
Roots: Open Methods

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 6 & Teaching material

Chapter Objectives (1/2)

• Recognizing the difference between bracketing and open
methods for root location

• Understanding the fixed-point iteration method and how
you can evaluate its convergence characteristics

• Knowing how to solve a roots problem with the Newton-
Raphson method and appreciating the concept of
quadratic convergence

NM – Berlin Chen 2

a
acbbxcbxax

2
40

2
2

?0sin
?02345

xxx
xfexdxcxbxax

Chapter Objectives (2/2)

• Knowing how to implement both the secant and the
modified secant methods

• Knowing how to use MATLAB’s fzero function to
estimate roots

• Learning how to manipulate and determine the roots of
polynomials with MATLAB

NM – Berlin Chen 3

Recall: Taxonomy of Root-finding Methods

– We can also employ a hybrid approach (Bracketing + Open Methods)
NM – Berlin Chen 4

Nonlinear Equation
Solvers

Bracketing

Incremental Search
Bisection

False Position

Graphical Open Methods

Simple Fixed-Point Iteration
Newton Raphson

Secant

Chapter 5

Chapter 5

Chapter 6

Open Methods

• Open methods differ from bracketing methods, in that
open methods require only a single starting value or two
starting values that do not necessarily bracket a root

• Open methods may diverge as the computation
progresses, but when they do converge, they usually do
so much faster than bracketing methods

NM – Berlin Chen 5

Graphical Comparison of Root-finding Methods

NM – Berlin Chen 6

Simple Fixed-Point Iteration

• Rearrange the function f(x)=0 so that x is on the left-
hand side of the equation: x=g(x)

• Use the new function g to predict a new value of x - that
is, xi+1=g(xi)

• The approximate error is given by:

NM – Berlin Chen 7

%100
1

1

i

ii
a x

xx

Simple Fixed-Point Iteration: An Example (1/2)

• Solve f(x)=e-x-x
• Re-write as x=g(x) by isolating x

(example: x=e-x)
• Start with an initial guess (here, 0)

• Continue until some tolerance
is reached

NM – Berlin Chen 8

i xi |a| % |t| % |t|i/|t|i-1
0 0.0000 100.000

1 1.0000 100.000 76.322 0.763

2 0.3679 171.828 35.135 0.460

3 0.6922 46.854 22.050 0.628

4 0.5005 38.309 11.755 0.533

The true percent relative error is roughly proportional (a factor of about
0.5 to 0.6) to the error from the previous iteration.

Simple Fixed-Point Iteration: An Example (2/2)

NM – Berlin Chen 9

0x 1x2x 3x

Convergence

• Convergence of the simple fixed-
point iteration method requires
that the derivative of g(x) near the
root has a magnitude less than 1
1) Convergent, 0≤g’<1
2) Convergent, -1<g’≤0
3) Divergent, g’>1
4) Divergent, g’<-1

NM – Berlin Chen 10
 ii EgE 1

Chapra and Canale (2010) have shown that
the error for any iteration is linearly
proportional to the error from the
previous iteration multiplied by the

absolute value of the slope (derivative)
of g(x):

Newton-Raphson Method

• Based on forming the tangent line to the f(x) curve at
some guess x, then following the tangent line to a point
where it crosses the x-axis
– Such a point usually represents an improved estimate of the root

NM – Berlin Chen 11

)(
)(

0)()(

1

1

i

i
ii

ii

i
i

xf
xfxx

xx
xfxf

Newton-Raphson Method: Pros and Cons

• Pro: The error of the i+1th

iteration is roughly proportional
to the square of the error of the
ith iteration - this is called
quadratic convergence

• Con: Some functions show slow
or poor convergence

NM – Berlin Chen 12

Chapra and Canale (2010) have shown that
the error is roughly proportional to the

square of the previous error:

2
,1, 2 it

i

i
it E

xf
xfE

Secant Methods (1/2)

• A potential problem in implementing the Newton-
Raphson method is the evaluation of the derivative -
there are certain functions whose derivatives may be
difficult or inconvenient to evaluate

• For these cases, the derivative can be approximated by
a backward finite divided difference:

NM – Berlin Chen 13

f ' (xi)
f (xi1) f (xi)
xi1 xi

Secant Methods (2/3)

• Substitution of this approximation for the derivative to the
Newton-Raphson method equation gives:

• Note - this method requires two initial estimates of x but
does not require an analytical expression of the
derivative

NM – Berlin Chen 14

xi1 xi
f (xi) xi1 xi
f (xi1) f (xi)

Secant Methods (3/3)

• Modified Secant Method
– Rather than using two arbitrary values to estimate the derivate,

an alternative approach involves a fractional perturbation of
the independent variable to estimate f’(x)

