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Chapter Objectives (1/2)

• Recognizing the difference between bracketing and open 
methods for root location

• Understanding the fixed-point iteration method and how 
you can evaluate its convergence characteristics

• Knowing how to solve a roots problem with the Newton-
Raphson method and appreciating the concept of 
quadratic convergence
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Chapter Objectives (2/2)

• Knowing how to implement both the secant and the 
modified secant methods

• Knowing how to use MATLAB’s fzero function to 
estimate roots

• Learning how to manipulate and determine the roots of 
polynomials with MATLAB
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Recall: Taxonomy of Root-finding Methods

– We can also employ a hybrid approach (Bracketing + Open Methods)
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Nonlinear Equation 
Solvers

Bracketing

Incremental Search
Bisection

False Position 

Graphical Open Methods

Simple Fixed-Point Iteration
Newton Raphson

Secant
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Open Methods

• Open methods differ from bracketing methods, in that 
open methods require only a single starting value or two 
starting values that do not necessarily bracket a root

• Open methods may diverge as the computation 
progresses, but when they do converge, they usually do 
so much faster than bracketing methods
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Graphical Comparison of Root-finding Methods
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Simple Fixed-Point Iteration

• Rearrange the function f(x)=0 so that x is on the left-
hand side of the equation: x=g(x)

• Use the new function g to predict a new value of x - that 
is, xi+1=g(xi)

• The approximate error is given by:

NM – Berlin Chen 7

%100 
1

1 







i

ii
a x

xx



Simple Fixed-Point Iteration: An Example (1/2)

• Solve f(x)=e-x-x
• Re-write as x=g(x) by isolating x

(example: x=e-x)
• Start with an initial guess (here, 0)

• Continue until some tolerance
is reached
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i xi |a| % |t| % |t|i/|t|i-1
0 0.0000 100.000

1 1.0000 100.000 76.322 0.763

2 0.3679 171.828 35.135 0.460

3 0.6922 46.854 22.050 0.628

4 0.5005 38.309 11.755 0.533

The true percent relative error is roughly proportional (a factor of about 
0.5 to 0.6) to the error from the previous iteration. 



Simple Fixed-Point Iteration: An Example (2/2)
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Convergence

• Convergence of the simple fixed-
point iteration method requires 
that the derivative of g(x) near the 
root has a magnitude less than 1
1) Convergent, 0≤g’<1
2) Convergent, -1<g’≤0
3) Divergent, g’>1
4) Divergent, g’<-1
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Chapra and Canale (2010) have shown that 
the error for any iteration is linearly 
proportional to the error from the 
previous iteration multiplied by the 

absolute value of the slope (derivative) 
of g(x):



Newton-Raphson Method

• Based on forming the tangent line to the f(x) curve at 
some guess x, then following the tangent line to a point 
where it crosses the x-axis
– Such a point usually represents an improved estimate of the root
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Newton-Raphson Method: Pros and Cons

• Pro: The error of the i+1th

iteration is roughly proportional 
to the square of the error of the 
ith iteration - this is called 
quadratic convergence

• Con: Some functions show slow 
or poor convergence
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Chapra and Canale (2010) have shown that
the error is roughly proportional to the

square of  the previous error: 
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Secant Methods (1/2)

• A potential problem in implementing the Newton-
Raphson method is the evaluation of the derivative -
there are certain functions whose derivatives may be 
difficult or inconvenient to evaluate

• For these cases, the derivative can be approximated by 
a backward finite divided difference:
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Secant Methods (2/3)

• Substitution of this approximation for the derivative to the 
Newton-Raphson method equation gives:

• Note - this method requires two initial estimates of x but 
does not require an analytical expression of the 
derivative
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xi1  xi 
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Secant Methods (3/3)

• Modified Secant Method
– Rather than using two arbitrary values to estimate the derivate, 

an alternative approach involves a fractional perturbation of 
the independent variable to estimate f’(x)
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Brent’s Root-location Method

