# Polynomial Interpolation 

Berlin Chen<br>Department of Computer Science \& Information Engineering<br>National Taiwan Normal University

## Reference:

1. Applied Numerical Methods with MATLAB for Engineers, Chapter 17 \& Teaching material

## Chapter Objectives (1/2)

- Recognizing that evaluating polynomial coefficients with simultaneous equations is an ill-conditioned problem
- Knowing how to evaluate polynomial coefficients and interpolate with MATLAB's polyfit and polyval functions
- Knowing how to perform an interpolation with Newton's polynomial
- Knowing how to perform an interpolation with a Lagrange polynomial

(a)

(b)

(c)


## Chapter Objectives (2/2)

- Knowing how to solve an inverse interpolation problem by recasting it as a roots problem
- Appreciating the dangers of extrapolation
- Recognizing that higher-order polynomials can manifest large oscillations


## Polynomial Interpolation

- You will frequently have occasions to estimate intermediate values between precise data points
- The function you use to interpolate must pass through the actual data points - this makes interpolation more restrictive than fitting
- The most common method for this purpose is polynomial interpolation, where an $(n-1)^{\mathrm{th}}$ order polynomial is solved that passes through $n$ data points:

$$
f(x)=a_{1}+a_{2} x+a_{3} x^{2}+\cdots+a_{n} x^{n-1}
$$

MATLAB version :

$$
f(x)=p_{1} x^{n-1}+p_{2} x^{n-2}+\cdots+p_{n-1} x+p_{n}
$$

## Determining Coefficients

- Since polynomial interpolation provides as many basis functions as there are data points ( $n$ ), the polynomial coefficients can be found exactly using linear algebra
- For $n$ data points, there is one and only one polynomial of order $(n-1)$ that passes through all the points
- MATLAB's built in polyfit and polyval commands can also be used - all that is required is making sure the order of the fit for $n$ data points is $n-1$


## Polynomial Interpolation Problems

- One problem that can occur with solving for the coefficients of a polynomial is that the system to be inverted is in the form:

$$
\left[\begin{array}{ccccc}
x_{1}^{n-1} & x_{1}^{n-2} & \cdots & x_{1} & 1 \\
x_{2}^{n-1} & x_{2}^{n-2} & \cdots & x_{2} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{n-1}^{n-1} & x_{n-1}^{n-2} & \cdots & x_{n-1} & 1 \\
x_{n}^{n-1} & x_{n}^{n-2} & \cdots & x_{n} & 1
\end{array}\right]\left\{\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{n-1} \\
p_{n}
\end{array}\right\}=\left\{\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{n-1}\right) \\
f\left(x_{n}\right)
\end{array}\right\}
$$

- Matrices such as that on the left are known as Vandermonde matrices, and they are very ill-conditioned - meaning their solutions are very sensitive to round-off errors
- The issue can be minimized by scaling and shifting the data


## Newton Interpolating Polynomials

- Another way to express a polynomial interpolation is to use Newton's interpolating polynomial
- The differences between a simple polynomial and Newton's interpolating polynomial for first and second order interpolations are:



## Newton Interpolating Polynomials (1/3)

- The first-order Newton interpolating polynomial may be obtained from linear interpolation and similar triangles, as shown
- The resulting formula based on known points $x_{1}$ and $x_{2}$ and the values of the dependent function at those points is:

$$
\begin{aligned}
& f_{1}(x)=b_{1}+b_{2}\left(x-x_{1}\right) \\
& \Rightarrow f_{1}(x)=f\left(x_{1}\right)+\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
& x-x_{1}
\end{aligned}
$$

FIGURE 17.2

## Linear Interpolation: An Example

Problem Statement. Estimate the natural logarithm of 2 using linear interpolation. First, perform the computation by interpolating between $\ln 1=0$ and $\ln 6=1.791759$. Then, repeat the procedure, but use a smaller interval from $\ln 1$ to $\ln 4$ (1.386294). Note that the true value of $\ln 2$ is 0.6931472 .

