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Chapter Objectives (1/2)

• Recognizing that evaluating polynomial coefficients with 
simultaneous equations is an ill-conditioned problem

• Knowing how to evaluate polynomial coefficients and 
interpolate with MATLAB’s polyfit and polyval functions

• Knowing how to perform an interpolation with Newton’s 
polynomial

• Knowing how to perform an interpolation with a 
Lagrange polynomial
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Chapter Objectives (2/2)

• Knowing how to solve an inverse interpolation problem 
by recasting it as a roots problem

• Appreciating the dangers of extrapolation
• Recognizing that higher-order polynomials can manifest 

large oscillations
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Polynomial Interpolation

• You will frequently have occasions to estimate 
intermediate values between precise data points

• The function you use to interpolate must pass through 
the actual data points - this makes interpolation more 
restrictive than fitting

• The most common method for this purpose is polynomial 
interpolation, where an (n-1)th order polynomial is solved 
that passes through n data points:
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

f (x)  a1  a2x a3x
2  anx

n1

MATLAB version :
f (x)  p1x

n1  p2x
n2  pn1x pn



Determining Coefficients

• Since polynomial interpolation provides as many basis 
functions as there are data points (n), the polynomial 
coefficients can be found exactly using linear algebra
– For n data points, there is one and only one polynomial of order 

(n-1) that passes through all the points

• MATLAB’s built in polyfit and polyval commands can 
also be used - all that is required is making sure the 
order of the fit for n data points is n-1
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Polynomial Interpolation Problems

• One problem that can occur with solving for the 
coefficients of a polynomial is that the system to be 
inverted is in the form:

• Matrices such as that on the left are known as 
Vandermonde matrices, and they are very ill-conditioned 
- meaning their solutions are very sensitive to round-off 
errors

• The issue can be minimized by scaling and shifting the 
data
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Newton Interpolating Polynomials

• Another way to express a polynomial interpolation is to 
use Newton’s interpolating polynomial

• The differences between a simple polynomial and 
Newton’s interpolating polynomial for first and second 
order interpolations are:
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Order Simple Newton
1st f1(x)  a1  a2x f1(x)  b1 b2(x  x1)
2nd f2 (x)  a1  a2x a3x

2 f2 (x)  b1 b2(x  x1)b3(x  x1)(x  x2 )
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Newton Interpolating Polynomials (1/3)

• The first-order Newton 
interpolating polynomial 
may be obtained from 
linear interpolation and 
similar triangles, as shown

• The resulting formula 
based on known points x1
and x2 and the values of 
the dependent function at 
those points is:
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Linear Interpolation: An Example
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The smaller the interval between the
data points, the better the approximation. 

Example 17.2



Newton Interpolating Polynomials (2/3)

• The second-order Newton 
interpolating polynomial 
introduces some curvature 
to the line connecting the 
points, but still goes through 
the first two points

• The resulting formula based 
on known points x1, x2, and 
x3 and the values of the 
dependent function at those 
points is:
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Quadratic Interpolation: An Example
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Example 17.3



Newton Interpolating Polynomials (3/3)

• In general, an (n-1)th Newton interpolating polynomial 
has all the terms of the (n-2)th polynomial plus one extra

• The general formula is:

where 

and the f[…] represent divided differences
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fn1 x  b1 b2 x  x1 bn x  x1  x  x2  x  xn1 



b1  f x1 
b2  f x2, x1 
b3  f x3, x2, x1 


bn  f xn, xn1,, x2 , x1 



Divided Differences

• Divided difference are calculated as follows:

• Divided differences are calculated using divided 
difference of a smaller number of terms:
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

f xi , x j 
f xi  f x j 
xi  xj

f xi , x j , xk 
f xi , xj  f x j , xk 

xi  xk

f xn, xn1,, x2, x1  f xn, xn1,, x2  f xn1, xn2,, x1 
xn  x1



MATLAB Implementation
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Lagrange Interpolating Polynomials (1/3)

• Another method that uses shifted values to express an 
interpolating polynomial is the Lagrange interpolating 
polynomial

• The differences between a simply polynomial and 
Lagrange interpolating polynomials for first and second 
order polynomials is:

– where the      are weighting coefficients of the j th polynomial, 
which are functions of x
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Lagrange Interpolating Polynomials (2/3)
• The first-order Lagrange 

interpolating polynomial may 
be obtained from a weighted 
combination of two linear 
interpolations, as shown

• The resulting formula based 
on known points x1 and x2
and the values of the 
dependent function at those 
points is:
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Lagrange Interpolating Polynomials (3/3)

• In general, the Lagrange polynomial interpolation for n
points is:

– where is given by:
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Lagrange Interpolating Polynomial: An Example

NM – Berlin Chen 18



MATLAB Implementation
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Inverse Interpolation (1/2)

• Interpolation general means finding some value f(x) for some x that is between given 
independent data points

• Sometimes, it will be useful to find the x for which f(x) is a certain value - this is 
inverse interpolation
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Some adjacent points of f(x) are bunched together and others spread out widely. 
This would lead to oscillations in the resulting polynomial.



Inverse Interpolation (2/2)

• Rather than finding an interpolation of x as a function of 
f(x), it may be useful to find an equation for f(x) as a 
function of x using interpolation and then solve the 
corresponding roots problem:
f(x)-fdesired=0 for x
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Extrapolation

• Extrapolation is the 
process of estimating a 
value of f(x) that lies 
outside the range of the 
known base points x1, x2, 
…, xn

• Extrapolation represents a 
step into the unknown, 
and extreme care should 
be exercised when 
extrapolating!
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Extrapolation Hazards
• The following shows the results of extrapolating a 

seventh-order polynomial which is derived from the first 
8 points (1920 to 1990) of the USA population data set:
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Oscillations

• Higher-order polynomials can not only lead to round-off errors 
due to ill-conditioning, but can also introduce oscillations to 
an interpolation or fit where they should not be

• In the figures below, the dashed line represents an function, 
the circles represent samples of the function, and the solid 
line represents the results of a polynomial interpolation:
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