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Chapter Objectives

• Knowing how to determine the matrix inverse in an 
efficient manner based on LU factorization

• Understanding how the matrix inverse can be used to 
assess stimulus-response characteristics of engineering 
systems

• Understanding the meaning of matrix and vector norms 
and how they are computed

• Knowing how to use norms to compute the matrix 
condition number

• Understanding how the magnitude of the condition 
number can be used to estimate the precision of 
solutions of linear algebraic equations
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Matrix Inverse (1/4)

• Recall that if a matrix [A] is square, there would be 
another matrix [A]-1, called the inverse of [A], for which
[A][A]-1=[A]-1[A]=[I] ([I]: identity matrix)

• The inverse can be computed in a column by column 
fashion by generating solutions with unit vectors as the 
right-hand-side constants:
– A three-variable system
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Matrix Inverse (2/4)

• Recall that LU factorization can be used to efficiently 
evaluate a system for multiple right-hand-side vectors -
thus, it is ideal for evaluating the multiple unit vectors 
needed to compute the inverse
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1. To solve [A]{x}={b}, first decompose [A] to
get [L][U]{x}={b} (let {d}=[U]{x}={d})

2. Set up and solve [L]{d}={b}, where {d} can 
be found using forward substitution

3. Set up and solve [U]{x}={d}, where {x} can 
be found using backward substitution



Matrix Inverse (3/4)
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Example 11.1



Matrix Inverse (4/4)
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Example 11.1



Stimulus-Response Computations (1/3)

• Many systems can be modeled as a linear combination 
of equations, and thus written as a matrix equation:

• The system response can thus be found using the matrix 
inverse
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Interactions  response  stimuli 



Stimulus-Response Computations (2/3)

• Example: Three Bungee Jumpers
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compute the 
displacement of each 
of the jumpers when 

coming to the 
equilibrium positions

[A]{x}  {b}

stimuli/forcing 
function

interactions response



Stimulus-Response Computations (3/3)
• The matrix inverse provides a powerful technique for 

understanding the interrelationships of component parts 
of complicated systems
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Each of its element aij
‐1 represents the response of 

a single part of the system to a unit stimulus
of any other part of the system.

Element  aij
‐1 of the matrix inverse represents, 

for example, the force in member i due to a 
unit external force at node j.



Ill-Conditioned Systems

• Three direct methods for discerning whether systems are 
ill-conditioned
1. Scale the matrix of coefficients [A] so that the largest element 

in each row is 1. Invert the scaled matrix and if there are 
elements of [A]-1 that are several orders of magnitude greater 
than one, it is likely that the system is ill-conditioned

2. Multiply the inverse [A]-1 by the original coefficient matrix [A] 
and assess whether the result is close to the identity matrix [I], 
If not, it indicates ill-conditioning

3. Invert the inverted matrix and assess whether the result is 
sufficiently close to the original coefficient matrix. If not, it 
indicates ill-conditioning

• Can we obtain a single number serving as an indicator of ill‐
conditioned systems?
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Vector and Matrix Norms

• A norm is a real-valued function that provides a 
measure of the size or “length” of multi-component 
mathematical entities such as vectors and matrices

• Vector norms and matrix norms may be computed 
differently
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Vector Norms

• For a vector {X} of size n, the p-norm is:

• Important examples of vector p-norms include:
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Matrix Norms

• Common matrix norms for a matrix [A] include:

• Note: max is the largest eigenvalue of [A]T[A]
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Matrix Condition Number

• The matrix condition number Cond[A] is obtained by 
calculating Cond[A]=||A||·||A-1||

• In can be shown that:

• The relative error of the norm of the computed solution 
can be as large as the relative error of the norm of the 
coefficients of [A] multiplied by the condition number

• If the coefficients of [A] are known to t digit precision 
(rounding errors are on the order of 10-t), the solution [X] 
may be valid to only t-log10(Cond[A]) digits
– If the conditional number is much greater than 1, it is suggested 

that the system is prone to being ill-conditioned
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MATLAB Commands (1/3)

• MATLAB has built-in functions to compute both 
norms and condition numbers:
– norm(X,p)

• Compute the p norm of vector X, where p can be any 
number, inf, or ‘fro’ (for the Euclidean norm)

– norm(A,p)
• Compute a norm of matrix A, where p can be 1, 2, inf, or 
‘fro’ (for the Frobenius norm)

– cond(X,p) or cond(A,p)
• Calculate the condition number of vector X or matrix A using 

the norm specified by p
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MATLAB Commands (2/3)
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Example 11.4
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MATLAB Commands (3/3)
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Example 11.4
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