# Discrete Random Variables: Joint PMFs, Conditioning and Independence 



Berlin Chen<br>Department of Computer Science \& Information Engineering<br>National Taiwan Normal University<br>

Reference:

- D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability , Sections 2.5-2.7


## Motivation

－Given an experiment，e．g．，a medical diagnosis
－The results of blood test is modeled as numerical values of a random variable $X$
－The results of magnetic resonance imaging（MRI，核磁共振攝影） is also modeled as numerical values of a random variable $Y$

We would like to consider probabilities involving simultaneously the numerical values of these two variables and to investigate their mutual couplings

$$
\mathbf{P}(\{X=x\} \cap\{Y=y\}) ?
$$

## Joint PMF of Random Variables

- Let $X$ and $Y$ be random variables associated with the same experiment, the joint PMF of $X$ and $Y$ is defined by

$$
p_{X, Y}(x, y)=\mathbf{P}(\{X=x\} \cap\{Y=y\})=\mathbf{P}(X=x, Y=y)
$$

- if event $A$ is the set of all pairs $(x, y)$ that have a certain property, then the probability of $A$ can be calculated by

$$
\mathbf{P}((X, Y) \in A)=\sum_{(x, y) \in A} p_{X, Y}(x, y)
$$

## Marginal PMFs of Random Variables (1/2)

- The PMFs of random variables $X$ and $Y$ can be calculated from their joint PMF

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y), \quad p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
$$

- $p_{X}(x)$ and $p_{Y}(y)$ are often referred to as the marginal PMFs
- The above two equations can be verified by

$$
\begin{aligned}
p_{X}(x) & =\mathbf{P}(X=x) \\
& =\sum_{y} \mathbf{P}(X=x, Y=y) \\
& =\sum_{y} p_{X, Y}(x, y)
\end{aligned}
$$

## Marginal PMFs of Random Variables (2/2)

- Tabular Method: Given the joint PMF of random variables $X$ and $Y$ is specified in a two-dimensional table, the marginal PMF of $X$ or $Y$ at a given value is obtained by adding the table entries along a corresponding column or row, respectively



## Functions of Multiple Random Variables (1/2)

- A function $Z=g(X, Y)$ of the random variables $X$ and $Y$ defines another random variable. Its PMF can be calculated from the joint PMF $p_{X, y}$

$$
p_{Z}(z)=\sum_{\{(x, y) \mid g(x, y)=z\}} p_{X, Y}(x, y)
$$

- The expectation for a function of several random variables

$$
\mathbf{E}[Z]=\mathbf{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)
$$

## Functions of Multiple Random Variables (2/2)

- If the function of several random variables is linear and of the form $Z=g(X, Y)=a X+b Y+c$

$$
\mathbf{E}[Z]=a \mathbf{E}[X]+b \mathbf{E}[Y]+c
$$

- How can we verify the above equation?


## An Illustrative Example

- Given the random variables $X$ and $Y$ whose joint is given in the following figure, and a new random variable $Z$ is defined by $Z=X+2 Y$, calculate $\mathbf{E}[Z]$
- Method 1:

$$
\begin{aligned}
& \mathbf{E}[X]=1 \cdot \frac{3}{20}+2 \cdot \frac{6}{20}+3 \cdot \frac{8}{20}+4 \cdot \frac{3}{20}=\frac{51}{20} \\
& \mathbf{E}[Y]=1 \cdot \frac{3}{20}+2 \cdot \frac{7}{20}+3 \cdot \frac{7}{20}+4 \cdot \frac{3}{20}=\frac{50}{20} \\
& \mathbf{E}[Z]=\mathbf{E}[X]+2 \mathbf{E}[Y]=\frac{51}{20}+2 \cdot \frac{50}{20}=\frac{151}{20}=7.55
\end{aligned}
$$

