
Polynomial Interpolation

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 17 & Teaching material

Chapter Objectives (1/2)

• Recognizing that evaluating polynomial coefficients with
simultaneous equations is an ill-conditioned problem

• Knowing how to evaluate polynomial coefficients and
interpolate with MATLAB’s polyfit and polyval functions

• Knowing how to perform an interpolation with Newton’s
polynomial

• Knowing how to perform an interpolation with a
Lagrange polynomial

NM – Berlin Chen 2

Chapter Objectives (2/2)

• Knowing how to solve an inverse interpolation problem
by recasting it as a roots problem

• Appreciating the dangers of extrapolation
• Recognizing that higher-order polynomials can manifest

large oscillations

NM – Berlin Chen 3

Polynomial Interpolation

• You will frequently have occasions to estimate
intermediate values between precise data points

• The function you use to interpolate must pass through
the actual data points - this makes interpolation more
restrictive than fitting

• The most common method for this purpose is polynomial
interpolation, where an (n-1)th order polynomial is solved
that passes through n data points:

NM – Berlin Chen 4



f (x)  a1  a2x a3x
2  anx

n1

MATLAB version :
f (x)  p1x

n1  p2x
n2  pn1x pn

Determining Coefficients

• Since polynomial interpolation provides as many basis
functions as there are data points (n), the polynomial
coefficients can be found exactly using linear algebra
– For n data points, there is one and only one polynomial of order

(n-1) that passes through all the points

• MATLAB’s built in polyfit and polyval commands can
also be used - all that is required is making sure the
order of the fit for n data points is n-1

NM – Berlin Chen 5

Polynomial Interpolation Problems

• One problem that can occur with solving for the
coefficients of a polynomial is that the system to be
inverted is in the form:

• Matrices such as that on the left are known as
Vandermonde matrices, and they are very ill-conditioned
- meaning their solutions are very sensitive to round-off
errors

• The issue can be minimized by scaling and shifting the
data

NM – Berlin Chen 6



x1
n1 x1

n2  x1 1
x2
n1 x2

n2  x2 1
    
xn1
n1 xn1

n2  xn1 1
xn
n1 xn

n2  xn 1





















p1
p2

pn1
pn





















f x1 
f x2 


f xn1 
f xn 

























Newton Interpolating Polynomials

• Another way to express a polynomial interpolation is to
use Newton’s interpolating polynomial

• The differences between a simple polynomial and
Newton’s interpolating polynomial for first and second
order interpolations are:

NM – Berlin Chen 7

Order Simple Newton
1st f1(x)  a1  a2x f1(x)  b1 b2(x  x1)
2nd f2 (x)  a1  a2x a3x

2 f2 (x)  b1 b2(x  x1)b3(x  x1)(x  x2)

12

12
2

11

)()(
)(

xx
xfxfb

xfb








13

12

12

23

23

3

)()()()(

xx
xx
xfxf

xx
xfxf

b











Newton Interpolating Polynomials (1/3)

• The first-order Newton
interpolating polynomial
may be obtained from
linear interpolation and
similar triangles, as shown

• The resulting formula
based on known points x1
and x2 and the values of
the dependent function at
those points is:

NM – Berlin Chen 8

   

         1
12

12
11

1211

xx
xx
xfxfxfxf

xxbbxf








       

12

12

1

11

xx
xfxf

xx
xfxf








designate a first‐order polynomial

Linear Interpolation: An Example

NM – Berlin Chen 9

The smaller the interval between the
data points, the better the approximation.

Example 17.2

Newton Interpolating Polynomials (2/3)

• The second-order Newton
interpolating polynomial
introduces some curvature
to the line connecting the
points, but still goes through
the first two points

• The resulting formula based
on known points x1, x2, and
x3 and the values of the
dependent function at those
points is:

NM – Berlin Chen 10

      

         
       

  21
13

12

12

23

23

1
12

12
12

2131212

xxxx
xx

xx
xfxf

xx
xfxf

xx
xx
xfxfxfxf

xxxxbxxbbxf



















Quadratic Interpolation: An Example

NM – Berlin Chen 11

Example 17.3

Newton Interpolating Polynomials (3/3)

