Splines and Piecewise Interpolation

Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University

Reference:

1. Applied Numerical Methods with MATLAB for Engineers, Chapter 18 & Teaching material

Chapter Objectives (1/2)

- Understanding that splines minimize oscillations by fitting lower-order polynomials to data in a piecewise fashion
- Knowing how to develop code to perform table lookup
- Recognizing why cubic polynomials are preferable to quadratic and higher-order splines
- Understanding the conditions that underlie a cubic fit
- Understanding the differences between natural, clamped, and not-a-knot end conditions

FIGURE 18.2

The drafting technique of using a spline to draw smooth curves through a series of points. Notice how, at the end points, the spline straightens out. This is called a "natural" spline.

Chapter Objectives (2/2)

- Knowing how to fit a spline to data with MATLAB's builtin functions
- Understanding how multidimensional interpolation is implemented with MATLAB

Introduction to Splines

- An alternative approach to using a single (n-1)th order polynomial to interpolate between n points is to apply lower-order polynomials in a piecewise fashion to subsets of data points
- These connecting polynomials are called *spline* functions
- Splines minimize oscillations and reduce round-off error due to their lower-order nature

Higher-Order Polynomials vs. Splines

- Splines eliminate oscillations by using small subsets of points for each interval rather than every point. This is especially useful when there are jumps in the data:
 - a) 3rd order polynomial
 - b) 5th order polynomial
 - c) 7th order polynomial
 - d) Linear spline
 - Seven 1st order polynomials generated by using pairs of points at a time

FIGURE 18.1

A visual representation of a situation where splines are superior to higher-order interpolating polynomials. The function to be fit undergoes an abrupt increase at x = 0. Parts (a) through (c) indicate that the abrupt change induces oscillations in interpolating polynomials. In contrast, because it is limited to straight-line connections, a linear spline (d) provides a much more acceptable approximation.

Spline Development (1/2)

- Spline function (s_i(x)) coefficients are calculated for each interval of a data set
- The number of data points (f_i) used for each spline function depends on the order of the spline function

FIGURE 18.3 Notation used to derive splines. Notice that there are n - 1 intervals and n data points.

Spline Development (2/2)

- a) First-order splines find **straightline equations** between each pair of points that
 - Go through the points
- b) Second-order splines find quadratic equations between each pair of points that
 - Go through the points
 - Match first derivatives at the interior points
- c) Third-order splines find **cubic** equations between each pair of points that
 - Go through the points
 - Match first and second derivatives at the interior points

Note that the results of cubic spline interpolation are different from the results of an interpolating cubic.

FIGURE 18.4

Spline fits of a set of four points. (a) Linear spline, (b) quadratic spline, and (c) cubic spline, with a cubic interpolating polynomial also plotted.

Cubic Splines (1/2)

- While data of a particular size presents many options for the order of spline functions, cubic splines are preferred because they provide the simplest representation that exhibits the desired appearance of smoothness
 - Linear splines have discontinuous first derivatives
 - Quadratic splines have discontinuous second derivatives and require setting the second derivative at some point to a pre-determined value *but*
 - Quartic or higher-order splines tend to exhibit the instabilities inherent in higher order polynomials (illconditioning or oscillations)

Cubic Splines (2/2)

 In general, the *i*th spline function for a cubic spline can be written as:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

For n data points, there are n-1 intervals and thus 4(n-1) unknowns to evaluate to solve all the spline function coefficients

Solving Cubic Spline Coefficients

 One condition requires that the spline function goes through the first and last point of the interval, yielding 2(*n*-1) equations of the form:

$$s_i(x_i) = f_i \Longrightarrow a_i = f_i$$

 $s_i(x_{i+1}) = f_{i+1} \Longrightarrow s_i(x_{i+1}) = a_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 + d_i(x_{i+1} - x_i)^3 = f_{i+1}$

• Another requires that the first derivative is continuous at each interior point, yielding *n*-2 equations of the form:

$$s'_{i}(x_{i+1}) = s'_{i+1}(x_{i+1}) \Longrightarrow b_{i} + 2c_{i}(x_{i+1} - x_{i}) + 3d_{i}(x_{i+1} - x_{i})^{2} = b_{i+1}$$

• A third requires that the *second* derivative is continuous at each interior point, yielding *n*-2 equations of the form:

$$s_i''(x_{i+1}) = s_{i+1}''(x_{i+1}) \Longrightarrow 2c_i + 6d_i(x_{i+1} - x_i) = 2c_{i+1}$$

• These give 4*n*-6 total equations and 4*n*-4 are needed!

Two Additional Equations for Cubic Splines

- There are several options for the final two equations:
 - Natural end conditions assume the second derivative at the end knots are zero
 - Clamped end conditions assume the first derivatives at the first and last knots are known
 - "Not-a-knot" end conditions force continuity of the *third* derivative at the second and penultimate (next-to-last) points
 - Result in the first two intervals having the same spline function and the last two intervals having the same spline function

FIGURE 18.5

Comparison of the clamped (with zero first derivatives), not-a-knot, and natural splines for the data from Table 18.1.