- Method 2:

$$
\begin{aligned}
& p_{Z}(z)=\sum_{\{(x, y) \mid x+2 y=z\}} p_{X, Y}(x, y) \\
& p_{Z}(3)=\frac{1}{20}, p_{Z}(4)=\frac{1}{20}, p_{Z}(5)=\frac{2}{20}, p_{Z}(6)=\frac{2}{20} \\
& p_{Z}(7)=\frac{4}{20}, p_{Z}(8)=\frac{3}{20}, p_{Z}(9)=\frac{3}{20}, p_{Z}(10)=\frac{2}{20} \\
& p_{Z}(11)=\frac{1}{20}, p_{Z}(12)=\frac{1}{20}
\end{aligned}
$$

$$
p_{Z}(3)=\frac{1}{20}, p_{Z}(4)=\frac{1}{20}, p_{Z}(5)=\frac{2}{20}, p_{Z}(6)=\frac{2}{20} \quad \therefore \mathbf{E}[Z]=3 \cdot \frac{1}{20}+4 \cdot \frac{1}{20}+5 \cdot \frac{2}{20}+6 \cdot \frac{2}{20}
$$

$$
\begin{aligned}
& +7 \cdot \frac{4}{20}+8 \cdot \frac{3}{20}+9 \cdot \frac{3}{20}+10 \cdot \frac{2}{20} \\
& +11 \cdot \frac{1}{20}+12 \cdot \frac{1}{20}=7.55
\end{aligned}
$$

## More than Two Random Variables (1/2)

- The joint PMF of three random variables $X, Y$ and $Z$ is defined in analogy with the above as

$$
p_{X, Y, Z}(x, y, z)=\mathbf{P}(X=x, Y=y, Z=z)
$$

- The corresponding marginal PMFs

$$
p_{X, Y}(x, y)=\sum_{z} p_{X, Y, Z}(x, y, z)
$$

and

$$
p_{X}(x)=\sum_{y} \sum_{z} p_{X, Y, Z}(x, y, z)
$$

## More than Two Random Variables (2/2)

- The expectation for the function of random variables $X$, $Y$ and $Z$

$$
\mathbf{E}[g(X, Y, Z)]=\sum_{x} \sum_{y} \sum_{z} g(x, y, z) p_{X, Y, Z}(x, y, z)
$$

- If the function is linear and has the form $a X+b Y+c Z+d$

$$
\mathbf{E}[a X+b Y+c Z+d]=a E[X]+b E[Y]+c E[Z]+d
$$

- A generalization to more than three random variables

$$
\begin{aligned}
& \mathbf{E}\left[a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right]= \\
& \quad a_{1} E\left[X_{1}\right]+a_{2} E\left[X_{2}\right]+\cdots+a_{n} E\left[X_{n}\right]
\end{aligned}
$$

## An Illustrative Example

- Example 2.10. Mean of the Binomial. Your probability class has 300 students and each student has probability $1 / 3$ of getting an A, independently of any other student.
- What is the mean of $X$, the number of students that get an A ?

Let
$X_{i}= \begin{cases}1, & \text { if the } i \text { th student gets an A } \\ 0, & \text { otherwise }\end{cases}$
$\Rightarrow X_{1}, X_{2}, \ldots, X_{300}$ are bernoulli random variables with common mean $p=1 / 3$

Their sum $X=X_{1}+X_{2}+\ldots+X_{300}$ can be interpreted as a binomial random variable with parameters $n(n=300)$ and $p(p=1 / 3)$. That is, $X$ is the number of success in $n(n=300)$ independent trials

$$
\therefore \mathbf{E}[\mathrm{X}]=\mathbf{E}\left[X_{1}+X_{2}+\ldots+X_{300}\right]=\sum_{i=1}^{300} \mathbf{E}\left[X_{i}\right]=300 \cdot 1 / 3=100
$$

## Conditioning

- Recall that conditional probability provides us with a way to reason about the outcome of an experiment, based on partial information
- In the same spirit, we can define conditional PMFs, given the occurrence of a certain event or given the value of another random variable


## Conditioning a Random Variable on an Event (1/2)

- The conditional PMF of a random variable $X$, conditioned on a particular event $A$ with $\mathbf{P}(A)>0$, is defined by (where $X$ and $A$ are associated with the same experiment)

$$
P_{X \mid A}(x)=\mathbf{P}(X=x \mid A)=\frac{\mathbf{P}(\{X=x\} \cap A)}{\mathbf{P}(A)}
$$

