Splines and Piecewise Interpolation

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

1. Applied Numerical Methods with MATLAB for Engineers, Chapter 18 \& Teaching material

Chapter Objectives (1/2)

- Understanding that splines minimize oscillations by fitting lower-order polynomials to data in a piecewise fashion
- Knowing how to develop code to perform table lookup
- Recognizing why cubic polynomials are preferable to quadratic and higher-order splines
- Understanding the conditions that underlie a cubic fit
- Understanding the differences between natural, clamped, and not-a-knot end conditions

FIGURE 18.2
The drafting technique of using a spline to draw smooth curves through a series of points. Notice
how, at the end points, the spline straightens out. This is called a "natural" spline.

Chapter Objectives (2/2)

- Knowing how to fit a spline to data with MATLAB's builtin functions
- Understanding how multidimensional interpolation is implemented with MATLAB

Introduction to Splines

- An alternative approach to using a single $(n-1)^{\text {th }}$ order polynomial to interpolate between n points is to apply lower-order polynomials in a piecewise fashion to subsets of data points
- These connecting polynomials are called spline functions
- Splines minimize oscillations and reduce round-off error due to their lower-order nature

Higher-Order Polynomials vs. Splines

- Splines eliminate oscillations by using small subsets of points for each interval rather than every point. This is especially useful when there are jumps in the data:
a) $3^{\text {rd }}$ order polynomial
b) $5^{\text {th }}$ order polynomial
c) $7^{\text {th }}$ order polynomial
d) Linear spline
- Seven 1st order polynomials generated by using pairs of points at a time

Spline Development (1/2)

- Spline function $\left(s_{i}(x)\right)$ coefficients are calculated for each interval of a data set
- The number of data points $\left(f_{i}\right)$ used for each spline function depends on the order of the spline function

FIGURE 18.3
Notation used to derive splines. Notice that there are $n-1$ intervals and n data points.

Spline Development (2/2)

a) First-order splines find straightline equations between each pair of points that

- Go through the points
b) Second-order splines find quadratic equations between each pair of points that
- Go through the points
- Match first derivatives at the interior points
c) Third-order splines find cubic equations between each pair of points that
- Go through the points
- Match first and second derivatives

 at the interior points
Note that the results of cubic spline interpolation are different from the results of an interpolating cubic. a cubic interpolating polynomial also plotted.

Cubic Splines (1/2)

- While data of a particular size presents many options for the order of spline functions, cubic splines are preferred because they provide the simplest representation that exhibits the desired appearance of smoothness
- Linear splines have discontinuous first derivatives
- Quadratic splines have discontinuous second derivatives and require setting the second derivative at some point to a pre-determined value *but*
- Quartic or higher-order splines tend to exhibit the instabilities inherent in higher order polynomials (illconditioning or oscillations)

Cubic Splines (2/2)

- In general, the $i^{\text {th }}$ spline function for a cubic spline can be written as:

$$
s_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3}
$$

- For n data points, there are $n-1$ intervals and thus $4(n-1)$ unknowns to evaluate to solve all the spline function coefficients

Solving Cubic Spline Coefficients

- One condition requires that the spline function goes through the first and last point of the interval, yielding $2(n-1)$ equations of the form:

$$
\begin{aligned}
& s_{i}\left(x_{i}\right)=f_{i} \Rightarrow a_{i}=f_{i} \\
& s_{i}\left(x_{i+1}\right)=f_{i+1} \Rightarrow s_{i}\left(x_{i+1}\right)=a_{i}+b_{i}\left(x_{i+1}-x_{i}\right)+c_{i}\left(x_{i+1}-x_{i}\right)^{2}+d_{i}\left(x_{i+1}-x_{i}\right)^{3}=f_{i+1}
\end{aligned}
$$

- Another requires that the first derivative is continuous at each interior point, yielding n - 2 equations of the form:

$$
s_{i}^{\prime}\left(x_{i+1}\right)=s_{i+1}^{\prime}\left(x_{i+1}\right) \Rightarrow b_{i}+2 c_{i}\left(x_{i+1}-x_{i}\right)+3 d_{i}\left(x_{i+1}-x_{i}\right)^{2}=b_{i+1}
$$

- A third requires that the second derivative is continuous at each interior point, yielding n - 2 equations of the form:

$$
s_{i}^{\prime \prime}\left(x_{i+1}\right)=s_{i+1}^{\prime \prime}\left(x_{i+1}\right) \Rightarrow 2 c_{i}+6 d_{i}\left(x_{i+1}-x_{i}\right)=2 c_{i+1}
$$

- These give $4 n-6$ total equations and $4 n-4$ are needed!

Two Additional Equations for Cubic Splines

- There are several options for the final two equations:
- Natural end conditions - assume the second derivative at the end knots are zero
- Clamped end conditions - assume the first derivatives at the first and last knots are known
- "Not-a-knot" end conditions - force continuity of the third derivative at the second and penultimate (next-to-last) points
- Result in the first two intervals having the same spline function and the last two intervals having the same spline function

Piecewise Interpolation in MATLAB

- MATLAB has several built-in functions to implement piecewise interpolation. The first is spline:

$$
y Y=s p l i n e(x, y, x x)
$$

This performs cubic spline interpolation, generally using not-a-knot conditions. If y contains two more values than x has entries, then the first and last value in y are used as the derivatives at the end points (i.e. clamped)

Not-a-knot Example

- Generate data:

```
x = linspace(-1, 1, 9);
y = 1./(1+25*x.^2);
```

- Calculate 100 model points and determine not-a-knot interpolation $x x=\operatorname{linspace}(-1,1) ;$
$y y=\operatorname{spline}(x, y, x x) ;$
- Calculate actual function values at model points and data points, the 9-point not-a-knot interpolation (solid),