Piecewise Interpolation in MATLAB

• MATLAB has several built-in functions to implement piecewise interpolation. The first is spline:

```
yy=spline(x, y, xx)
```

This performs cubic spline interpolation, generally using nota-knot conditions. If y contains two more values than x has entries, then the first and last value in y are used as the derivatives at the end points (i.e. clamped)

Not-a-knot Example

• Generate data:

x = linspace(-1, 1, 9); y = 1./(1+25*x.^2);

- Calculate 100 model points and determine not-a-knot interpolation
 xx = linspace(-1, 1); yy = spline(x, y, xx);
- Calculate actual function values at model points and data points, the 9-point not-a-knot interpolation (solid),

and the actual function (dashed),

FIGURE 18.6

Comparison of Runge's function (dashed line) with a 9-point not-a-knot spline fit generated with MATLAB (solid line).

$$f(x) = \frac{1}{1 + 25x^2}$$

(Runge's function)

Clamped Example

• Generate data w/ first derivative information:

x = linspace(-1, 1, 9); y = 1./(1+25*x.²); yc = [1 y -4] %(specified slops at boundaries)

- Calculate 100 model points and determine clamped interpolation xx = linspace(-1, 1); yyc = spline(x, yc, xx);
- Calculate actual function values at model points and data points, the

9-point clamped interpolation (solid),

and the actual function (dashed),

yr = 1./(1+25*xx.^2)
plot(x, y, `o', xx, yyc,
`-', xx, yr, `--')

FIGURE 18.7

Comparison of Runge's function (dashed line) with a 9-point clamped end spline fit generated with MATLAB (solid line). Note that first derivatives of 1 and -4 are specified at the left and right boundaries, respectively.

The clamped spline exhibits some oscillations because of the artificial slops being imposed at the boundaries.

MATLAB's interp1 Function

- While spline can only perform cubic splines, MATLAB's interp1 function can perform several different kinds of interpolation:
 yi = interp1(x, y, xi, `method')
 - $\ge \& y$ contain the original data
 - xi contains the points at which to interpolate
 - `method' is a string containing the desired method:
 - `nearest' nearest neighbor interpolation
 - `linear' connects the points with straight lines
 - `spline' not-a-knot cubic spline interpolation
 - `pchip' or `cubic' piecewise cubic Hermite interpolation (the second derivatives are not necessarily continuous)

Piecewise Polynomial Comparisons

FIGURE 18.8

Use of several options of the interp1 function to perform piecewise polynomial interpolation on a velocity time series for an automobile.

Multidimensional Interpolation (1/2)

- The interpolation methods for one-dimensional problems can be extended to multidimensional interpolation.
- Example *bilinear interpolation* using Lagrange-form equations

$$f(x_{i}, y_{i}) = \frac{x_{i} - x_{2}}{x_{1} - x_{2}} \frac{y_{i} - y_{2}}{y_{1} - y_{2}} f(x_{1}, y_{1})$$

+ $\frac{x_{i} - x_{1}}{x_{2} - x_{1}} \frac{y_{i} - y_{2}}{y_{1} - y_{2}} f(x_{2}, y_{1})$
+ $\frac{x_{i} - x_{2}}{x_{1} - x_{2}} \frac{y_{i} - y_{1}}{y_{2} - y_{1}} f(x_{1}, y_{2})$
+ $\frac{x_{i} - x_{1}}{x_{2} - x_{1}} \frac{y_{i} - y_{1}}{y_{2} - y_{1}} f(x_{2}, y_{2})$

FIGURE 18.10

Two-dimensional bilinear interpolation can be implemented by first applying one-dimensional linear interpolation along the x dimension to determine values at x_i . These values can then be used to linearly interpolate along the y dimension to yield the final result at x_i , y_i .

Multidimensional Interpolation (2/2)

• First hold the y value fixed

$$f(x_i, y_1) = \frac{x_i - x_2}{x_1 - x_2} f(x_1, y_1) + \frac{x_i - x_1}{x_2 - x_1} f(x_2, y_1)$$
$$f(x_i, y_2) = \frac{x_i - x_2}{x_1 - x_2} f(x_1, y_2) + \frac{x_i - x_1}{x_2 - x_1} f(x_2, y_2)$$

• Then, linearly interpolate along the y dimension

$$f(x_i, y_i) = \frac{y_i - y_2}{y_1 - y_2} f(x_i, y_1) + \frac{y_i - y_1}{y_2 - y_1} f(x_i, y_2)$$

• Finally we can arrive at

$$f(x_i, y_i) = \frac{x_i - x_2}{x_1 - x_2} \frac{y_i - y_2}{y_1 - y_2} f(x_1, y_1) + \frac{x_i - x_1}{x_2 - x_1} \frac{y_i - y_2}{y_1 - y_2} f(x_2, y_1) + \frac{x_i - x_2}{x_1 - x_2} \frac{y_i - y_1}{y_2 - y_1} f(x_1, y_2) + \frac{x_i - x_1}{x_2 - x_1} \frac{y_i - y_1}{y_2 - y_1} f(x_2, y_2)$$

Multidimensional Interpolation in MATLAB

• MATLAB has built-in functions for two- and threedimensional piecewise interpolation:

zi = interp2(x, y, z, xi, yi, `method')
vi = interp3(x, y, z, v, xi, yi, zi,
`method')

- `method' is again a string containing the desired method: `nearest', `linear', `spline', `pchip', or `cubic'
- For 2-D interpolation, the inputs must either be vectors or samesize matrices
- For 3-D interpolation, the inputs must either be vectors or samesize 3-D arrays