- Normalization Property
- Note that the events $\mathbf{P}(\{X=x\} \cap A)$ are disjoint for different values of $X$, their union is $A$

$$
\begin{aligned}
& \mathbf{P}(A)=\sum_{x} \mathbf{P}(\{X=x\} \cap A) \\
\therefore & \sum_{x} P_{X \mid A}(x)=\sum_{x} \frac{\mathbf{P}(\{X=x\} \text { Tol probability theorem }}{\mathbf{P}(A)}=\frac{\sum_{x} \mathbf{P}(\{X=x\} \cap A)}{\mathbf{P}(A)}=\frac{\mathbf{P}(A)}{\mathbf{P}(A)}=1
\end{aligned}
$$

## Conditioning a Random Variable on an Event (2/2)

- A graphical illustration


Figure 2.12: Visualization and calculation of the conditional PMF $p_{X \mid A}(x)$. For each $x$, we add the probabilities of the outcomes in the intersection $\{X=x\} \cap A$ and normalize by diving with $\mathbf{P}(A)$.

## Illustrative Examples (1/2)

- Example 2.12. Let $X$ be the roll of a fair six-sided die and $A$ be the event that the roll is an even number

$$
\begin{aligned}
P_{X \mid A}(x) & =\mathbf{P}(X=x \mid \text { roll is even }) \\
& =\frac{\mathbf{P}(X=x \text { and } X \text { is even })}{\mathbf{P}(X \text { is even })} \\
& = \begin{cases}1 / 3, & \text { if } x=2,4,6 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

## Illustrative Examples (2/2)

- Example 2.14. A student will take a certain test repeatedly, up to a maximum of $n$ times, each time with a probability $p$ of passing, independently of the number of previous attempts.
- What is the PMF of the number of attempts given that the student passes the test?
Let $X$ be a geometric random variable with parameter $p$, representi ng the number of attempts until the fist success comes up

$$
p_{X}(x)=(1-p)^{x-1} p
$$



Let $A$ be the event that the student pass the test

$$
\begin{aligned}
& \quad \text { within } n \text { attempts }(A=\{X \leq n\}) \\
& \therefore p_{X \mid A}(x)= \begin{cases}\frac{(1-p)^{x-1} p}{\sum_{m=1}^{n}(1-p)^{m-1} p}, & \text { if } x=1,2, \ldots, n \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$



## Conditioning a Random Variable on Another (1/2)

- Let $X$ and $Y$ be two random variables associated with the same experiment. The conditional PMF $p_{X \mid Y}$ of $X$ given $Y$ is defined as

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =\mathbf{P}(X=x \mid Y=y)=\frac{\mathbf{P}(X=x, Y=y)}{\mathbf{P}(Y=y)} \\
& =\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \quad \quad Y \text { is fixed on some value } y
\end{aligned}
$$

- Normalization Property $\sum_{x} p_{X \mid Y}(x \mid y)=1$
- The conditional PMF is often convenient for the calculation of the joint PMF


## multiplication (chain) rule

$$
p_{X, Y}(x, y)=p_{Y}(y) p_{X \mid Y}(x \mid y)\left(=p_{X}(x) p_{Y \mid X}(y \mid x)\right)
$$

## Conditioning a Random Variable on Another (2/2)

- The conditional PMF can also be used to calculate the marginal PMFs

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)=\sum_{y} p_{Y}(y) p_{X \mid Y}(x \mid y)
$$

- Visualization of the conditional PMF $p_{X \mid Y}$



## An Illustrative Example (1/2)

- Example 2.14. Professor May B. Right often has her facts wrong, and answers each of her students' questions incorrectly with probability $1 / 4$, independently of other questions. In each lecture May is asked 0,1 , or 2 questions with equal probability $1 / 3$.
- What is the probability that she gives at least one wrong answer ?

