LU Factorization

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

1. Applied Numerical Methods with MATLAB for Engineers, Chapter 10 \& Teaching material

Chapter Objectives (1/2)

- Understanding that $L U$ factorization involves decomposing the coefficient matrix into two triangular matrices that can then be used to efficiently evaluate different right-hand-side vector
- Knowing how to express Gauss elimination as an LU factorization
- Given an $L U$ factorization, knowing how to evaluate multiple right-hand-side vectors

Chapter Objectives (2/2)

- Recognizing that Cholesky's method provides an efficient way to decompose a symmetric matrix and that the resulting triangular matrix and its transpose can be used to evaluate right-hand-side vectors efficiently
- Understanding in general terms what happens when MATLAB's backslash operator is used to solve linear systems

LU Factorization (1/2)

- Recall that the forward-elimination step of Gauss elimination comprises the bulk of the computational effort

$$
\begin{array}{cc}
\begin{array}{c}
\text { Forward } \\
\text { Elimination }
\end{array} & \frac{2 n^{3}}{3}+O\left(n^{2}\right) \\
\hline \text { Back } & n^{2}+O(n) \\
\text { Substitution } & \text { Total } \\
\hline \frac{2 n^{3}}{3}+O\left(n^{2}\right)
\end{array}
$$

- LU factorization methods separate the time-consuming elimination of the matrix $[A]$ from the manipulations of the right-hand-side [b]
- Once $[A]$ has been factored (or decomposed), multiple right-hand-side vectors can be evaluated in an efficient manner

LU Factorization (2/2)

- LU factorization involves two steps:
- Factorization to decompose the $[A]$ matrix into a product of a lower triangular matrix [L] and an upper triangular matrix [U]. [L] has 1 for each entry on the diagonal
- Substitution to solve for $\{x\}$
- Gauss elimination can be implemented using $L U$ factorization

Gauss Elimination as LU Factorization (1/5)

- $[A]\{x\}=\{b\}$ can be rewritten as $[L][U]\{x\}=\{b\}$ using $L U$ factorization
- The $L U$ factorization algorithm requires the same total flops as for Gauss elimination
- The main advantage is once $[A]$ is decomposed, the same $[L]$ and $[U]$ can be used for multiple $\{b\}$ vectors
- MATLAB's lu function can be used to generate the [L] and [U] matrices:

$$
[L, U]=\operatorname{lu}(A)
$$

Gauss Elimination as LU Factorization (2/5)

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right\}
$$

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

$$
f_{21}=\frac{a_{21}}{a_{11}}
$$

and subtract the result from the second row to eliminate a_{21}. Similarly, row 1 is multiplied by

$$
f_{31}=\frac{a_{31}}{a_{11}}
$$

and the result subtracted from the third row to eliminate a_{31}. The final step is to multiply the modified second row by

$$
f_{32}=\frac{a_{32}^{\prime}}{a_{22}^{\prime}}
$$

and subtract the result from the third row to eliminate a_{3}^{\prime}.
This matrix, in fact, represents an efficient storage of the $L U$ factorization of $[A]$,

$$
\begin{equation*}
[A] \rightarrow[L][U] \tag{10.11}
\end{equation*}
$$

where

$$
[U]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{10.12}\\
0 & a_{22}^{\prime} & a_{23} \\
0 & 0 & a_{33}^{\prime 3}
\end{array}\right]
$$

and

$$
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{10.13}\\
f_{21} & 1 & 0 \\
f_{31} & f_{32} & 1
\end{array}\right]
$$

The following example confirms that $[A]=[L][U]$.

