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Chapter Objectives

• Understanding the mathematical definition of 
eigenvalues and eigenvectors

• Understanding the physical interpretation of eigenvalues 
and eigenvectors within the context of engineering 
systems that vibrate or oscillate

• Knowing how to implement the polynomial method

• Knowing how to implement the power method to 
evaluate the largest and smallest eigenvalues and their 
respective eigenvectors

• Knowing how to use and interpret MATLAB’s eig function
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Dynamics of Three Coupled Bungee 
Jumpers in Time

• Is there an underlying (latent) pattern???
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V1=200m/s

V3=100m/s

V0=100m/s

Initial Conditions
(set the jumpers’ initial positions

to the equilibrium values)



Mathematics (1/2)

• Up until now, heterogeneous systems:

• What about homogeneous systems?

– At face value, it has the trivial solution:

– Is there another way of formulating the system so that the 
solution would be meaningful (nontrivial) ???
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[A] {x} = {b}

[A] {x} = 0

{x} = 0

Have a unique solution when equation are
linearly independent (i.e., A has a nonzero determinant)



Mathematics (2/2)
• What about a homogeneous system like:

• Or, in matrix form

• For this case, there could be a value of  that makes the 
equations equal zero. This is called an eigenvalue
– For non-trivial solutions to be possible

• Expend the determinant yields a polynomial in , called the 
characteristic polynomial

• The roots of the polynomial are eigenvalues of A
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(a11 – ) x1 +          a12 x2 +          a13 x3 = 0
a21 x1 + (a22 – ) x2 +          a23 x3 = 0
a31 x1 +          a32 x2 + (a33 – ) x3 = 0

[[A] –  {x} = 0

|[A] – |= 0



A Two-Equation Case 
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The Polynomial Method (1/3)
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Example 13.1



The Polynomial Method (2/3)
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Example 13.1



The Polynomial Method (3/3)
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Example 13.1

The eigenvectors provide the ratios of the unknowns representing the solution.



MATLAB Built-in Functions
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Physical Background:
Oscillations or Vibrations of Mass-Spring 

Systems
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Model with Force Balances
(AKA: F = ma)

• Collect terms:
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m2

d 2x2

dt 2 = – k(x2 – x1) – kx2

m1

d 2x1

dt 2 = – k x1 + k(x2 – x1) 

m2

d 2x2

dt 2
– k (x1 – 2x2) = 0 

m1

d 2x1

dt 2
– k (– 2x1 + x2) = 0 



Assume a Sinusoidal Solution (1/2)

• Based on vibration theory 

• Differentiate twice:

• Substitute back into system and collect terms
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xi = Xi sin (t) where 


Tp

xi
” = – Xi 2 sin (t)

amplitude
angular frequency



Assume a Sinusoidal Solution (2/2)

• This is now a homogeneous system where the eigenvalue 
represents the square of the angular frequency ()
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  X1 –k
m1

X2   
k
m1

  X2   
k
m2

X1  +
k
m2

Given: m1 = m2 = 40 kg; k = 200 N/m

(10 – 2) X1 – 5 X2 = 0

– 5 X1 + (10 – 2) X2 = 0



Solution: The Polynomial Method

• Evaluate the determinant to yield a polynomial

• The two roots of this "characteristic polynomial" are the 
system's eigenvalues:

NM – Berlin Chen 15

10 –  2  5         X1 0
– 5      10 –  2   X2 0

=

= ( 2)2   2 
10 –  2  5
– 5      10 –  2

 2 =
15
5

or 3.873 Hz
2.36 Hz



Interpretation
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2 = 5 /s2

 = 2.236 /s
Tp = 2/2.236 = 2.81 s

(10 – 2) X1 – 5 X2 = 0
– 5 X1 + (10 – 2) X2 = 0

(10 – ) X1 – 5 X2 = 0
– 5 X1 + (10 – ) X2 = 0

 X1 – 5 X2 = 0
– 5 X1 +  X2 = 0

X1 = X2

V = –0.7071
–0.7071

(10 – 1) X1 – 5 X2 = 0
– 5 X1 + (10 – 1) X2 = 0

–  X1 – 5 X2 = 0
– 5 X1 –  X2 = 0

X1 =  –X2

V = –0.7071
0.7071

2 = 15 /s2

 = 3.873 /s
Tp = 2/3.373 = 1.62 s

eigenvectoreigenvector



Principle Modes of Vibration
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The Power Method
• Iterative method to compute the largest eigenvalue and 

its associated eigenvector

• Simple Algorithm:
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[[A]  [I]]]{x} = 0

[A]{x} = {x}

function [eval, evect] = powereig(A,es,maxit)
n=length(A);
evect=ones(n,1);eval=1;iter=0;ea=100; %initialize
while(1)

evalold=eval;           %save old eigenvalue value
evect=A*evect;          %determine eigenvector as [A]*{x)
eval=max(abs(evect));   %determine new eigenvalue
evect=evect./eval;      %normalize eigenvector to eigenvalue
iter=iter+1;
if eval~=0, ea = abs((eval-evalold)/eval)*100; end
if ea<=es | iter >= maxit,break,end

end



The Power Method: An Example (1/3)

• First iteration:

• Second iteration:
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|a| = 40  20
40

 100% = 50% 

Normalize the right-hand side vector 
to make the large element equal to 1.

Initial guesses of X’s that 
have all element equal to 1



The Power Method: An Example (2/3)

• Third iteration:

• Fourth iteration:
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|a| = 80  40
80

 100% = 150% 

40   20    0
20   40  20
0    20   40
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0.75

1
0.75

1
1
1

60
80
60

|a| = 70  80)
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 100% = 214% 
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0    20   40

= = 70
0.71429
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0.71429
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The Power Method: An Example (3/3)

• Fifth iteration:

• The process can be continued to determine the largest 
eigenvalue (= 68.284) with the associated eigenvector 
[0.7071  1  0.7071]
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|a | = 68.51714  70
70  100% = 2.08% 

40   20    0
20   40  20

0    20   40
= = 68.51714

0.71429
1

0.71429

48.51714
68.51714
48.51714

0.71429
1

0.71429

Note that the smallest eigenvalue and its associated
eigenvector can be determined by applying the

power method to the inverse of A



Determining Eigenvalues & Eigenvectors 
with MATLAB
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>> A = [10 -5;-5 10]

A =

10    -5

-5    10

>> [v,lambda] = eig(A)

v =

-0.7071   -0.7071

-0.7071    0.7071

lambda =

5     0

0    15

eigenvector

eigenvectoreigenvector

eigenvalue

eigenvalue