Let $X$ be the number of questions asked,
$Y$ be the number of questions answered wrong

$$
\begin{aligned}
\mathbf{P}(Y \geq 1)= & \mathbf{P}(Y=1)+\mathbf{P}(Y=2) \\
= & \left.\mathbf{P}(x=1, y=1)+\mathbf{P}(x=2, y=1) \quad \begin{array}{l}
n \\
k
\end{array}\right) p \\
& +\mathbf{P}(x=2, y=2) \quad \text { modeled as bino } \\
\therefore \mathbf{P}(Y \geq 1)= & \mathbf{P}(x=1) \mathbf{P}(y=1 \mid x=1)+\mathbf{P}(x=2) \mathbf{P}(y=1 \mid x=2) \\
& +\mathbf{P}(x=2) \mathbf{P}(y=2 \mid x=2) \\
= & \frac{1}{3} \cdot \frac{1}{4}+\frac{1}{3} \cdot\left[\binom{2}{1} \frac{1}{4} \cdot \frac{3}{4}\right]+\frac{1}{3} \cdot\left[\binom{2}{2} \frac{1}{4} \cdot \frac{1}{4}\right]=\frac{11}{48}
\end{aligned}
$$

modeled as binomial distributions

## An Illustrative Example (2/2)

- Calculation of the joint PMF $p_{X, Y}(x, y)$ in Example 2.14.



## Conditional Expectation

- Recall that a conditional PMF can be thought of as an ordinary PMF over a new universe determined by the conditioning event
- In the same spirit, a conditional expectation is the same as an ordinary expectation, except that it refers to the new universe, and all probabilities and PMFs are replaced by their conditional counterparts


## Summary of Facts About Conditional Expectations

- Let $X$ and $Y$ be two random variables associated with the same experiment
- The conditional expectation of $X$ given an event $A$ with $\mathbf{P}(A)>0$, is defined by

$$
\mathbf{E}[X \mid A]=\sum_{x} x p_{X \mid A}(x)
$$

- For a function $g(X)$, it is given by

$$
\mathbf{E}[g(X) \mid A]=\sum_{x} g(x) p_{X \mid A}(x)
$$

## Total Expectation Theorem (1/2)

- The conditional expectation of $X$ given a value $y$ of $Y$ is defined by

$$
\mathbf{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- We have

$$
\mathbf{E}[X]=\sum_{y} p_{Y}(y) \sum_{x} x p_{X \mid Y}(x \mid y)
$$

- Let $A_{1}, \cdots, A_{n}$ be disjoint events that form a partition of the sample space, and assume that $P\left(A_{i}\right)>0$, for all $i$. Then,

$$
\mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{P}\left(A_{i}\right) \mathbf{E}\left[X \mid A_{i}\right]
$$

## Total Expectation Theorem (2/2)

- Let $A_{1}, \cdots, A_{n}$ be disjoint events that form a partition of an event $B$, and assume that $P\left(A_{i} \cap B\right)>0$, for all $i$. Then,

$$
\mathbf{E}[X \mid B]=\sum_{i=1}^{n} \mathbf{P}\left(A_{i} \mid B\right) \mathbf{E}\left[X \mid A_{i} \cap B\right]
$$

- Verification of total expectation theorem

$$
\begin{aligned}
\mathbf{E}[X] & =\sum_{x} x p_{X}(x)=\sum_{x} x \sum_{y} p_{X, Y}(x, y) \\
& =\sum_{x} x \sum_{y} p_{Y}(y) p_{X \mid Y}(x \mid y) \\
& =\sum_{y} p_{Y}(y) \sum_{x} x p_{X \mid Y}(x \mid y) \\
& =\sum_{y} p_{Y}(y) \mathbf{E}[X \mid Y=y]
\end{aligned}
$$

## An Illustrative Example (1/2)

- Example 2.17. Mean and Variance of the Geometric Random Variable
- A geometric random variable $X$ has PMF $p_{X}(x)=(1-p)^{x-1} p, \quad x=1,2, \ldots$

Let $A_{1}$ be the event that $\{X=1\}$
$A_{2}$ be the event that $\{X>1\}$
$\mathbf{E}[X]=\mathbf{P}\left(A_{1}\right) \mathbf{E}\left[X \mid A_{1}\right]+\mathbf{P}\left(A_{2}\right) \mathbf{E}\left[X \mid A_{2}\right]$ where

$$
\mathbf{P}\left(A_{1}\right)=p, \mathbf{P}\left(A_{2}\right)=1-p
$$

$$
p_{X \mid A_{1}}(x)= \begin{cases}\frac{p}{p}=1, & x=1 \\ 0, & \text { otherwise }\end{cases}
$$

$$
p_{X \mid A_{2}}(x)= \begin{cases}(1-p)^{x-2} p(? ?), & x>1 \\ 0, & \text { otherwise }\end{cases}
$$