Gauss Elimination as LU Factorization (3/5)

$$
[A]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.1 & 7 & -0.3 \\
0.3 & -0.2 & 10
\end{array}\right]
$$

After forward elimination, the following upper triangular matrix was obtained:

$$
[U]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]
$$

The factors employed to obtain the upper triangular matrix can be assembled into a lower triangular matrix. The elements a_{21} and a_{31} were eliminated by using the factors

$$
f_{21}=\frac{0.1}{3}=0.0333333 \quad f_{31}=\frac{0.3}{3}=0.1000000
$$

and the element a_{32} was eliminated by using the factor

$$
f_{32}=\frac{-0.19}{7.00333}=-0.0271300
$$

Example 10.1

Thus, the lower triangular matrix is

$$
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]
$$

Consequently, the $L U$ factorization is

$$
[A]=[L][U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]
$$

This result can be verified by performing the multiplication of $[L][U]$ to give

$$
[L][U]=\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.0999999 & 7 & -0.3 \\
0.3 & -0.2 & 9.99996
\end{array}\right]
$$

where the minor discrepancies are due to roundoff.

Gauss Elimination as LU Factorization (4/5)

- To solve $[A]\{x\}=\{b\}$, first decompose $[A]$ to get $[L][U]\{x\}=\{b\}$
- Set up and solve $[L]\{d\}=\{b\}$, where $\{d\}$ can be found using forward substitution
- Set up and solve $[U]\{x\}=\{d\}$, where $\{x\}$ can be found using backward substitution
- In MATLAB:

$$
\begin{aligned}
& {[\mathrm{L}, \mathrm{U}]=\operatorname{lu}(\mathrm{A})} \\
& \mathrm{d}=\mathrm{L} \backslash \mathrm{~b} \\
& \mathrm{x}=\mathrm{U} \backslash \mathrm{~d}
\end{aligned}
$$

Gauss Elimination as LU Factorization (5/5)

$$
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0.1 & 7 & -0.3 \\
0.3 & -0.2 & 10
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.3 \\
71.4
\end{array}\right\}
$$

and that the forward-elimination phase of conventional Gauss elimination resulted in

$$
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
$$

(1)

The forward-substitution phase is implemented by applying Eq. (10.8):

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.0333333 & 1 & 0 \\
0.100000 & -0.0271300 & 1
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.3 \\
71.4
\end{array}\right\}
$$

or multiplying out the left-hand side:

$$
\begin{array}{rlr}
d_{1} & =7.85 \\
0.0333333 d_{1}+\quad d_{2} & =-19.3 \\
0.100000 d_{1}-0.0271300 d_{2}+d_{3} & =71.4
\end{array}
$$

We can solve the first equation for $d_{1}=7.85$, which can be substituted into the second equation to solve for

$$
d_{2}=-19.3-0.0333333(7.85)=-19.5617
$$

(2)

Both d_{1} and d_{2} can be substituted into the third equation to give

$$
d_{3}=71.4-0.1(7.85)+0.02713(-19.5617)=70.0843
$$

Thus,

$$
\{d\}=\left\{\begin{array}{c}
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
$$

This result can then be substituted into Eq. (10.3), $[U]\{x\}=\{d\}$:

$$
\left[\begin{array}{ccc}
3 & -0.1 & -0.2 \\
0 & 7.00333 & -0.293333 \\
0 & 0 & 10.0120
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
7.85 \\
-19.5617 \\
70.0843
\end{array}\right\}
$$

which can be solved by back substitution (see Example 9.3 for details) for the final solution:

$$
\{x\}=\left\{\begin{array}{c}
3 \\
-2.5 \\
7.00003
\end{array}\right\}
$$

Cholesky Factorization

- Symmetric systems occur commonly in both mathematical and engineering/science problem contexts, and there are special solution techniques available for such systems
- The Cholesky factorization is one of the most popular of these techniques, and is based on the fact that a symmetric matrix can be decomposed as $[A]=[U]^{\top}[U]$, where T stands for transpose

$$
\begin{aligned}
& u_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} u_{k i}^{2}} \\
& u_{i j}=\frac{a_{i j}-\sum_{k=1}^{i-1} u_{k i} u_{k j}}{u_{i i}} \quad \text { for } j=i+1, \ldots, n
\end{aligned}
$$

- The rest of the process is similar to $L U$ decomposition and Gauss elimination, except only one matrix, [U], needs to be stored

