LU Factorization

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

Reference:

1. Applied Numerical Methods with MATLAB for Engineers, Chapter 10 & Teaching material

Chapter Objectives (1/2)

- Understanding that LU factorization involves decomposing the coefficient matrix into two triangular matrices that can then be used to efficiently evaluate different right-hand-side vector
- Knowing how to express Gauss elimination as an LU factorization
- Given an *LU* factorization, knowing how to evaluate multiple right-hand-side vectors

Chapter Objectives (2/2)

- Recognizing that Cholesky's method provides an efficient way to decompose a symmetric matrix and that the resulting triangular matrix and its transpose can be used to evaluate right-hand-side vectors efficiently
- Understanding in general terms what happens when MATLAB's backslash operator is used to solve linear systems

LU Factorization (1/2)

 Recall that the forward-elimination step of Gauss elimination comprises the bulk of the computational effort

Forward Elimination	$\frac{2n^3}{3} + O(n^2)$
Back Substitution	$n^2 + O(n)$
Total	$\frac{2n^3}{3} + O(n^2)$

- LU factorization methods separate the time-consuming elimination of the matrix [A] from the manipulations of the right-hand-side [b]
- Once [A] has been factored (or decomposed), multiple right-hand-side vectors can be evaluated in an efficient manner

LU Factorization (2/2)

FIGURE 10.1 The steps in LU factorization.

- *LU* factorization involves two steps:
 - Factorization to decompose the [A] matrix into a product of a lower triangular matrix [L] and an upper triangular matrix [U].
 [L] has 1 for each entry on the diagonal
 - Substitution to solve for $\{x\}$
- Gauss elimination can be implemented using LU factorization

Gauss Elimination as LU Factorization (1/5)

- [A]{x}={b} can be rewritten as [L][U]{x}={b} using LU factorization
- The *LU* factorization algorithm requires the same total flops as for Gauss elimination
- The main advantage is once [A] is decomposed, the same [L] and [U] can be used for multiple {b} vectors
- MATLAB's lu function can be used to generate the [L] and [U] matrices:

[L, U] = lu(A)

Gauss Elimination as LU Factorization (2/5)

a_{11}	a_{12}	a_{13}	1	$\begin{bmatrix} x_1 \end{bmatrix}$		$\begin{bmatrix} b_1 \end{bmatrix}$	
a_{21}	a_{22}	$\begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$	{	<i>x</i> ₂	$\} = \{$	b_2	ł
a_{31}	a_{32}	<i>a</i> ₃₃		$\left(x_{3}\right)$		b_3	

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

$$f_{21} = \frac{a_{21}}{a_{11}}$$

and subtract the result from the second row to eliminate a_{21} . Similarly, row 1 is multiplied by

$$f_{31} = \frac{a_{31}}{a_{11}}$$

and the result subtracted from the third row to eliminate a_{31} . The final step is to multiply the modified second row by

$$f_{32} = \frac{a_{32}'}{a_{22}'}$$

and subtract the result from the third row to eliminate a'_{32} .

This matrix, in fact, represents an efficient storage of the LU factorization of [A],

$$[A] \to [L][U] \tag{10.11}$$

where

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{33} \end{bmatrix}$$
(10.12)

and

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ f_{21} & 1 & 0 \\ f_{31} & f_{32} & 1 \end{bmatrix}$$
(10.13)

The following example confirms that [A] = [L][U].

NM – Berlin Chen 7

Gauss Elimination as LU Factorization (3/5)

$$[A] = \begin{bmatrix} 3 & -0.1 & -0.2\\ 0.1 & 7 & -0.3\\ 0.3 & -0.2 & 10 \end{bmatrix}$$

After forward elimination, the following upper triangular matrix was obtained:

$$\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0 & 7.00333 & -0.293333 \\ 0 & 0 & 10.0120 \end{bmatrix}$$

The factors employed to obtain the upper triangular matrix can be assembled into a lower triangular matrix. The elements a_{21} and a_{31} were eliminated by using the factors

$$f_{21} = \frac{0.1}{3} = 0.0333333$$
 $f_{31} = \frac{0.3}{3} = 0.1000000$

and the element a_{32} was eliminated by using the factor

$$f_{32} = \frac{-0.19}{7.00333} = -0.0271300$$

Thus, the lower triangular matrix is

$$[L] = \begin{bmatrix} 1 & 0 & 0 \\ 0.0333333 & 1 & 0 \\ 0.100000 & -0.0271300 & 1 \end{bmatrix}$$