Note that (See Example 2.13) :

$$
p_{X \mid A}(x)= \begin{cases}\frac{(1-p)^{x-1} p}{\sum_{m=1}^{n}(1-p)^{m-1} p}, & \text { if } x=1,2, \ldots, n \\ 0, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \mathbf{E}\left[X \mid A_{1}\right]=1 \cdot 1+\sum_{x=2}^{\infty} x \cdot 0=1 \\
& \begin{aligned}
\mathbf{E}\left[X \mid A_{2}\right] & =1 \cdot 0+\sum_{x=2}^{\infty} x \cdot\left[(1-p)^{x-2} p\right] \\
& =\sum_{x=2}^{\infty} x \cdot\left[(1-p)^{x-2} p\right] \\
& =\sum_{x^{\prime}=1}^{\infty}\left(x^{\prime}+1\right)(1-p)^{x^{\prime}-1} p \\
& =\left[\sum_{x^{\prime}=1}^{\infty} x^{\prime}(1-p)^{x^{\prime}-1} p\right]+\left[\sum_{x^{\prime}=1}^{\infty}(1-p)^{x^{\prime}-1} p\right] \\
& =\mathbf{E}[X]+1 \\
\Rightarrow \mathbf{E}[X] & =\mathbf{P}\left(A_{1}\right) \mathbf{E}\left[X \mid A_{1}\right]+\mathbf{P}\left(A_{2}\right) \mathbf{E}\left[X \mid A_{2}\right] \\
& =\mathbf{P}\left(A_{1}\right) \cdot 1+(1-p)(\mathbf{E}[X]+1) \\
\therefore \mathbf{E}[X] & =\frac{1}{p}
\end{aligned}
\end{aligned}
$$

## An Illustrative Example (2/2)

$$
\therefore \operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{1}{p^{2}}-\frac{1}{p}=\frac{1-p}{p^{2}}
$$

$$
\begin{aligned}
& \mathbf{E}\left[X^{2}\right]=\mathbf{P}\left(A_{1}\right) \mathbf{E}\left[X^{2} \mid A_{1}\right]+\mathbf{P}\left(A_{2}\right) \mathbf{E}\left[X^{2} \mid A_{2}\right] \\
& \mathbf{E}\left[X^{2} \mid A_{1}\right]=1^{2} \cdot 1+\sum_{x=2}^{\infty} x^{2} \cdot 0=1 \\
& \mathbf{E}\left[X^{2} \mid A_{2}\right]=1^{2} \cdot 0+\sum_{x=2}^{\infty} x^{2} \cdot(1-p)^{x-2} p \text { \& }\left(\because x^{2}=(x-1)^{2}+2 x-1\right) \\
& =\left[\sum_{x=2}^{\infty}(x-1)^{2} \cdot(1-p)^{x-2} p\right]+2\left[\sum_{x=2}^{\infty} x \cdot(1-p)^{x-2} p\right]-\left[\sum_{x=2}^{\infty}(1-p)^{x-2} p\right] \\
& =\left[\sum_{x^{\prime}=1}^{\infty} x^{\prime 2} \cdot(1-p)^{x^{\prime}-1} p\right]+2\left[\sum_{x=2}^{\infty}(x-1) \cdot(1-p)^{x-2} p\right]+2\left[\sum_{x=2}^{\infty}(1-p)^{x-2} p\right]-\left[\sum_{x=2}^{\infty}(1-p)^{x-2} p\right] \\
& =\mathbf{E}\left[X^{2}\right]+2\left[\sum_{x^{\prime}=1}^{\infty} x^{\prime} \cdot(1-p)^{x^{\prime}-1} p\right]+\left[\sum_{x^{\prime}=1}^{\infty}(1-p)^{x^{\prime}-1} p\right] \quad\left(\text { set } x^{\prime}=x-1\right) \\
& =\mathbf{E}\left[X^{2}\right]+2 \mathbf{E}[X]+1 \\
& \Rightarrow \mathbf{E}\left[X^{2}\right]=p \cdot 1+(1-p)\left(\mathbf{E}\left[X^{2}\right]+2 \mathbf{E}[X]+1\right) \\
& \mathbf{E}\left[X^{2}\right]=\frac{1+2(1-p) \mathbf{E}[X]}{p}\left(\text { we have shown that } \quad \mathbf{E}[X]=\frac{1}{p}\right) \\
& \mathbf{E}\left[X^{2}\right]=\frac{2}{p^{2}}-\frac{1}{p}
\end{aligned}
$$

