Polynomial Interpolation

Berlin Chen

Department of Computer Science & Information Engineering
National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 17 & Teaching material

Chapter Objectives (1/2)

Recognizing that evaluating polynomial coefficients with
simultaneous equations is an ill-conditioned problem

Knowing how to evaluate polynomial coefficients and
interpolate with MATLAB’s polyfit and polyval functions

Knowing how to perform an interpolation with Newton'’s

polynomial

Knowing how to perform an interpolation with a

Lagrange polynomial

/

[\

(a) (b)
FIGURE 17.1
Exa mples of "Terf)c'ﬂc“'lg pt‘)\y"ﬁ:‘;'*‘ ials: (a) firstorder (linear) connecting wo poinfs,
(b) second-order (quadratic or parabolic] connecting th nd |c)

& el
onnecting four points.
9

NM — Berlin Chen 2

Chapter Objectives (2/2)

Knowing how to solve an inverse interpolation problem
by recasting it as a roots problem

Appreciating the dangers of extrapolation

Recognizing that higher-order polynomials can manifest
large oscillations

NM — Berlin Chen 3

Polynomial Interpolation

* You will frequently have occasions to estimate
Intermediate values between precise data points

« The function you use to interpolate must pass through
the actual data points - this makes interpolation more
restrictive than fitting

* The most common method for this purpose is polynomial

interpolation, where an (n-1)"" order polynomial is solved
that passes through n data points:

f)=a+ax+ax’+--+ax"
MATLAB version:

f(xX)=px"" 4+ px" 44 p,_x+p,

NM — Berlin Chen 4

Determining Coefficients

« Since polynomial interpolation provides as many basis
functions as there are data points (n), the polynomial
coefficients can be found exactly using linear algebra

— For n data points, there is one and only one polynomial of order
(n-1) that passes through all the points

« MATLAB’s built in polyfit and polyval commands can
also be used - all that is required is making sure the
order of the fit for n data points is n-1

NM — Berlin Chen 5

Polynomial Interpolation Problems

* One problem that can occur with solving for the
coefficients of a polynomial is that the system to be
inverted is in the form:

N e 1 p)| ()
-1 -2

Xy o e | [f=)]
. N .
oo Xy e Xy HPa| o [f(nn)

e x e k),

* Matrices such as that on the left are known as
Vandermonde matrices, and they are very ill-conditioned
- meaning their solutions are very sensitive to round-off
errors

« The issue can be minimized by scaling and shifting the
data

NM — Berlin Chen 6

Newton Interpolating Polynomials

* Another way to express a polynomial interpolation is to
use Newton’s interpolating polynomial

* The differences between a simple polynomial and

Newton’s interpolating polynomial for first and second
order interpolations are:

Order Simple Newton
lst fi(x)=a,+a,x f,(x)=b,+b,(x—x,)
2nd f,(x)=a,+a,x+a,x> f,(x)=b +b,(x—x,)+b3(x—x,)(x—x,)
by = f(x) f(x3)—f(x2)_f(x2)—f(x1)
b _S(x) = f(x) b = X3 7% Xo =X
2 3
Xy =Xy X3 =X

NM — Berlin Chen 7

Newton Interpolating Polynomials (1/3)

* The first-order Newton
interpolating polynomial
may be obtained from
linear interpolation and
similar triangles, as shown

* The resulting formula
based on known points x,
and x, and the values of
the dependent function at
those points is:

X

FIGURE 17.2
Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles used
to derive the Newton linearinterpalation formula [Eqg. (17.5]].

fl(x):bﬁbz(x_xl)
:>f1(x):f(x1)_|_ f(xz)_f(xl)(x—xl)<:| fl(x):f(xl): f(xz):f(xl)

Xy — X

designate a first-order polynomial
NM — Berlin Chen 8

Linear Interpolation: An Example

Problem Statement. Estimate the natural logarithm of 2 using linear interpolation. First,
perform the computation by interpolating between In 1 =0 and In 6 = 1.791759. Then,
repeat the procedure, but use a smaller interval from In 1 to In 4 (1.386294). Note that the
true value of In 2 1s 0.6931472.

