, and any fool will mind it
NM – Berlin Chen 23

Mathematical Operations

• Mathematical operations in MATLAB can be performed
on both scalars and arrays

• The common operators, in order of priority, are:

NM – Berlin Chen 24

^ Exponentiation 4^2 = 8
- Negation

(unary operation)
-8 = -8

*

/

Multiplication and
Division

2*pi = 6.2832
pi/4 = 0.7854

\ Left Division 6\2 = 0.3333
+

-

Addition and
Subtraction

3+5 = 8
3-5 = -2

Order of Operations

• The order of operations is set first by parentheses, then
by the default order given above:

– y = -4 ^ 2 gives y = -16
since the exponentiation happens first due to its higher default
priority, but

– y = (-4) ^ 2 gives y = 16
since the negation operation on the 4 takes place first

NM – Berlin Chen 25

Complex Numbers

• All the operations above can be used with complex
quantities (i.e. values containing an imaginary part
entered using i or j and displayed using i)

>> x = 2+i*4; (or 2+4i, or 2+j*4, or 2+4j)

>> y = 16;

>> 3 * x
ans =

6.0000 + 12.0000i
>> x+y
ans =
18.0000 + 4.0000i

>> x'
ans =

2.0000 - 4.0000i

NM – Berlin Chen 26

Vector-Matrix Calculations

• MATLAB can also perform operations on vectors and
matrices

• The * operator for matrices is defined as the outer
product or what is commonly called “matrix multiplication”
– The number of columns of the first matrix must match the

number of rows in the second matrix
– The size of the result will have as many rows as the first matrix

and as many columns as the second matrix
– The exception to this is multiplication by a 1x1 matrix, which is

actually an array operation
• The ^ operator for matrices results in the matrix being

matrix-multiplied by itself a specified number of times.
 Note - in this case, the matrix must be square!

NM – Berlin Chen 27

Element-by-Element Calculations

• At times, you will want to carry out calculations item by
item in a matrix or vector. The MATLAB manual calls
these array operations. They are also often referred to
as element-by-element operations

• MATLAB defines .* and ./ (note the dots) as the array
multiplication and array division operators
 For array operations, both matrices must be the same size or

one of the matrices must be 1x1

• Array exponentiation (raising each element to a
corresponding power in another matrix) is performed
with .^
 Again, for array operations, both matrices must be the same size

or one of the matrices must be 1x1

NM – Berlin Chen 28

Built-In Functions

• There are several built-in functions you can use to create
and manipulate data

• The built-in help function can give you information about
both what exists and how those functions are used:
 help elmat will list the elementary matrix creation and

manipulation functions, including functions to get information
about matrices

 help elfun will list the elementary math functions, including
trig, exponential, complex, rounding, and remainder functions

• The built-in lookfor command will search help files for
occurrences of text and can be useful if you know a
function’s purpose but not its name

NM – Berlin Chen 29

Graphics

• MATLAB has a powerful suite of built-in graphics
functions

• Two of the primary functions are plot (for plotting 2-D
data) and plot3 (for plotting 3-D data)

• In addition to the plotting commands, MATLAB allows
you to label and annotate your graphs using the title,
xlabel, ylabel, and legend commands

NM – Berlin Chen 30

An Example of Plotting

t = [0:2:20]’;
g = 9.81; m = 68.1; cd = 0.25;
v = sqrt(g*m/cd) * tanh(sqrt(g*cd/m)*t);
plot(t, v)

NM – Berlin Chen 31

Annotation of a Plot

NM – Berlin Chen 32

title('Plot of v versus t')
xlabel('Values of t')
ylabel('Values of v')
grid

Plotting Options (1/2)

• When plotting data, MATLAB can use several different
colors, point styles, and line styles. These are specified
at the end of the plot command using plot specifiers as
found in Table 2.2

• The default case for a single data set is to create a blue
line with no points. If a line style is specified with no
point style, no point will be drawn at the individual points;
similarly, if a point style is specified with no point style,
no line will be drawn

• Examples of plot specifiers:
– ‘ro:’ - red dotted line with circles at the points
– ‘gd’ - green diamonds at the points with no line
– ‘m--’ - magenta dashed line with no point symbols

NM – Berlin Chen 33

Plotting Options (2/2)

NM – Berlin Chen 34

More on Plotting Commands

• hold on and hold off
– hold on tells MATLAB to keep the current data plotted and add

the results of any further plot commands to the graph. This
continues until the hold off command, which tells MATLAB to
clear the graph and start over if another plotting command is
given. hold on should be used after the first plot in a series is
made.

• subplot(m, n, p)
– subplot splits the figure window into an mxn array of small axes

and makes the pth one active. Note - the first subplot is at the
top left, then the numbering continues across the row. This is
different from how elements are numbered within a matrix!

NM – Berlin Chen 35

Example: Plotting a Helix

NM – Berlin Chen 36

>> t=0:pi/50:10*pi;
>> subplot(1,2,1);plot(sin(t),cos(t));
>> axis square;
>> title('(a)');
>> grid
>> subplot(1,2,2);plot3(sin(t),cos(t),t);
>> title('(b)');
>> grid

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
(a)

-1

0

1

-1

0

1
0

10

20

30

40

(b)