## Independence of a Random Variable from an Event

- A random variable $X$ is independent of an event $A$ if

$$
\mathbf{P}(X=x \text { and } A)=\mathbf{P}(X=x) \mathbf{P}(A), \text { for all } x
$$

- If a random variable $X$ is independent of an event $A$ and $\mathbf{P}(A)>0$

$$
\begin{aligned}
p_{X \mid A}(x) & =\frac{\mathbf{P}(X=x \text { and } A)}{\mathbf{P}(A)} \\
& =\frac{\mathbf{P}(X=x) \mathbf{P}(A)}{\mathbf{P}(A)} \\
& =\mathbf{P}(X=x) \\
& =p_{X}(x), \text { for all } x
\end{aligned}
$$

## An Illustrative Example

- Example 2.19. Consider two independent tosses of a fair coin.
- Let random variable $X$ be the number of heads
- Let random variable $Y$ be 0 if the first toss is head, and 1 if the first toss is tail
- Let $A$ be the event that the number of head is even
- Possible outcomes (T,T), (T,H), (H,T), (H,H)

$$
\begin{aligned}
& p_{X}(x)= \begin{cases}1 / 4, & \text { if } x=0 \\
1 / 2, & \text { if } x=1 \\
1 / 4, & \text { if } x=2\end{cases} \\
& p_{X \mid A}(x)= \begin{cases}1 / 2, & \text { if } x=0 \\
0, & \text { if } x=1 \\
1 / 2, & \text { if } x=2\end{cases} \\
& p_{Y}(y)=\left\{\begin{array}{lll}
1 / 2, & \text { if } y=0 \\
1 / 2, & \text { if } y=1
\end{array}\right. \\
& p_{X \mid A}(x) \neq p_{X}(x) \Rightarrow X \text { and } A \text { are not independent! } \\
& \mathbf{P}(A)=1 / 2
\end{aligned}
$$

## Independence of a Random Variables (1/2)

- Two random variables $X$ and $Y$ are independent if

$$
\begin{aligned}
& p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y), \text { for all } x, y \\
\text { or } & \mathbf{P}(X=x, Y=y)=\mathbf{P}(X=x) \mathbf{P}(Y=y), \text { for all } x, y
\end{aligned}
$$

- If a random variable $X$ is independent of an random variable $Y$

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =p_{X}(x), \text { for all } y \text { with } p_{Y}(y)>0 \text { all } x \\
p_{X \mid Y}(x \mid y) & =\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \\
& =\frac{p_{X}(x) p_{Y}(y)}{p_{Y}(y)} \\
& =p_{X}(x), \text { for all } y \text { with } p(y)>0 \text { and } \underset{\text { Probability-Berin Chen } 29}{ } x
\end{aligned}
$$

## Independence of a Random Variables (2/2)

- Random variables $X$ and $Y$ are said to be conditionally independent, given a positive probability event $A$, if

$$
p_{X, Y \mid A}(x, y)=p_{X \mid A}(x) p_{Y \mid A}(y), \text { for all } x, y
$$

- Or equivalently,

$$
p_{X \mid Y, A}(x \mid y)=p_{X \mid A}(x), \text { for all } y \text { with } p_{Y \mid A}(y)>0 \text { and all } x
$$

- Note here that, as in the case of events, conditional independence may not imply unconditional independence and vice versa


## An Illustrative Example (1/2)

- Figure 2.15: Example illustrating that conditional independence may not imply unconditional independence
- For the PMF shown, the random variables $X$ and $Y$ are not independent
- To show $X$ and $Y$ are not independent, we only have to find a pair of values $(x, y)$ of $X$ and $Y$ that

$$
\begin{array}{ll}
p_{X \mid Y}(x \mid y) \neq p_{X}(x) \\
\begin{array}{l}
\text { For example, } X \\
\text { independent }
\end{array} \\
p_{X \mid Y}(1 \mid 1)=0 \neq p_{X}(1)=\frac{3}{20} & \\
& 2 \\
& 2 \\
\hline
\end{array}
$$