Solution. We use Eq. (17.5) from x; = | to x, = 6 to give Examp|e 17 .2
H(2) =0+ 1'79:_5? —20 1) = 03583519

which represents an error of £, = 48.3%. Using the smaller interval from x; = [tox; =4

yields N
A =04 228920700 1y _o4620081 e

41

The smaller the interval between the
filx)

data points, the better the approximation.

Linear estimates

FIGURE 17.3
Two linear interpolations to estimate In 2. Note how the smaller interval provides a better
esfimate.

NM — Berlin Chen 9

Newton Interpolating Polynomials (2/3)

The second-order Newton feos
interpolating polynomial =l
Introduces some curvature -
to the line connecting the
points, but still goes through 1= value
the first two points

The resulting formula based
on known points x,, Xx,, and 0—3 e
X5 and the values of the

3 . FIGURE 17.4] , _
dependent function at those [c o neooeno cinee bz Thefneor ool feom v = 1o 4
points is:

fz(x):bl +b2(x—x1)+b3(x—xl)(x—x2)
)= flay) _ fy)= fl)

)=) L)y mme ey

Xy =X X3 =X

Jf)=Inx

Quadratic estimate
Linear estimate

NM — Berlin Chen 10

Quadratic Interpolation: An Example

Problem Statement. Employ a second-order Newton polynomial to estimate In 2 with
the same three points used in Example 17.2:

=1 f@)=0 Example 17.3
=4 f(x2) = 1.386294

iz =6 fx3) = 1.791759 f®
2 —
Solution. Applying Eq. (17.7) yields -
by =0 o
Equation (17.8) gives 1
1.386294 — 0) B
by = A — 1 = 0.4620981 L Quadratic estimate
and Eq. (17.9) yields L LaeenEntin s
ol—& L1
2 59 — 1.386 0 5 x
1.791759 — 1.386294 — 0.462008]
B = 61 — —0.0518731

6—1
Substituting these values into Eq. (17.6) yields the quadratic formula
fr(x) =04+0.4620981(x — 1) — 0.0518731(x — 1)(x — 4)

which can be evaluated at x =2 for f2(2) = 0.5658444, which represents a relative
error of & = 18.4%. Thus, the curvature introduced by the quadratic formula (Fig. 17.4)
improves the interpolation compared with the result obtained using straight lines in
Example 17.2 and Fig. 17.3. NM — Berlin Chen 11

Newton Interpolating Polynomials (3/3)

 In general, an (n-1)" Newton interpolating polynomial
has all the terms of the (n-2)t" polynomial plus one extra

« The general formula is:
fia(x)=b+b,(x—x)+ +b,(x—x, x—x,) - (x—x,_,)

where

bn :f[xnaxn—la'”axzaxl]
and the f[...] represent divided differences

NM — Berlin Chen 12

Divided Differences

 Divided difference are calculated as follows:

f[xl.,xj]z f(xi)_f(xf)

X, — X,
— f[xlax]]_f[x],xk]
fleox;x)=
X, —X,
f_x X X5, X]_f[xn,xn_l’.“’xz]_f[xn—bxn—z:'",xl]
| Yn>¥n-1° s NN | —

xn _xl

- Divided differences are calculated using divided
difference of a smaller number of terms:

X; flx) First Second Third

X1 Fxy) el | e s S T | ot |
% F0xy) 4: Flts %] 4 Fls 2 5] /

X Jf{g._{'] .4 _.rll-r_;- f‘._tl /

b filxy) /

NM — Berlin Chen 13

MATLAB Implementation

iction vint = Newtint (x,v,xx)
lewtint: Newton interpolating polynomial
rint Newtint (x,v,xx): Uses an (n - 1)-order Newton

interpolating polynomial based on n data points (x, v)
to determine a value of the dependent wariable (yint)
at a given value of the independent wvariable, xx.

el =

X = independent variable
v = dependent wvariable
HX value of independent wvariable at which
interpolation is calculated
ymuutput:
vint = interpolated value of dependent wvariable

rompute the finite divided differences in the form of a
lifference table

length(x) ;
lengthi{y)~=n, error({'x and y must be same length'); end
zeros(n,n);
1ssign dependent wvariables to the first ceolumn of b.
]
=y
for