Solution. We use Eq. (17.5) from $x_{1}=1$ to $x_{2}=6$ to give
Example 17.2

$$
f_{1}(2)=0+\frac{1.791759-0}{6-1}(2-1)=0.3583519
$$

which represents an error of $\varepsilon_{t}=48.3 \%$. Using the smaller interval from $x_{1}=1$ to $x_{2}=4$ yields

$$
f_{1}(2)=0+\frac{1.386294-0}{4-1}(2-1)=0.4620981
$$

The smaller the interval between the data points, the better the approximation.


FIGURE 17.3
Two linear interpolations to estimate $\ln 2$. Note how the smaller interval provides a better estimate.

## Newton Interpolating Polynomials (2/3)

- The second-order Newton interpolating polynomial introduces some curvature to the line connecting the points, but still goes through the first two points
- The resulting formula based on known points $x_{1}, x_{2}$, and
 $x_{3}$ and the values of the dependent function at those

The use of quadratic interpolation to estimate $\ln 2$. The linear interpolation from $x=1$ to 4 is also included for comparison. points is:

$$
\begin{aligned}
& f_{2}(x)=b_{1}+b_{2}\left(x-x_{1}\right)+b_{3}\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& \Rightarrow f_{2}(x)=f\left(x_{1}\right)+\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\left(x-x_{1}\right)+\frac{\frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}-\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}}{x_{3}-x_{1}}\left(x-x_{1}\right)\left(x-x_{2}\right)
\end{aligned}
$$

## Quadratic Interpolation: An Example

Problem Statement. Employ a second-order Newton polynomial to estimate $\ln 2$ with the same three points used in Example 17.2:

$$
\begin{array}{ll}
x_{1}=1 & f\left(x_{1}\right)=0 \\
x_{2}=4 & f\left(x_{2}\right)=1.386294 \\
x_{3}=6 & f\left(x_{3}\right)=1.791759
\end{array}
$$

Solution. Applying Eq. (17.7) yields

$$
b_{1}=0
$$

Equation (17.8) gives

$$
b_{2}=\frac{1.386294-0}{4-1}=0.4620981
$$

and Eq. (17.9) yields

$$
b_{3}=\frac{\frac{1.791759-1.386294}{6-4}-0.4620981}{6-1}=-0.0518731
$$

Example 17.3


Substituting these values into Eq. (17.6) yields the quadratic formula

$$
f_{2}(x)=0+0.4620981(x-1)-0.0518731(x-1)(x-4)
$$

which can be evaluated at $x=2$ for $f_{2}(2)=0.5658444$, which represents a relative error of $\varepsilon_{t}=18.4 \%$. Thus, the curvature introduced by the quadratic formula (Fig. 17.4) improves the interpolation compared with the result obtained using straight lines in Example 17.2 and Fig. 17.3.

## Newton Interpolating Polynomials (3/3)

- In general, an $(n-1)^{\text {th }}$ Newton interpolating polynomial has all the terms of the $(n-2)^{\text {th }}$ polynomial plus one extra
- The general formula is:

$$
f_{n-1}(x)=b_{1}+b_{2}\left(x-x_{1}\right)+\cdots+b_{n}\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n-1}\right)
$$

where

$$
\begin{aligned}
& b_{1}=f\left(x_{1}\right) \\
& b_{2}=f\left[x_{2}, x_{1}\right] \\
& b_{3}=f\left[x_{3}, x_{2}, x_{1}\right] \\
& \vdots \\
& b_{n}=f\left[x_{n}, x_{n-1}, \cdots, x_{2}, x_{1}\right]
\end{aligned}
$$

and the f[...] represent divided differences

## Divided Differences

- Divided difference are calculated as follows:

$$
\begin{aligned}
& f\left[x_{i}, x_{j}\right]=\frac{f\left(x_{i}\right)-f\left(x_{j}\right)}{x_{i}-x_{j}} \\
& f\left[x_{i}, x_{j}, x_{k}\right]=\frac{f\left[x_{i}, x_{j}\right]-f\left[x_{j}, x_{k}\right]}{x_{i}-x_{k}} \\
& f\left[x_{n}, x_{n-1}, \cdots, x_{2}, x_{1}\right]=\frac{f\left[x_{n}, x_{n-1}, \cdots, x_{2}\right]-f\left[x_{n-1}, x_{n-2}, \cdots, x_{1}\right]}{x_{n}-x_{1}}
\end{aligned}
$$

