
Numerical Integration of Functions

Berlin Chen
Department of Computer Science & Information Engineering

National Taiwan Normal University

Reference:
1. Applied Numerical Methods with MATLAB for Engineers, Chapter 20 & Teaching material

Chapter Objectives

• Understanding how Richardson extrapolation provides a
means to create a more accurate integral estimate by
combining two less accurate estimates

• Understanding how Gauss quadrature provides superior
integral estimates by picking optimal abscissas at which
to evaluate the function

• Knowing how to use MATLAB’s built-in functions quad
and quadl to integrate functions

NM – Berlin Chen 2

Richardson Extrapolation (1/2)

• Richard extrapolation methods use two estimates of an
integral to compute a third, more accurate
approximation.

• If two O(h2) estimates I(h1) and I(h2) are calculated for an
integral using step sizes of h1 and h2, respectively, an
improved O(h4) estimate may be formed using:

• For the special case where the interval is halved
(h2=h1/2), this becomes:

NM – Berlin Chen 3

I I(h2)
1

(h1 /h2)
2 1

I(h2) I (h1)

I 4
3
I(h2)

1
3
I (h1)

Richardson Extrapolation (2/2)

• For the cases where there are two O(h4) estimates and
the interval is halved (hm=hl/2), an improved O(h6)
estimate may be formed using:

• For the cases where there are two O(h6) estimates and
the interval is halved (hm=hl/2), an improved O(h8)
estimate may be formed using:

NM – Berlin Chen 4

I 16
15
Im

1
15
Il

I 64
63
Im

1
63
Il

Richardson Extrapolation: An Example (1/2)

NM – Berlin Chen 5

Example 20.1

Richardson Extrapolation: An Example (2/2)

NM – Berlin Chen 6

Example 20.1

The Romberg Integration Algorithm

• Note that the weighting factors for the Richardson
extrapolation add up to 1 and that as accuracy
increases, the approximation using the smaller step size
is given greater weight

• In general,

– Where ij+1,k-1 and ij,k-1 are the more and less accurate integrals,
respectively, and ij,k is the new approximation. k is the level of
integration and j is used to determine which approximation is
more accurate

NM – Berlin Chen 7

I j,k
4 k1 I j1,k1 I j ,k1

4 k1 1

Romberg Algorithm Iterations

• The chart below shows the process by which lower level
integrations are combined to produce more accurate
estimates:

NM – Berlin Chen 8

MATLAB Code for Romberg

NM – Berlin Chen 9

Gauss Quadrature

• Gauss quadrature
describes a class of
techniques for evaluating
the area under a straight
line by joining any two
points on a curve rather
than simply choosing the
endpoints

• The key is to choose the
line that balances the
positive and negative
errors

NM – Berlin Chen 10

Gauss-Legendre Formulas (1/2)

• The Gauss-Legendre formulas seem to optimize
estimates to integrals for functions over intervals from -1
to 1

• Integrals over other intervals require a change in
variables to set the limits from -1 to 1

• The integral estimates are of the form:

– Where the ci and xi are calculated to ensure that the method
exactly integrates up to (2n-1)th order polynomials over the
interval from -1 to 1

NM – Berlin Chen 11

I c0 f x0 c1 f x1 cn1 f xn1

Gauss-Legendre Formulas (2/2)

NM – Berlin Chen 12

Gauss-Legendre: An Example

NM – Berlin Chen 13

Example 20.3

Adaptive Quadrature

• Methods such as Simpson’s 1/3 rule has a disadvantage
in that it uses equally spaced points - if a function has
regions of abrupt changes, small steps must be used
over the entire domain to achieve a certain accuracy

• Adaptive quadrature methods for integrating functions
automatically adjust the step size so that small steps are
taken in regions of sharp variations and larger steps are
taken where the function changes gradually

NM – Berlin Chen 14

Adaptive Quadrature in MATLAB

• MATLAB has two built-in functions for
implementing adaptive quadrature:
– quad: uses adaptive Simpson quadrature; possibly

more efficient for low accuracies or nonsmooth
functions

– quadl: uses Lobatto quadrature; possibly more
efficient for high accuracies and smooth functions

• q = quad(fun, a, b, tol, trace, p1, p2, …)

– fun : function to be integrates
– a, b: integration bounds
– tol: desired absolute tolerance (default: 10-6)
– trace: flag to display details or not
– p1, p2, …: extra parameters for fun
– quadl has the same arguments

NM – Berlin Chen 15