Z2:n
i 1:n-j+1

Ltk bl B = (leliia e Gl e Dtk v a0 e s it Gl oot bl)
nd
1

1se the finite divided differences to interpolate
ko

Yy = v(:}); % the {(:)}) ensures that ¥ 15 a celumn vector.

ki o e L

=l = bl

G = e

int = wint+bi{l, j+1)*xt;

NM — Berlin Chen 14

Lagrange Interpolating Polynomials (1/3)

* Another method that uses shifted values to express an

Interpolating polynomial is the Lagrange interpolating
polynomial

* The differences between a simply polynomial and

Lagrange interpolating polynomials for first and second
order polynomials is:
Order Simple Lagrange
Ist filx)=a,+ay F) =L f o)+ L f ()
2nd fy(x)=a+ayxtax’ [0 =0 00)+ L f () + Lif (x)

— where the [are weighting coefficients of the j! polynomial,
which are functions of x

L= L =
X=X Xy =X
3= (x —x5)(x — x3) 3= (x —x)(x — x3) 3= (x —x)(x—x,)

b (x; —x,)(x; — x3) T (x5 = x)(xy —x3) T (x3 —x)(xX3 —x3)

NM — Berlin Chen 15

Lagrange Interpolating Polynomials (2/3)

* The first-order Lagrange o
interpolating polynomial may 1
be obtained from a weighted
combination of two linear s

interpolations, as shown

* The resulting formula based
on known points x, and x,

St o
(¥

and the values of the
dependent function at those __ s
I o L".1| d— iction of the rationale b hind Lagrange interpolating polynomials. The figure shows
pOIntS IS: Tff\ rst case. Each of the two terms ¢ Lf Eq. !_g .20) 0:15;0;”?@9?' one ofl"'|o points and
3 s zero at the « }ﬂ The s Jl mation f the two terms must, therefore, be the unique straight line
2 2 that connects the two points.
Si(x) = Llf(x1)+L2f(x2)
p=2"% p_ 70
X1 =X Xy =X
X—X X—X
2 1
filx)=—= f(xl) f(xz)
X1~ Xy =X

NM — Berlin Chen 16

Lagrange Interpolating Polynomials (3/3)

* In general, the Lagrange polynomial interpolation for n
points is:

Jni (xi) = :ZIL? (x)f(xi)

— where L! is given by:

L; (x)= |1
JELX = Xy
]?’—'l

NM — Berlin Chen 17

Lagrange Interpolating Polynomial: An Example

Problem Statement. Use a Lagrange interpolating polynomial of the first and second
order to evaluate the density of unused motor oil at 7 = 15 °C based on the following data:

X = 0 f(}\'[) = 3.85

Xy =20 [(x2) = 0.800

x3 =40 f(x3)=0.212
Solution. The first-order polynomial [Eq. (17.20)] can be used to obtain the estimate at
x = 15:

15 —20 15-0
3.85 + ——0.800 = 1.5625

19 =573 20-0

In a similar fashion, the second-order polynomial is developed as [Eq. (17.21)]

(18 = 20)(15 —40) (15 —-0)(15 — 40)
f2(x) = (0 —20)(0 — 40) 383+ (20 - 0)(20 — 4())0'8OO

(15 =0)(15 - 20)
(40 — 0)(40 — 20)

0.212 = 1.3316875

NM — Berlin Chen 18

MATLAB Implementation

function yint = Lagrange{x,y,Xx}
% Lagrange: Lagrange interpolating polynomial
% vint = Lagrange(x,v,xx): Uses an (n - l1l)-order
% Lagrange interpolating polvnomial based on n data points
% to determine a value of the dependent variable (yint} at
% a given value of the independent variable, =x.
% input:
% X = independent variable
% v = dependent variable
% *xx = value of independent wvariable at which the
% interpolation is calculated
T output:
% yint interpolated value of dependent wvariable
n = length{x);
if length{y)~=n, error{'x and v must be same length'): end
SR
for i 1l:n

product = y{i};

et g = Akl

if 1 ~= 3
eroduct = producE® (Rx—xi0) LAY =Ll - 500
end

end

s s+product;
end
abiie = oih

NM — Berlin Chen 19

Inverse Interpolation (1/2)