- Divided differences are calculated using divided difference of a smaller number of terms:

| $x_{i}$ | $f\left(x_{i}\right)$ | First | Second | Third |
| :---: | :---: | :---: | :---: | :---: |
| $x_{1}$ $x_{2}$ $x_{3}$ $x_{4}$ |  |  |  |  |

## MATLAB Implementation

```
lction yint = Newtint(x,y,xx)
Jewtint: Newton interpolating polynomial
rint = Newtint (x,y,xx): Uses an (n - 1) -order Newton
interpolating polynomial based on n data points ( }x,y\mathrm{ )
to determine a value of the dependent variable (yint)
at a given value of the independent variable, xx.
nput:
x = independent variable
Y = dependent variable
xx = value of independent variable at which
    interpolation is calculated
utput:
yint = interpolated value of dependent variable
:ompute the finite divided differences in the form of a
lifference table
length(x);
length(y)~=n, error('x and y must be same length'); end
= zeros(n,n);
issign dependent variables to the first column of b.
,1)=Y(:); % the (:) ensures that }y\mathrm{ is a column vector.
:j=2:n
or i = 1:n-j+1
b(i,j)=(b(i+1,j-1)-b(i,j-1))/(x(i+j-1)-x(i));
nd
l
se the finite divided differences to interpolate
= 1;
1t = b (1,1);
:j=1:n-1
:t = xt*(xx-x(j));
int = yint+b(1,j+1)*xt;
```


## Lagrange Interpolating Polynomials (1/3)

- Another method that uses shifted values to express an interpolating polynomial is the Lagrange interpolating polynomial
- The differences between a simply polynomial and Lagrange interpolating polynomials for first and second order polynomials is:

$$
\begin{array}{ccc}
\text { Order } & \text { Simple } & \text { Lagrange } \\
1 s t & f_{1}(x)=a_{1}+a_{2} x & f_{1}(x)=L_{1}^{2} f\left(x_{1}\right)+L_{2}^{2} f\left(x_{2}\right) \\
\text { 2nd } & f_{2}(x)=a_{1}+a_{2} x+a_{3} x^{2} & f_{2}(x)=L_{1}^{3} f\left(x_{1}\right)+L_{2}^{3} f\left(x_{2}\right)+L_{3}^{3} f\left(x_{3}\right)
\end{array}
$$

- where the $L_{i}^{n}$ are weighting coefficients of the $j^{\text {th }}$ polynomial, which are functions of $x$

$$
\begin{aligned}
& L_{1}^{2}=\frac{x-x_{2}}{x_{1}-x_{2}}, L_{2}^{2}=\frac{x-x_{1}}{x_{2}-x_{1}} \\
& L_{1}^{3}=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}, L_{2}^{3}=\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}, L_{3}^{3}=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}
\end{aligned}
$$

## Lagrange Interpolating Polynomials (2/3)

- The first-order Lagrange interpolating polynomial may be obtained from a weighted combination of two linear interpolations, as shown
- The resulting formula based on known points $x_{1}$ and $x_{2}$ and the values of the
 dependent function at those points is:

$$
\begin{aligned}
& f_{1}(x)=L_{1}^{2} f\left(x_{1}\right)+L_{2}^{2} f\left(x_{2}\right) \\
& L_{1}^{2}=\frac{x-x_{2}}{x_{1}-x_{2}}, L_{2}^{2}=\frac{x-x_{1}}{x_{2}-x_{1}} \\
& f_{1}(x)=\frac{x-x_{2}}{x_{1}-x_{2}} f\left(x_{1}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(x_{2}\right)
\end{aligned}
$$

## Lagrange Interpolating Polynomials (3/3)

- In general, the Lagrange polynomial interpolation for $n$ points is:

$$
f_{n-1}\left(x_{i}\right)=\sum_{i=1}^{n} L_{i}^{n}(x) f\left(x_{i}\right)
$$

- where $L_{i}^{n}$ is given by:

$$
L_{i}^{n}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

## Lagrange Interpolating Polynomial: An Example

Problem Statement. Use a Lagrange interpolating polynomial of the first and second order to evaluate the density of unused motor oil at $T=15^{\circ} \mathrm{C}$ based on the following data:

$$
\begin{array}{ll}
x_{1}=0 & f\left(x_{1}\right)=3.85 \\
x_{2}=20 & f\left(x_{2}\right)=0.800 \\
x_{3}=40 & f\left(x_{3}\right)=0.212
\end{array}
$$