## An Illustrative Example (2/2)

- To show $X$ and $Y$ are not dependent, we only have to find all pair of values $(x, y)$ of $X$ and $Y$ that

$$
p_{X \mid Y}(x \mid y)=p_{X}(x)
$$

- For example, $X$ and $Y$ are independent, conditioned on the event $A=\{X \leq 2, Y \geq 3\}$

$$
\begin{aligned}
& \mathbf{P}(A)=\frac{9}{20}, \quad p_{X \mid Y, A}(x \mid y)=\frac{\mathbf{P}(X=x \cap Y=y \cap A)}{\mathbf{P}(Y=y \cap A)} \\
& p_{X \mid Y, A}(1 \mid 3)=\frac{2 / 20}{6 / 20}=\frac{1}{3}, \quad p_{X \mid A}(1)=\frac{3 / 20}{9 / 20}=1 / 3 \\
& p_{X \mid Y, A}(1 \mid 4)=\frac{1 / 20}{3 / 20}=\frac{1}{3} \\
& p_{X \mid Y, A}(2 \mid 3)=\frac{4 / 20}{6 / 20}=\frac{2}{3}, \quad p_{X \mid A}(2)=\frac{6 / 20}{9 / 20}=2 / 3 \\
& p_{X \mid Y, A}(2 \mid 4)=\frac{2 / 20}{3 / 20}=\frac{2}{3}
\end{aligned}
$$



## Functions of Two Independent Random Variables

- Given $X$ and $Y$ be two independent random variables, let $g(X)$ and $h(Y)$ be two functions of $X$ and $Y$, respectively. Show that $g(X)$ and $h(Y)$ are independent.

$$
\begin{aligned}
& \text { Let } U=g(X) \text { and } V=h(Y) \text {, then } \\
& \begin{aligned}
p_{U, V}(u, v) & =\sum_{\{(x, y) \mid g(x)=u, h(y)=v\}} p_{X, Y}(x, y) \\
& =\sum_{\{(x, y) \mid g(x)=u, h(y)=v\}} p_{X}(x) p_{Y}(y) \\
& =\sum_{\{x \mid g(x)=u\}} p_{X}(x) \sum_{\{y \mid h(y)=v\}} p_{Y}(y) \\
& =p_{U}(u) p_{V}(v)
\end{aligned}
\end{aligned}
$$

## More Factors about Independent Random Variables (1/2)

- If $X$ and $Y$ are independent random variables, then $\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]$
- As shown by the following calculation

$$
\begin{aligned}
\mathbf{E}[X Y] & =\sum_{x} \sum_{y} x y \underline{p_{X, Y}(x, y)} \\
& =\sum_{x} \sum_{y} x y \underline{p_{X}(x) p_{Y}(y)} \\
& =\sum_{x} x p_{X}(x)\left[\sum_{y} y p_{Y}(y)\right] \\
& =\mathbf{E}[X] \mathbf{E}[Y]
\end{aligned}
$$

- Similarly, if $X$ and $Y$ are independent random variables, then

$$
\mathbf{E}[g(X) h(Y)]=\mathbf{E}[g(X)] \mathbf{E}[h(Y)]
$$

More Factors about Independent Random Variables (2/2)