Interpolation general means finding some value f(x) for some x that is between given
independent data points

Sometimes, it will be useful to find the x for which f(x) is a certain value - this is
inverse interpolation
Jx) =1/x:

x] 2 3 4 5 6 /
fx) 1 0.5 0.3333 0.25 0.2 0.1667 0.1429

fx) 0.1429 0.1667 0.2 0.25 0.3333 0.5 1
X / 6 5 4 3 2 1

Some adjacent points of f(x) are bunched together and others spread out widely.

This would lead to oscillations in the resulting polynomial.
NM — Berlin Chen 20

Inverse Interpolation (2/2)

* Rather than finding an interpolation of x as a function of
f(x), it may be useful to find an equation for f(x) as a
function of x using interpolation and then solve the
corresponding roots problem:

f(X)'fdesired=0 for x

For example, for the problem just outlined, a simple approach would be to fit a qua-
dratic polynomial to the three points: (2, 0.5), (3, 0.3333), and (4, 0.25). The result would be

fa(x) = 0.041667x% — 0.375x + 1.08333
The answer to the inverse interpolation problem of finding the x corresponding to
f(x) = 0.3 would therefore involve determining the root of

0.3 = 0.041667x* — 0.375x + 1.08333

For this simple case, the quadratic formula can be used to calculate

0375+ /(<0.375)2 — 4(0.041667)0.78333 _ 5.704158
T 2(0.041667) = 3.205842

Thus, the second root, 3.296, is a good approximation of the true value of 3.333.

NM — Berlin Chen 21

Extrapolation

« Extrapolation is the
process of estimating a
value of f(x) that lies
outside the range of the
known base points x;,, X,

o X,

« Extrapolation represents a
step into the unknown,
and extreme care should
be exercised when
extrapolating!

FIGURE 17.10

llustration of the p(‘vwl le divergence

Fx)

. Interpolation o Extrapolation .

True
curve

A
)
“ Extrapolation
x of interpolating
'y polynomial

of an extrapo

1
|
']
Lo
|
|
i
[]

i 1 1
Xy X X3

JT'QJ prediction. The extrapolation is based

on fitt P;P;Ju; onjr’:n ‘u.—*inllu?-u—*kf‘{ wn po ints,

NM — Berlin Chen 22

Extrapolation Hazards

The following shows the results of extrapolating a
seventh-order polynomial which is derived from the first
8 points (1920 to 1990) of the USA population data set:

/ AY
Date 1920 1930 1940 1950 1960 1970 1980 1990 ! 2000 |
Population 106.46 123.08 132.12 152.27 180.67 20505 227.23 24046'\281.42 !
\ /

250

200

150

100 | | I | I I |
1920 1930 1940 1950 1960 1970 1980 1980 2000

FIGURE 17.11
Use of a seventh-order polynomial to make a prediction of U.S. population in 2000 based on

3)
data from 1920 -‘}'::r_;u_f-}ﬁ’l 1990,

NM — Berlin Chen 23

Oscillations

« Higher-order polynomials can not only lead to round-off errors
due to ill-conditioning, but can also introduce oscillations to
an interpolation or fit where they should not be

 In the figures below, the dashed line represents an function,
the circles represent samples of the function, and the solid
line represents the results of a polynomial interpolation:

1 2 |
= |
1.5
0.6 1
0.4 f (x) =
1 2
0.2 +25x
' :]
& (Runge's function)
&)
—0.2
—0.4 -0.5 | \ |
=1 =[5 0 0.5 1 =9 — {15 0 05 1
FIGURE 17.12 FIGURE 17.13)
Comparison of Runge's function (dashed line) with a fourth-order polynomial fit to 5 points Comparison of Runge's function (dashed line] with a tenth-order polynomial fit to 11 points

SU.’?':F):E:‘:d from the function sampled from the function.

NM — Berlin Chen 24