FIGURE 18.6
and the actual function (dashed),
 MATLAB (solid line).

```
yr = 1./(1+25*xx.^ 2)
```

yr = 1./(1+25*xx.^ 2)
plot(x, Y, 'O', Xx, YY, '-
plot(x, Y, 'O', Xx, YY, '-
', xx, yr, '--')

```
', xx, yr, '--')
```

$f(x)=\frac{1}{1+25 x^{2}}$
(Runge's function)

Clamped Example

- Generate data w/ first derivative information:

```
x = linspace(-1, 1, 9);
y = 1./(1+25*x.^2);
yc = [1 y -4] %(specified
slops at boundaries)
```

- Calculate 100 model points and determine clamped interpolation $\mathrm{xx}=$ linspace(-1, 1); yyc = spline(x, yc, xx);
- Calculate actual function values at model points and data points, the
9-point clamped interpolation (solid), and the actual function (dashed), $\mathrm{yr}=1 . /\left(1+25 * \mathrm{xx} .^{\wedge} 2\right)$ plot(x, y, 'o', xx, yyc, '-', $x x, y r, ~ '--')$

FIGURE 18.7
Comparison of Runge's function (dashed line) with a 9-point clamped end spline fit generated with MATLAB (solid line). Note that first derivatives of 1 and -4 are specified at the left and right boundaries, respectively.

The clamped spline exhibits some oscillations because of the artificial slops being imposed at the boundaries.

MATLAB's interp1 Function

- While spline can only perform cubic splines, MATLAB's interp1 function can perform several different kinds of interpolation:
yi = interpl(x, y, xi, 'method')
$-\mathrm{x} \& \mathrm{y}$ contain the original data
- xi contains the points at which to interpolate
- 'method' is a string containing the desired method:
- 'nearest' - nearest neighbor interpolation
- 'linear' - connects the points with straight lines
- 'spline' - not-a-knot cubic spline interpolation
- 'pchip' or 'cubic' - piecewise cubic Hermite interpolation (the second derivatives are not necessarily continuous)

Piecewise Polynomial Comparisons

Multidimensional Interpolation (1/2)

- The interpolation methods for one-dimensional problems can be extended to multidimensional interpolation.
- Example - bilinear interpolation using Lagrange-form equations

$$
\begin{aligned}
f\left(x_{i}, y_{i}\right) & =\frac{x_{i}-x_{2}}{x_{1}-x_{2}} \frac{y_{i}-y_{2}}{y_{1}-y_{2}} f\left(x_{1}, y_{1}\right) \\
& +\frac{x_{i}-x_{1}}{x_{2}-x_{1}} \frac{y_{i}-y_{2}}{y_{1}-y_{2}} f\left(x_{2}, y_{1}\right) \\
& +\frac{x_{i}-x_{2}}{x_{1}-x_{2}} \frac{y_{i}-y_{1}}{y_{2}-y_{1}} f\left(x_{1}, y_{2}\right) \\
& +\frac{x_{i}-x_{1}}{x_{2}-x_{1}} \frac{y_{i}-y_{1}}{y_{2}-y_{1}} f\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Multidimensional Interpolation (2/2)

- First hold the y value fixed

$$
\begin{aligned}
& f\left(x_{i}, y_{1}\right)=\frac{x_{i}-x_{2}}{x_{1}-x_{2}} f\left(x_{1}, y_{1}\right)+\frac{x_{i}-x_{1}}{x_{2}-x_{1}} f\left(x_{2}, y_{1}\right) \\
& f\left(x_{i}, y_{2}\right)=\frac{x_{i}-x_{2}}{x_{1}-x_{2}} f\left(x_{1}, y_{2}\right)+\frac{x_{i}-x_{1}}{x_{2}-x_{1}} f\left(x_{2}, y_{2}\right)
\end{aligned}
$$

- Then, linearly interpolate along the y dimension

$$
f\left(x_{i}, y_{i}\right)=\frac{y_{i}-y_{2}}{y_{1}-y_{2}} f\left(x_{i}, y_{1}\right)+\frac{y_{i}-y_{1}}{y_{2}-y_{1}} f\left(x_{i}, y_{2}\right)
$$

- Finally we can arrive at

$$
f\left(x_{i}, y_{i}\right)=\frac{x_{i}-x_{2}}{x_{1}-x_{2}} \frac{y_{i}-y_{2}}{y_{1}-y_{2}} f\left(x_{1}, y_{1}\right)+\frac{x_{i}-x_{1}}{x_{2}-x_{1}} \frac{y_{i}-y_{2}}{y_{1}-y_{2}} f\left(x_{2}, y_{1}\right)+\frac{x_{i}-x_{2}}{x_{1}-x_{2}} \frac{y_{i}-y_{1}}{y_{2}-y_{1}} f\left(x_{1}, y_{2}\right)+\frac{x_{i}-x_{1}}{x_{2}-x_{1}} \frac{y_{i}-y_{1}}{y_{2}-y_{1}} f\left(x_{2}, y_{2}\right)
$$

Multidimensional Interpolation in MATLAB

- MATLAB has built-in functions for two- and threedimensional piecewise interpolation:

```
zi = interp2(x, y, z, xi, yi, `method')
    vi = interp3(x, y, z, v, xi, yi, zi,
`method')
```

- 'method' is again a string containing the desired method: 'nearest', 'linear', 'spline', 'pchip', or 'cubic'
- For 2-D interpolation, the inputs must either be vectors or samesize matrices
- For 3-D interpolation, the inputs must either be vectors or samesize 3-D arrays