- If $X$ and $Y$ are independent random variables, then

$$
\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
$$

- As shown by the following calculation

$$
\begin{aligned}
& \left.\operatorname{var}(X+Y)=\mathbf{E}[(X+Y)-\mathbf{E}[X+Y])^{2}\right] \\
= & \left.\mathbf{E}(X+Y)^{2}-2(X+Y)(\mathbf{E}[X]+\mathbf{E}[Y])+(\mathbf{E}[X]+\mathbf{E}[Y])^{2}\right] \\
= & {\left[\sum_{x, y}(x+y)^{2} p_{X, Y}(x, y)\right]-2(\mathbf{E}[X]+\mathbf{E}[Y] \mathbf{E}[X]-2(\mathbf{E}[X]+\mathbf{E}[Y] \mathbf{E}[Y]+} \\
& +(\mathbf{E}[X])^{2}+2 \cdot \mathbf{E}[X] \mathbf{E}[Y]+(\mathbf{E}[Y])^{2} \\
= & {\left.\left[\sum_{x, y} x^{2} p_{X, Y}(x, y)\right]+\left[\sum_{x, y} y^{2} p_{X, Y}(x, y)\right]+2 \sum_{x, y} x_{x, y} p_{X, Y}(x, y)\right] } \\
& -(\mathbf{E}[X])^{2}-(\mathbf{E}[Y])^{2}-2 \mathbf{E}[X] \mathbf{E}[Y] \\
= & \left(\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}\right)+\left(\mathbf{E}\left[Y^{2}\right]-(\mathbf{E}[Y])^{2}\right)=\operatorname{var}(X)+\operatorname{var}(Y)
\end{aligned}
$$

## More than Two Random Variables

- Independence of several random variables
- Three random variable $X, \quad Y$ and $Z$ are independent if

$$
p_{X, Y, Z}(x, y, z)=p_{X}(x) p_{Y}(y) p_{Z}(z)
$$

- Any three random variables of the form $f(X), g(X)$ and $h(X)$ are also independent
- Variance of the sum of independent random variables
- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables, then

$$
\operatorname{var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+\cdots+\operatorname{var}\left(X_{n}\right)
$$

## Illustrative Examples (1/3)

- Example 2.20. Variance of the Binomial. We consider $n$ independent coin tosses, with each toss having probability $p$ of coming up a head. For each $i$, we let $X_{i}$ be the Bernoulli random variable which is equal to 1 if the $i$-th toss comes up a head, and is 0 otherwise.
- Then, $X=X_{1}+X_{2}+\cdots+X_{n}$ is a binomial random variable.
$\because \operatorname{var}\left(X_{i}\right)=p(1-p)$, for all $i$
$\therefore \operatorname{var}(X)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)=n p(1-p) \quad$ (Note that $X_{i}$ 's are independent!)


## Illustrative Examples (2/3)

- Example 2.21. Mean and Variance of the Sample Mean. We wish to estimate the approval rating of a president, to be called B. To this end, we ask $n$ persons drawn at random from the voter population, and we let $X_{i}$ be a random variable that encodes the response of the $i$-th person:

$$
X_{i}= \begin{cases}1, & \text { if the } i \text {-th person approves } \mathrm{B} \text { 's performanc } \mathrm{e} \\ 0, & \text { if the } i \text {-th person disapproves } \mathrm{B} \text { 's performanc } \mathrm{e}\end{cases}
$$

- Assume that $X_{i}$ independent, and are the same random variable (Bernoulli) with the common parameter ( $p$ for Bernoulli), which is unknown to us
- $X_{i}$ are independent, and identically distributed (i.i.d.)
- If the sample mean $S_{n}$ (is a random variable) is defined as

$$
S_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

## Illustrative Examples (3/3)

- The expectation of $S_{n}$ will be the true mean of $X_{i}$

$$
\begin{aligned}
\mathbf{E}\left[S_{n}\right] & =\mathbf{E}\left[\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right] \\
& \left.=\mathbf{E}\left[X_{i}\right] \text { (= } p \text { for the Bernoulli we assumed here }\right)
\end{aligned}
$$

- The variance of $S_{n}$ will approximate 0 if $n$ is large enough

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{var}\left(S_{n}\right)=\operatorname{var}\left(\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}\right) \\
& \quad=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n p(1-p)}{n^{2}}=\lim _{n \rightarrow \infty} \frac{p(1-p)}{n}=0
\end{aligned}
$$

- Which means that $S_{n}$ will be a good estimate of $\mathbf{E}\left[X_{i}\right]$ if $n$ is large enough


## Recitation

- SECTION 2.5 Joint PMFs of Multiple Random Variables
- Problems 27, 28, 30
- SECTION 2.6 Conditioning
- Problems 33, 34, 35, 37
- SECTION 2.6 Independence
- Problems 42, 43, 45, 46