• In general, an (n-1)th Newton interpolating polynomial
has all the terms of the (n-2)th polynomial plus one extra

• The general formula is:

where

and the f[…] represent divided differences

NM – Berlin Chen 12

fn1 x  b1 b2 x  x1 bn x  x1  x  x2  x  xn1 



b1  f x1 
b2  f x2, x1 
b3  f x3, x2, x1 


bn  f xn, xn1,, x2 , x1 

Divided Differences

• Divided difference are calculated as follows:

• Divided differences are calculated using divided
difference of a smaller number of terms:

NM – Berlin Chen 13



f xi , x j 
f xi  f x j 
xi  xj

f xi , x j , xk 
f xi , xj  f x j , xk 

xi  xk

f xn, xn1,, x2, x1  f xn, xn1,, x2  f xn1, xn2,, x1 
xn  x1

MATLAB Implementation

NM – Berlin Chen 14

Lagrange Interpolating Polynomials (1/3)

• Another method that uses shifted values to express an
interpolating polynomial is the Lagrange interpolating
polynomial

• The differences between a simply polynomial and
Lagrange interpolating polynomials for first and second
order polynomials is:

– where the are weighting coefficients of the j th polynomial,
which are functions of x

NM – Berlin Chen 15

   
     3

3
32

3
21

3
12

2
3212

2
2
21

2
11211

)()(2
)()(1

LagrangeSimpleOrder

xfLxfLxfLxfxaxaaxfnd
xfLxfLxfxaaxfst




n
iL

))((
))((,

))((
))((,

))((
))((

2313

213
3

3212

313
2

3121

323
1 xxxx

xxxxL
xxxx
xxxxL

xxxx
xxxxL













12

12
2

21

22
1 ,

xx
xxL

xx
xxL










Lagrange Interpolating Polynomials (2/3)
• The first-order Lagrange

interpolating polynomial may
be obtained from a weighted
combination of two linear
interpolations, as shown

• The resulting formula based
on known points x1 and x2
and the values of the
dependent function at those
points is:

NM – Berlin Chen 16

   

   2
12

1
1

21

2
1

12

12
2

21

22
1

2
2
21

2
11

)(

,

)(

xf
xx
xxxf

xx
xxxf

xx
xxL

xx
xxL

xfLxfLxf





















Lagrange Interpolating Polynomials (3/3)

• In general, the Lagrange polynomial interpolation for n
points is:

– where is given by:

NM – Berlin Chen 17

n
iL

     




n

i
i

n
iin xfxLxf

1
1

  








n

ij
j ji

jn
i xx

xx
xL

1

Lagrange Interpolating Polynomial: An Example

NM – Berlin Chen 18

MATLAB Implementation

NM – Berlin Chen 19

Inverse Interpolation (1/2)

• Interpolation general means finding some value f(x) for some x that is between given
independent data points

• Sometimes, it will be useful to find the x for which f(x) is a certain value - this is
inverse interpolation

NM – Berlin Chen 20

Some adjacent points of f(x) are bunched together and others spread out widely.
This would lead to oscillations in the resulting polynomial.

Inverse Interpolation (2/2)

• Rather than finding an interpolation of x as a function of
f(x), it may be useful to find an equation for f(x) as a
function of x using interpolation and then solve the
corresponding roots problem:
f(x)-fdesired=0 for x

NM – Berlin Chen 21

Extrapolation

• Extrapolation is the
process of estimating a
value of f(x) that lies
outside the range of the
known base points x1, x2,
…, xn

• Extrapolation represents a
step into the unknown,
and extreme care should
be exercised when
extrapolating!

NM – Berlin Chen 22

Extrapolation Hazards
• The following shows the results of extrapolating a

seventh-order polynomial which is derived from the first
8 points (1920 to 1990) of the USA population data set:

NM – Berlin Chen 23

Oscillations

• Higher-order polynomials can not only lead to round-off errors
due to ill-conditioning, but can also introduce oscillations to
an interpolation or fit where they should not be

• In the figures below, the dashed line represents an function,
the circles represent samples of the function, and the solid
line represents the results of a polynomial interpolation:

NM – Berlin Chen 24

 

function) s(Runge'
251
1

2x
xf