Consequently, the LU factorization is

$$[A] = [L][U] = \begin{bmatrix} 1 & 0 & 0 \\ 0.0333333 & 1 & 0 \\ 0.100000 & -0.0271300 & 1 \end{bmatrix} \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0 & 7.00333 & -0.293333 \\ 0 & 0 & 10.0120 \end{bmatrix}$$

This result can be verified by performing the multiplication of [L][U] to give

$$[L][U] = \begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.09999999 & 7 & -0.3 \\ 0.3 & -0.2 & 9.99996 \end{bmatrix}$$

where the minor discrepancies are due to roundoff.

Example 10.1

NM – Berlin Chen 8

Gauss Elimination as LU Factorization (4/5)

- To solve [A]{x}={b}, first decompose [A] to get
 [L][U]{x}={b}
- Set up and solve [L]{d}={b}, where {d} can be found using *forward* substitution
- Set up and solve [U]{x}={d}, where {x} can be found using backward substitution
- In MATLAB:

[L, U] = lu(A)d = L\b x = U\d

Gauss Elimination as LU Factorization (5/5)

Γ3	-0.1	-0.2 T	1	$\begin{bmatrix} x_1 \end{bmatrix}$		(7.85)	
0.1	7	-0.3	{	<i>x</i> ₂	} = {	$ \left\{\begin{array}{c} 7.85 \\ -19.3 \\ 71.4 \end{array}\right\} $	ł
L 0.3	-0.2	10 🖌		x_3		71.4	J

and that the forward-elimination phase of conventional Gauss elimination resulted in

Γ3	-0.1	-0.2	$\begin{bmatrix} x_1 \end{bmatrix}$		(7.85)	
0	7.00333	-0.2 -0.293333 10.0120	<i>x</i> ₂	} = {	-19.5617	
$\lfloor 0 \rfloor$	0	10.0120	x_3		70.0843 J	

1

The forward-substitution phase is implemented by applying Eq. (10.8):

- 1	0	ך 0	$\binom{d_1}{}$		(7.85)
0.0333333	1	0	d_1 d_2 d_3	=	-19.3
0.100000	-0.0271300	1	d_3		71.4 J

or multiplying out the left-hand side:

 $d_1 = 7.85$ $0.0333333d_1 + d_2 = -19.3$ $0.100000d_1 - 0.0271300d_2 + d_3 = 71.4$

We can solve the first equation for $d_1 = 7.85$, which can be substituted into the second equation to solve for

$$d_2 = -19.3 - 0.0333333(7.85) = -19.5617$$

2

Both d_1 and d_2 can be substituted into the third equation to give

$$d_3 = 71.4 - 0.1(7.85) + 0.02713(-19.5617) = 70.0843$$

Thus,

$$\{d\} = \left\{ \begin{array}{c} 7.85\\ -19.5617\\ 70.0843 \end{array} \right\}$$

This result can then be substituted into Eq. (10.3), $[U]{x} = {d}$:

Γ3	-0.1	-0.2	(x_1)		(7.85)	
0	7.00333	-0.2 -0.293333 10.0120	<i>x</i> ₂	} = {	-19.5617	ł
L0	0	10.0120 _	$\left\lfloor x_{3} \right\rfloor$	J	70.0843	,

which can be solved by back substitution (see Example 9.3 for details) for the final solution:

$$\{x\} = \left\{\begin{array}{c} 3\\ -2.5\\ 7.00003 \end{array}\right\}$$

Cholesky Factorization

- Symmetric systems occur commonly in both mathematical and engineering/science problem contexts, and there are special solution techniques available for such systems
- The Cholesky factorization is one of the most popular of these techniques, and is based on the fact that a symmetric matrix can be decomposed as [A]= [U]^T[U], where T stands for transpose

$$u_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} u_{ki}^2}$$
$$u_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} u_{ki} u_{kj}}{u_{ii}} \qquad \text{for } j = i+1, \dots, n$$

 The rest of the process is similar to LU decomposition and Gauss elimination, except only one matrix, [U], needs to be stored