NM – Berlin Chen 15

)()(
)(

)()()(

1
iiii

ii
ii

i

iiii
i

xxfxxf
xfxxx

x
xxfxxfxf

Brent’s Root-location Method

• A hybrid approach that combines the reliability of
bracketing with the speed of open methods
– Try to apply a speedy open method whenever possible, but

revert to a reliable bracketing method if necessary
• That is, in the event that the open method generate an

unacceptable result (i.e., an estimate falling outside the
bracket), the algorithm reverts to the more conservative
bisection method

– Developed by Richard Brent (1973)

• Here the bracketing technique being used is the
bisection method, whereas two open methods, namely,
the secant method and inverse quadratic
interpolation, are employed
– Bisection typically dominates at first but as root is approached,

the technique shifts to the fast open methods
NM – Berlin Chen 16

Inverse Quadratic Interpolation (1/4)

• Inverse quadratic interpolation is similar in spirit to the
secant method
– The secant method: compute a straight line that goes through

two guesses and take the intersection of the straight line with the
x axis as the new root estimate

– Inverse quadratic interpolation: compute parabola (quadratic
curve), a function of x, that goes through three points and take
the intersection of the parabola with the x axis as the new root
estimate

• However, it is possible that the parabola might not intersect
the x axis

• Inverse quadratic interpolation rectifies the difficulty by fitting
the points with a parabola in y (a function of y)

NM – Berlin Chen 17

 i
iiii

ii
i

iiii

ii
i

iiii

ii x
yyyy
yyyyx

yyyy
yyyyx

yyyy
yyyyyg

))((
))((

))((
))((

))((
))((

12

12
1

121

2
2

212

1

This form is also called a Lagrange polynomial.

Inverse Quadratic Interpolation (2/4)

NM – Berlin Chen 18

Inverse Quadratic Interpolation (3/4)

NM – Berlin Chen 19

The inverse quadratic
interpolation x=f(y)

always intersect the x axis.

Inverse Quadratic Interpolation (4/4)

• The new root estimate, xi+1, therefore corresponds to y=0
-Substituted into the equation shown above, we can have

NM – Berlin Chen 20

i
iiii

ii
i

iiii

ii
i

iiii

ii
i x

yyyy
yyx

yyyy
yyx

yyyy
yyx

))(())(())((

12

12
1

121

2
2

212

1
1

An Example Function for the Brent’s Method

NM – Berlin Chen 21

MATLAB’s fzero Function

• MATLAB’s fzero provides the best qualities of
both bracketing methods and open methods.
– Using an initial guess:
x = fzero(function, x0)
[x, fx] = fzero(function, x0)
• function is a function handle to the function being

evaluated
• x0 is the initial guess
• x is the location of the root
• fx is the function evaluated at that root

– Using an initial bracket:
x = fzero(function, [x0 x1])
[x, fx] = fzero(function, [x0 x1])

• As above, except x0 and x1 are guesses that must bracket a
sign change

NM – Berlin Chen 22

fzero Options

• Options may be passed to fzero as a third input
argument - the options are a data structure
created by the optimset command

• options = optimset(‘par1’, val1, ‘par2’, val2,…)

– parn is the name of the parameter to be set
– valn is the value to which to set that parameter
– The parameters commonly used with fzero are:

• display: when set to ‘iter’ displays a detailed record of all
the iterations

• tolx: A positive scalar that sets a termination tolerance on x

NM – Berlin Chen 23

fzero Example

• options = optimset(‘display’, ‘iter’);
– Sets options to display each iteration of root finding process

• [x, fx] = fzero(@(x) x^10-1, 0.5, options)
– Uses fzero to find roots of f(x)=x10-1 starting with an initial guess

of x=0.5

• MATLAB reports x=1, fx=0 after 35 function counts

NM – Berlin Chen 24

Polynomials (1/2)

• MATLAB has a built in program called roots to
determine all the roots of a polynomial -
including imaginary and complex ones.

• x = roots(c)
– x is a column vector containing the roots
– c is a row vector containing the polynomial

coefficients
• Example:

– Find the roots of

f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– x = roots([1 -3.5 2.75 2.125 -3.875
1.25]) NM – Berlin Chen 25

Polynomials (2/2)

• MATLAB’s poly function can be used to
determine polynomial coefficients if roots are
given:
– b = poly([0.5 -1])

• Finds f(x) where f(x) =0 for x=0.5 and x=-1
• MATLAB reports b = [1.000 0.5000 -0.5000]
• This corresponds to f(x)=x2+0.5x-0.5

• MATLAB’s polyval function can evaluate a
polynomial at one or more points:
– a = [1 -3.5 2.75 2.125 -3.875 1.25];

• If used as coefficients of a polynomial, this corresponds to
f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– polyval(a, 1)
• This calculates f(1), which MATLAB reports as -0.2500

NM – Berlin Chen 26