Solution. The first-order polynomial [Eq. (17.20)] can be used to obtain the estimate at $x=15$ :

$$
f_{1}(x)=\frac{15-20}{0-20} 3.85+\frac{15-0}{20-0} 0.800=1.5625
$$

In a similar fashion, the second-order polynomial is developed as [Eq. (17.21)]

$$
\begin{aligned}
f_{2}(x)= & \frac{(15-20)(15-40)}{(0-20)(0-40)} 3.85+\frac{(15-0)(15-40)}{(20-0)(20-40)} 0.800 \\
& +\frac{(15-0)(15-20)}{(40-0)(40-20)} 0.212=1.3316875
\end{aligned}
$$

## MATLAB Implementation

```
Eunction yint = Lagrange(x,y,xx)
% Lagrange: Lagrange interpolating polynomial
    yint = Lagrange(x,Y,Xx): Uses an (n - 1)-order
        Lagrange interpolating polynomial based on n data points
        to determine a value of the dependent variable (yint) at
        a given value of the independent variable, xx.
    input:
        x = independent variable
        y = dependent variable
        xx = value of independent variable at which the
            interpolation is calculated
output
% yint = interpolated value of dependent variable
n = length(x);
if length(y)~=n, error('x and y must be same length'); end
s = 0;
for i = 1:n
    product = y(i);
    for j = 1:n
        if i ~= j
        product = product*(xx-x(j))/(x(i)-x(j));
        end
    end
    s = s+product;
end
yint = s;
```


## Inverse Interpolation (1/2)

- Interpolation general means finding some value $f(x)$ for some $x$ that is between given independent data points
- Sometimes, it will be useful to find the $x$ for which $f(x)$ is a certain value - this is inverse interpolation


Some adjacent points of $f(x)$ are bunched together and others spread out widely.
This would lead to oscillations in the resulting polynomial.

## Inverse Interpolation (2/2)

- Rather than finding an interpolation of $x$ as a function of $f(x)$, it may be useful to find an equation for $f(x)$ as a function of $x$ using interpolation and then solve the corresponding roots problem:
$f(x)-f_{\text {desired }}=0$ for $x$
For example, for the problem just outlined, a simple approach would be to fit a quadratic polynomial to the three points: $(2,0.5),(3,0.3333)$, and $(4,0.25)$. The result would be

$$
f_{2}(x)=0.041667 x^{2}-0.375 x+1.08333
$$

The answer to the inverse interpolation problem of finding the $x$ corresponding to $f(x)=0.3$ would therefore involve determining the root of
$0.3=0.041667 x^{2}-0.375 x+1.08333$
For this simple case, the quadratic formula can be used to calculate

$$
x=\frac{0.375 \pm \sqrt{(-0.375)^{2}-4(0.041667) 0.78333}}{2(0.041667)}=\begin{aligned}
& 5.704158 \\
& 3.295842
\end{aligned}
$$

Thus, the second root, 3.296 , is a good approximation of the true value of 3.333 .

## Extrapolation

- Extrapolation is the process of estimating a value of $f(x)$ that lies outside the range of the known base points $x_{1}, x_{2}$, $\ldots, x_{n}$
- Extrapolation represents a step into the unknown, and extreme care should be exercised when extrapolating!


FIGURE 17.10
Illustration of the possible divergence of an extrapolated prediction. The extrapolation is based on fitting a parabola through the first three known points.

## Extrapolation Hazards

- The following shows the results of extrapolating a seventh-order polynomial which is derived from the first 8 points (1920 to 1990) of the USA population data set:




## Oscillations

- Higher-order polynomials can not only lead to round-off errors due to ill-conditioning, but can also introduce oscillations to an interpolation or fit where they should not be
- In the figures below, the dashed line represents an function, the circles represent samples of the function, and the solid line represents the results of a polynomial interpolation:



