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Chapter Objectives

• Understanding the difference between the Gauss-Seidel 
and Jacobi methods

• Knowing how to assess diagonal dominance and 
knowing what it means

• Recognizing how relaxation can be used to improve 
convergence of iterative methods

• Understanding how to solve systems of nonlinear 
equations with successive substitution and Newton-
Raphson
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[A] {x} = {b}



Gauss-Seidel Method
• The Gauss-Seidel method is the most commonly used 

iterative method for solving linear algebraic equations 
[A]{x}={b}

• The method solves each equation in a system for a 
particular variable, and then uses that value in later 
equations to solve later variables

• For a 3x3 system with nonzero elements along the 
diagonal, for example, the jth iteration values are found 
from the j-1th iteration using:
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Gauss-Seidel Method: Convergence

• The convergence of an iterative method can be 
calculated by determining the relative percent change of 
each element in {x}.  For example, for the i th element in 
the j th iteration, 

• The method is ended when all elements have converged 
to a set tolerance
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Gauss-Seidel Method: An Example (1/2)
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Example 12.1



Gauss-Seidel Method: An Example (2/2)
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Example 12.1



Tactic of Gauss-Seidel Method

• As each new x value is computed for the Gauss-Seidel 
method, it is immediately used in the next equation to 
determine another x value

• Thus, if the solution is converging, the best available 
estimates will be employed for the Gauss-Seidel method
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Jacobi Iteration

• The Jacobi iteration is similar to the Gauss-Seidel 
method, except the j-1th information is used to update all 
variables in the j th iteration:
– Gauss-Seidel
– Jacobi
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Diagonal Dominance

• The Gauss-Seidel method may diverge, but if the 
system is diagonally dominant, it will definitely 
converge

• Diagonal dominance means:
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MATLAB Program
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Relaxation

• To enhance convergence, an iterative program 
can introduce relaxation where the value at a 
particular iteration is made up of a combination 
of the old value and the newly calculated value:

– where  is a weighting factor that is assigned a value between 0 
and 2

• 0<<1: underrelaxation
• =1: no relaxation
• 1<≤2: overrelaxation

– The choice of a proper value for  is highly problem-specific and 
is often determined empirically 
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Gauss-Seidel with Relaxation: An Example (1/3)
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Example 12.2



Gauss-Seidel with Relaxation: An Example (2/3)
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Example 12.2



Gauss-Seidel with Relaxation: An Example (3/3)
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Example 12.2



Nonlinear Systems

• Nonlinear systems can also be solved using the same 
strategy as the Gauss-Seidel method 
– Solve each system for one of the unknowns and update each 

unknown using information from the previous iteration

• This is called successive substitution
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Successive Substitution: An Example (1/2)
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Example 12.3
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Successive Substitution: An Example (2/2)
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Example 12.3

1. For successive substitution, convergence 
often depends on the manner in which
the equations are formulated

2. Divergence also can occur if the initial 
guesses are insufficiently close to the true
solution



Newton-Raphson (1/3)

• Nonlinear systems may also be solved using the 
Newton-Raphson method for multiple variables

• For a two-variable system, the Taylor series 
approximation and resulting Newton-Raphson equations 
are:
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Newton-Raphson (2/3)

– After algebraic manipulation
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Referred to as the determinant 
of the Jacobian of the system
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Newton-Raphson (3/3)

• Matrix notion of Newton-Raphson
– Also can be generalized to n simultaneous equations
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Newton-Raphson: An Example
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Example 12.4



MATLAB Program
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