• A hybrid approach that combines the reliability of 
bracketing with the speed of open methods
– Try to apply a speedy open method whenever possible, but 

revert to a reliable bracketing method if necessary
• That is, in the event that the open method generate an 

unacceptable result (i.e., an estimate falling outside the 
bracket), the algorithm reverts to the more conservative 
bisection method

– Developed by Richard Brent (1973)

• Here the bracketing technique being used is the 
bisection method, whereas two open methods, namely, 
the secant method and inverse quadratic 
interpolation, are employed 
– Bisection typically dominates at first but as root is approached, 

the technique shifts to the fast open methods
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Inverse Quadratic Interpolation (1/4)

• Inverse quadratic interpolation is similar in spirit to the 
secant method
– The secant method: compute a straight line that goes through 

two guesses and take the intersection of the straight line with the 
x axis as the new root estimate

– Inverse quadratic interpolation: compute parabola (quadratic 
curve), a function of x, that goes through three points and take 
the intersection of the parabola with the x axis as the new root 
estimate

• However, it is possible that the parabola might not intersect 
the x axis

• Inverse quadratic interpolation rectifies the difficulty by fitting 
the points with a parabola in y (a function of y)
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This form is also called a Lagrange polynomial.



Inverse Quadratic Interpolation (2/4)
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Inverse Quadratic Interpolation (3/4)
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The inverse quadratic 
interpolation x=f(y)

always intersect the x axis.



Inverse Quadratic Interpolation (4/4)

• The new root estimate, xi+1, therefore corresponds to y=0
-Substituted into the equation shown above, we can have 
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An Example Function for the Brent’s Method
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MATLAB’s fzero Function

• MATLAB’s fzero provides the best qualities of 
both bracketing methods and open methods.
– Using an initial guess:
x = fzero(function, x0)
[x, fx] = fzero(function, x0)
• function is a function handle to the function being 

evaluated
• x0 is the initial guess
• x is the location of the root
• fx is the function evaluated at that root

– Using an initial bracket:
x = fzero(function, [x0 x1])
[x, fx] = fzero(function, [x0 x1])

• As above, except x0 and x1 are guesses that must bracket a 
sign change
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fzero Options

• Options may be passed to fzero as a third input 
argument - the options are a data structure 
created by the optimset command

• options = optimset(‘par1’, val1, ‘par2’, val2,…)

– parn is the name of the parameter to be set
– valn is the value to which to set that parameter
– The parameters commonly used with fzero are:

• display: when set to ‘iter’ displays a detailed record of all 
the iterations

• tolx: A positive scalar that sets a termination tolerance on x
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fzero Example

• options = optimset(‘display’, ‘iter’);
– Sets options to display each iteration of root finding process

• [x, fx] = fzero(@(x) x^10-1, 0.5, options)
– Uses fzero to find roots of f(x)=x10-1 starting with an initial guess 

of x=0.5

• MATLAB reports x=1, fx=0 after 35 function counts
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Polynomials (1/2)

• MATLAB has a built in program called roots to 
determine all the roots of a polynomial -
including imaginary and complex ones.

• x = roots(c)
– x is a column vector containing the roots
– c is a row vector containing the polynomial 

coefficients
• Example:

– Find the roots of

f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– x = roots([1 -3.5 2.75 2.125 -3.875 
1.25]) NM – Berlin Chen 25



Polynomials (2/2)

• MATLAB’s poly function can be used to 
determine polynomial coefficients if roots are 
given:
– b = poly([0.5 -1])

• Finds f(x) where f(x) =0 for x=0.5 and x=-1
• MATLAB reports b = [1.000 0.5000 -0.5000]
• This corresponds to f(x)=x2+0.5x-0.5

• MATLAB’s polyval function can evaluate a 
polynomial at one or more points:
– a = [1 -3.5 2.75 2.125 -3.875 1.25];

• If used as coefficients of a polynomial, this corresponds to 
f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– polyval(a, 1)
• This calculates f(1), which MATLAB reports as -0.2500
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